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Abstract. It is shown that free boundary 3D equilibrium calculations in
tokamak geometry are capable of capturing the physics of non-linearly saturated
external kink modes for monotonic current and q profiles typical of standard
(baseline) plasma scenarios. The VMEC ideal MHD equilibrium model exhibits
strong flux surface corrugations of the plasma vacuum boundary, driven by the
core current profile. A method is presented which conveniently extracts the
amplitude of the corrugation in terms of Fourier components in straight field
line coordinates. The Fourier spectrum, and condition for non-linear corrugation
agrees well with linear simulations, and the saturated amplitude agrees well with
non-linear analytic calculations.
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1. Introduction

External kink modes are known [1, 2] to be of concern
for the development of plasma scenarios. They set
operational limits and define inaccessible windows for
the edge safety factor and the peaking of the current
profile. External kink modes tend to be linearly
unstable for large current gradients, especially when
these gradients are close to the plasma edge. After an
initial linear growth in the non-linear phase, a mode
usually saturates (non-linear stability) [3, 4], though
in practice, the corrugation can be so large as to touch
the vacuum vessel or plasma-facing components, thus
causing disruptions [1].

The investigation of non-linear instabilities is
typically carried out [5] with initial value codes (e.g.
XTOR-2F [6]). Such simulations are computationally
expensive due to the resolution and number of
time steps necessary and require a certain level of
parallelisation [7]. Since a saturated state without
equilibrium flows is characterised by being time-
independent, an equilibrium code can in theory obtain
a saturated state, satisfying the force balance equation
j×B−∇p = 0. Indeed, this was already shown for
non-resonant internal kink modes with q > 1, where
initial value (XTOR-2F) saturated states and VMEC
fixed-boundary calculations showed similar m = n = 1
displacement amplitudes [5].

The goal of this paper is to investigate the de-
gree to which 3D free-boundary equilibrium codes can
model conventional external kink modes, driven by cur-
rent gradients associated with standard tokamak op-
eration (baseline scenario) with monotonic (standard
[Wesson-like [2]]) q profiles. The work differs from
recent [8, 9, 10] deployment of VMEC for modelling
edge harmonic oscillations in plasmas with low mag-
netic shear at the edge. Those oscillations are driven
predominantly by pressure gradients, rather than cur-
rent gradients. The 3D converged equilibria in this
manuscript will be compared with the spectral proper-
ties of linear numerical stability analysis, and further
verified by analytic non-linear calculations [4]. Lack of
a converged equilibrium will be taken to mean that an
unstable external kink mode forms, but non-linear sat-
uration has not been achieved. The advantages of the
equilibrium approach to external kink mode problems
are numerous. First, the computations are fast and
accurate, and second they provide convenient Fourier
decomposed magnetic geometry for advanced studies
such as fast particle [11] and impurity transport [12] in
non-axisymmetric plasmas. Such studies require long
and highly accurate particle simulations. To obtain the
required accuracy, the VENUS-LEVIS guiding center
code [13] for example exploits the Fourier decomposi-
tion of the magnetic field for orbit calculations.

In this letter we present ideal MHD free-boundary
computations of JET-like plasmas carried out with

the VMEC code [14]. First, the characteristics of the
observed three-dimensional equilibria and the choice of
the coordinate system for mode spectrum analysis are
discussed. This is followed by the VMEC calculation
of the non-linear saturated displacement amplitude
for varying edge q value, and two choices of current
density profiles. The results are then compared with
the helical external kink amplitude calculated from an
analytical model based on a non-linear large aspect
ratio expansion.

2. Non-axisymmetric VMEC equilibria

The computation of 3D ideal MHD equilibria is
performed using the free-boundary VMEC code [14,
15], which arrives at an equilibrium state by minimising
the energy functional

W =
∫∫∫
plasma

[
|B|2

2µ0
+ p(ρ)

Γ− 1

]
d3x−

∫∫∫
vacuum

|Bv|2

2µ0
d3x , (1)

where B is the magnetic field inside the plasma, Bv

is the vacuum magnetic field, p(ρ) is the pressure
as a function of the radial variable ρ =

√
Φ/Φa.

The toroidal flux is denoted by Φ, and subscript ′a′
indicates that a quantity is evaluated at the plasma
boundary. The poloidal and toroidal magnetic field
coils are modeled as discretised filaments with specified
coil currents. In this proof-of-principle study we
employ an accurate model of the up-down symmetric
toroidal and poloidal JET coils [10], but we do not
include the effects of other coil systems (e.g. divertor
coils), the vacuum vessel conductor nor iron core.
The vacuum magnetic field is calculated from the coil
currents according to the Biot-Savart law [16]. During
the iterations that minimise the energy functional
with respect to an artificial time variable, the plasma
boundary is free to move. We impose stellarator
symmetry on the 3D equilibrium and choose 289 flux
surfaces with a mode spectrum of 0 ≤ m ≤ 14 poloidal
and −6 ≤ n ≤ 6 toroidal modes. In order to converge
towards the 3D equilibrium quickly, we provide a small
perturbation to the magnetic axis initial guess.

The linear growth rate and the non-linear
saturated amplitude of external kink modes depend
on the distance to a conducting wall surrounding the
plasma. The VMEC model does not include such a
wall. Instead, the plasma is enclosed inside a structure
of magnetic field coils at a finite distance from the
plasma. We hence cannot investigate the influence of
the wall distance on the VMEC edge corrugations. For
comparison with VMEC, the conducting wall distance
must be set to infinity (very large) for models that have
the effect of a conducting wall. These models (linear
and non-linear) well investigate the sensitivity of wall
distance, and thus the likely correction to VMEC due
to the vacuum vessel.
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Figure 1: Plasma boundary and magnetic axis
(indicated by a cross) of a free-boundary VMEC
equilibrium with qa = 3.752 and βN = 0.552 %
are shown at different toroidal angles φ. The non-
axisymmetric edge corrugation is clearly visible.

We start by examining dominant n = 1,m = 4
external modes with edge safety factor qa . 4.
Following the philosophy of previous studies of non-
linear external kink modes [4] we choose a current
density profile j(ρ) ∝ (1−ρ8), which is similar to those
used by Wesson [2], however with a steeper gradient to
make the non-linear structure in VMEC simulations
larger, and hence easier to resolve numerically. For all
simulations the pressure is chosen to be p(ρ) ∝ (1−ρ2).
In order to investigate the effect of finite pressure on
the resulting edge corrugations, p(ρ) is multiplied by
a scalar to achieve different values of βN = βaBφ/Ip,
where a is the minor radius, Bφ the toroidal magnetic
field and Ip the plasma current. The value of qa (edge
safety factor) is crucial for both linear and non-linear
external kink stability. We vary Ip in the VMEC
simulations in order to study the dependency of the
saturated edge displacement η on qa with the given
forms of j(ρ) and varying pressure. The q profiles
resulting from these equilibrium configurations are
monotonic where q(ρ) ≈ Bφρ

2

µ0R
/
∫ ρ

0 j(ρ
′)ρ′dρ′.

First, we simulate a plasma with a total toroidal
current of It = 2.6 MA such that the resulting edge
safety factor of qa = 3.752 is below the rational value
m/n = 4/1. The resulting VMEC equilibrium is non-
axisymmetric with a strong edge corrugation in the
toroidal and poloidal directions. This is illustrated in
Fig. 1, where the plasma boundary and the magnetic
axis are shown at different toroidal angles φ. From
Fig. 2a, which shows a poloidal cross section of the flux
surfaces for the φ = 0 case of Fig. 1, it is evident that
the perturbation is strongest at the plasma boundary
and decreases towards the magnetic axis where it
vanishes (hence only one cross observed in Fig. 1).
This behaviour as expected is characteristic of external

Figure 2: Visualisation of the resulting 3D equilibrium
with qa = 3.752 shown for the φ = 0 case of Fig. 1.
(a) Shape and position of the magnetic flux surfaces.
The perturbation is strongest at the plasma edge and
vanishes towards the magnetic axis. (b) Perturbation
δp = p3D−p2D arising from the comparison of the
pressure in the 3D equilibrium with the neighbouring
state.

kink modes. By retaining only n = 0 modes, we
can find a neighbouring axisymmetric state to the
obtained 3D equilibrium. A comparison of 3D VMEC
states with their neighbouring axisymmetric equilibria
was previously used to determine toroidal field ripple
[17]. Defining δp = p3D − p2D as being the difference
of p in the 3D state compared to the axisymmetric
state, we can identify the periodicity and the location
of the perturbation. It is noted in passing that the
3D displacement ξ of the magnetic surfaces can be
approximately determined via ξ = −δp (∂p2D/∂ρ)−1.
Fig. 2b shows δp for the φ = 0 case of Fig. 1. It can
be seen that the perturbation is located at the plasma
edge and the m = 4 character is evident.

To determine the non-linear amplitude, emphasis
has to be placed on the coordinate system underlying
the spectral analysis of the displacement. From
VMEC, the axisymmetric flux surface S2D(θ, φ) as
well as 3D flux surface S3D(θ, φ) are known in VMEC
flux coordinates (s = ρ2, θ, φ) [14]. For a given point
P0 lying on S2D with normal vector N, a convenient
definition of the corrugation displacement at the edge
is

η(θ, φ)N(θ, φ) = S3D −P0(θ, φ) . (2)
The Fourier series representing η is of the same form
as that of the magnetic field strength, i.e.,

η(θ, φ) =
Mmax∑
m=0

Nmax∑
n=0

ηmn cos (mθ − nφ) , (3)

due to the imposed stellarator symmetry. We can
calculate the mode spectrum separately for η(θ, φ),
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Figure 3: Mode spectrum of the edge displacement
obtained in two different coordinate systems. (a)
In VMEC coordinates. (b) In straight field line
coordinates (dominant m = 4/n = 1 mode).

|B|(θ, φ) as well as R(θ, φ) and Z(θ, φ) at the edge.
The spectrum of each of these quantities is rich and
exhibits a variety of strong poloidal modes for n = 1.
For the case shown in Fig. 2, the 4/1 VMEC coordinate
coefficients ofR, Z, |B| and η are not dominant. This is
in contradiction with the visual observations from the
magnetic topology, which has a clear 4/1 structure. To
allow a direct comparison with η obtained in straight
field line (sfl) coordinates, the mode amplitudes for
η(φ, θ) in VMEC coordinates can be seen in Fig. 3a.

Mode spectra are expected to be most narrow
for a straight field line coordinate system. Dominant
poloidal modes can thus be identified for comparison
with those seen in Figs. 1 and 2 (simply by inspection),
and for suitable comparison with the non-linear
analytic treatment described later. For this we need to
transform the poloidal angle of the VMEC coordinate
system to a straight field line angle θsfl by equating the
volume elements in VMEC coordinates and straight
field line coordinates

Jsfl dφdθsfl dρ2 = JVMEC dφdθ dρ2 . (4)

Since the toroidal angle φ and the radial variable ρ are
identical in both coordinate systems, the only variables
remaining are θsfl and θ. Integration of Eq. (4) yields

θsfl(θ) = 2π
[∫ 2π

0

JVMEC(θ)
R2(θ) dθ

]−1∫ θ

0

JVMEC(θ)
R2(θ) dθ , (5)

where Jsfl ∝ R2 was used and JVMEC and R
are computed by VMEC from the axisymmetric
equilibrium. Now with Eq. (2) we are able to calculate

Figure 4: (a) Linear external kink growth rate γ
of the 4/1 mode calculated with KINX. (b) Linear
n = 1 (KINX) radial displacement functions for various
poloidal mode numbers (sfl coordinates). (c) Non-
linear n = 1 saturated (VMEC) radial displacement
functions η for various poloidal mode numbers (sfl
coordinates).

the coefficients for the Fourier series of η(θsfl, φ). In
this sfl coordinate system the mode spectrum cleanly
and clearly identifies a standard external kink mode.
As shown in Fig. 3b the 4/1 mode is dominant as
expected from the visual observations of Fig. 2 as well
as from external kink mode theory. With all other
modes being fairly weak compared to the dominant
one, poloidal and toroidal coupling thus appears to
have a weak effect. Toroidicity and beta can be
expected to have only a mild effect on mode structure,
and hence we can compare the mode amplitudes to an
analytical model that assumes cylindrical geometry [4].

To obtain non-linearly saturated external kink
modes, the system is initially required to be linearly
unstable. This condition is verified from numerical
computations with the linear eigenvalue code KINX
[18]. The effects of small aspect ratio, shaping and
finite beta are retained in these computations and in
Figs. 4a, 4b the distance to the perfectly conducting
wall surrounding the plasma is set to b/a = 10, i.e.
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sufficiently large to consider no effects due to the wall.
The linear growth rate γ = −iω of the 4/1 mode is
calculated as a function of qa. This is presented in
Fig. 4a, where γ is normalised by the Alfvén frequency
ωA. The 4/1 external kink mode is linearly unstable in
a wide range of qa, where saturated non-linear states
can possibly arise. The linear radial eigenfunctions
of the sfl harmonics in KINX resemble the mode
spectrum calculated in sfl coordinates in Fig. 3b (for
the non-linear equilibrium calculations). For an edge
safety factor below qa < 4, the eigenfunction (radial
displacement) of the 4/1 mode is dominant at the
plasma boundary. This is shown in Fig. 4b for the
case with an edge safety factor of qa = 3.752. The
similarity of these linear eigenfunctions and the non-
linear saturated VMEC displacement ηmn as a function
of the radial variable, shown in Fig. 4c, is remarkable.

3. Comparison with saturated external kink
mode amplitude

After demonstrating the external kink spectral proper-
ties of the VMEC 3D equilibria, we now compare the
non-linear saturated amplitude of the displacement in
VMEC with analytical predictions. In the following we
provide a concise and self-contained summary of an an-
alytical model [4] for the non-linear saturated external
kink amplitude. In this context, we correct Eq. (34)
of [4], where one term was found to be missing. The
model assumes cylindrical geometry, circular cross sec-
tion and no pressure effects. For non-resonant modes
the non-linear evolution [19, 20] of the helical displace-
ment η is given by the solution of

∂2η

∂t2
+D1η +D3η

3 = 0 , (6)

where the parameters D1 and D3 are defined below.
For the saturated and hence time-independent state
the solution to the amplitude η is

η =
√
−D1

D3
. (7)

For linear instability D1 is negative. It is proportional
to the square of the linear growth rate −ω2 and
thus D1 = 0 defines the marginal points. Non-
linear stability is determined by the coefficient D3.
The system is non-linearly stable, i.e. the mode can
saturate if D3 > 0. We do not explicitly explore
conditions of non-linear instability where D3 < 0.
The coefficients D1 and D3 are obtained from physical
constraints on the plasma surface [4] and read

D1 =
[
F (f1ρ −m2β1 + 1)− 2

]
F , (8)

and

D3 =F 2f1ρ

4
[
6f1ρ(f1ρ + 1) +m2 − 3

]
−F 2

(
3
2n2ρf1ρ − n3ρ + 1

4

)
+m2F 2

[
β1

4 (6m2+1) +m2β1β2(1−2m2β1)

− 11
8 m

2β2
1 + 3

8

]
+ 2n2 + 1

ln b
(
Fm2β1 + 1

)2

−F
[
m2
(

7
2β1 − β2 + 4m2β1β2 − 2

)
− 1

2

]
+n2F

2

2
[
m2 (β1(m2β1−1)+8m2β1β2−5

)
+1
]

+n2F
[
2m2(β1 + 2β2)− 1

]
− 2m2β2 −

5
2 ,

(9)

where xρ = ∂x/∂ρ. The coefficients D1 and D3 in
Eqs. (8) and (9) differ from D1 and D3 in Eq. (6)
by a constant but common factor that cancels out in
the calculation of η in Eq. (7). The wall distance b
is normalised by the minor radius, i.e. for b = 1 the
wall is located at the plasma boundary and we define
β1 := − 1

m
b2m+1
b2m−1 and β2 := − 1

2m
b4m+1
b4m−1 . The function

F is defined as

F (ρ) := I(ρ)
ρ2 −

nqa
m

, (10)

where I(ρ) =
∫ ρ

0 2ρ′j(ρ′)dρ′ is the total current
enclosed by a flux surface with radius ρ and normalised
such that I(1) = 1. To obtain the functions f1,
n2 and n3, the helical amplitude η is expanded up
to third order and a coupled system of differential
equations arising from the ideal MHD model is
solved numerically providing a solution for η to
each order. These solutions can be written as
sums of homogeneous fi(ρ) and particular gi(ρ)
solutions and are denoted η

(1)
m (ρ) ≡ f1(ρ)η(1)

m (1) to
first, η

(2)
2m(ρ) ≡ f2(ρ)η(2)

2m(1) + g2(ρ) to second and
η

(3)
m (ρ) ≡ g3(ρ) to third order. They satisfy the
boundary conditions

lim
ρ→0

f1(ρ) ∝ ρm−1 , f1(1) = 1 ,

lim
ρ→0

f2(ρ) ∝ ρ2m−1 , f2(1) = 1 ,

g2(0) = g2(1) = 0 , g3(0) = g3(1) = 0 .

(11)

Using a normalisation constant η̂ := η
(1)
m (1), we

further define the normalised solutions to second and
third order n2 := η

(2)
2m(ρ)/η̂2 and n3 := g3(ρ)/η̂3

respectively. In Eqs. (8) and (9), F, f1ρ, n2, n2ρ and
n3ρ are evaluated at ρ = 1. Defining the operator

Lk = d2

dρ2 +
[

3
ρ

+ 2 d
dρ lnF (ρ)

]
d
dρ + 1− k2m2

ρ2 , (12)

with k = 1, 2 we obtain the solutions for η to each order
from the following system of ODEs: [4]
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L1η
(1)
m = 0 , (13)

L2η
(2)
2m = − Fρ

2Fρ2

(
3ρ2(η(1)

mρ)2 +m2(η(1)
m )2

)
− 1

2ρ3

[
(3m2 − 1)(η(1)

m )2 + 2ρη(1)
m η(1)

mρ + 5ρ2(η(1)
mρ)2

]
, (14)

L1η
(3)
m = (η(1)

m )3 1
4ρ4F

[
F (12m2 −m4 − 7)− 2ρm2Fρ

]
+ η(1)

mρ(η(1)
m )2 1

4ρ3F

[
F (2− 16m2)− 3ρm2Fρ

]
+ (η(1)

mρ)2η(1)
m

1
4ρ2F

[
F (41− 19m2) + 12ρFρ

]
+ η(1)

m η
(2)
2m

1
ρ3F

[
F (1− 3m2) + 2ρm2Fρ

]
− η(1)

m η
(2)
2mρ

1
ρ2 (1− 3m2)

+ (η(1)
mρ)3 1

4ρF [18F + 15ρFρ]− η(1)
mρη

(2)
2mρ

1
ρF

[5F + 3ρFρ]− η(1)
mρη

(2)
2m

1
ρ2 (1− 6m2) .

(15)

The normalisation constant η̂ can be eliminated by exploiting pressure balance across the plasma surface [4],
resulting in the expression

n2(1) =
− 1

4

(
m2(m2β2

1 + 8m2β1β2 − 4β2 − 2)− 3(f1ρ)2 + 4 g2ρ
η̂2 + 1

)
F 2 −

(
m2(β1 + 2β2)− 1

2
)
F − 1

(F (f2ρ − 4m2β2 + 1)− 2)F . (16)
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Figure 5: Dependence of the saturated 4/1 external
kink amplitude on the wall distance b as calculated
from the non-linear analytical model.

We stress the fact that in this model, η depends
only on single helical mode numbers m and n (as
expected for cylindrical geometry), current density
profile j(ρ), wall distance b and edge safety factor
qa. In order to study the degree of relevance of
the equilibrium free-boundary approach without a
conducting wall, it is important to investigate the
sensitivity of the effect of the conducting wall distance
from the plasma on the non-linear saturated state.
This is achieved with the analytical model. Figure 5
shows how η depends on qa for different values of the
wall distance b. As the wall distance increases, not only
does the mode amplitude grow, but also the unstable
domain widens. The variation is strong for b ≤ 1.5, but
weak for b > 1.5. Thus we can approximately treat a

3.2 3.4 3.6 3.8 4.0 4.2
qa

0.01

0.00

0.01

0.02

0.03

0.04

0.05

m
n/a

1/1
2/1
3/1
4/1
5/1

Figure 6: Lowest m components with n = 1 of the
edge displacement obtained from free-boundary VMEC
simulations with current profile j(ρ) ∝ (1 − ρ8) and
βN = 0.08 %. m = 4/n = 1 is the dominant mode
throughout the range of qa, where the external kink
mode is expected to be linearly unstable and non-
linearly stable. The two black lines indicate the
position of the marginal points computed with KINX.

wall distance of b & 1.5 as if no wall was present. In
the VMEC computations presented here, the field coils
have a minimum distance of b ≈ 1.55 to the plasma
surface.

We find that the behaviour of η calculated from
VMEC agrees well with the expected characteristics
of external kink modes. In particular, the window
of qa over which η is non-zero, and also the shape
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analytical

Figure 7: Amplitude of the saturated edge displace-
ment of the 4/1 mode η41 computed from VMEC sim-
ulations at various values of βN and comparison to the
analytical model for current profile j(ρ) ∝ (1− ρ8).

of η with respect to qa is roughly mirrored by the
shape of γ with respect to qa in Fig. 4a. Figure 6
shows the amplitude of η for each m (with n =
1), with η calculated according to Eq. (2). For an
edge safety factor larger than the upper marginal
point – given by the rational value qa = m/n – the
plasma remains (nearly) axisymmetric. Lowering qa
below m/n results in 3D equilibria that have edge
corrugations with external kink like properties as
described previously. The amplitude of the saturated
non-linear edge displacement is finite and dominated
by a 4/1 component throughout the linearly unstable
domain, as expected for the spectral properties of
Fig. 3b. As qa decreases below the lower marginal
point, i.e. the value at which the linear external
kink mode is stable, the displacement vanishes. For
a small range of values of qa slightly higher than the
upper marginal point, or slightly lower than the lower
marginal point we see small perturbations to η. We
do not yet know the origin of these weak 3D saturated
states.

A weak scaling of η with βN is observed as
shown in Fig. 7, where η41 calculated from VMEC at
different values of βN is compared with the analytically
predicted non-linear saturated external kink amplitude
η. The mode is present already at very low βN ,
strongly indicating that the 3D states are dominantly
current-driven, as expected for external kink modes.
For the largest value of βN the lower marginal
point is shifted towards lower qa, whereas it remains
approximately constant for lower βN values. Since
finite beta effects are neglected in the analytical model,
the most relevant comparison between VMEC and the
non-linear analytic model is for small βN in Fig. 7.
Considering the shaped plasma and edge aspect ratio of

0 2 4 6 8 10 12 14
m

0.01

0.00

0.01

0.02

0.03

0.04

m
n/a

n=0
n=1
n=2

Figure 8: Mode spectrum (straight field line coordi-
nates) of the VMEC edge displacement obtained in a
simulation with j(ρ) ∝ (1− ρ4)1.1 and qa = 2.913 at
low pressure (βN = 0.08 %). The m = 3/n = 1 mode
is dominant.

Figure 9: Visualisation of the 3D equilibrium with
current profile j(ρ) ∝ (1− ρ4)1.1, qa = 2.913 and
βN = 0.08 % shown at φ = π/3. (a) Flux surfaces.
(b) Perturbation δp = p3D − p2D arising from the
comparison of the pressure in the 3D equilibrium with
the neighbouring state.

the VMEC JET-like simulations, the comparison with
the cylindrical analytic model in Fig. 7 is very good.

Now that agreement between the VMEC displace-
ment amplitude and the non-linear analytical exter-
nal kink mode amplitude has been demonstrated, we
further verify the results for a case with qa . 3, for
which a n = 1,m = 3 external mode is dominant. For
this, in order to prevent the amplitude of the mode
from becoming too large, we choose a less steep cur-
rent profile j(ρ) ∝ (1− ρ4)1.1. As seen in Fig. 8, the
3/1 component (evaluated in sfl coordinates) is domi-
nant in the edge mode spectrum of the resulting VMEC
3D equilibria as expected for a current-driven exter-
nal kink mode. Figure 9 shows the flux surfaces and
the 3D pressure perturbation, which are both non-
axisymmetric and consistent with the mode spectrum.
In Fig. 10 the analytically predicted saturated external
kink amplitude is compared with the 3/1 component
of the VMEC edge displacement at different values of
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Figure 10: Non-linear amplitude of the 3/1 mode
η31 obtained from VMEC with current profile
j(ρ) ∝ (1− ρ4)1.1 and qa around 3 at two values of βN
and comparison with the analytical prediction.

βN . Again a weak scaling of η with the pressure is ob-
served. The upper marginal point agrees well with the
analytical value, whereas the lower one differs slightly.
The saturated external kink amplitude peaks at a value
of qa closer to the lower marginal point, whereas the
peak in the VMEC computations is somewhat shifted
towards larger values. The reason for this is not cur-
rently certain, but it could be a result of finite aspect
ratio and cross section shaping effects which are not
taken into account in the analytic model.

4. Conclusions

Employing three-dimensional, free-boundary equilib-
rium computations, is shown to provide a novel way
of obtaining saturated current-driven external kink
modes. In principle, such saturated external states
are time-independent and thus satisfy the force balance
equation solved by an equilibrium code. For the first
time, current-driven external kink modes are observed
with an equilibrium code in free-boundary plasma con-
figurations with standard monotonic current and q pro-
files typical of standard (baseline) tokamak plasma sce-
narios. Windows of the edge safety factor where exter-
nal kink modes would be linearly unstable have been
identified. In VMEC simulations with current pro-
files that result in an edge q value lying inside these
regions, non-axisymmetric edge corrugations are ob-
served. Analytical calculations of non-linear external
kink modes reveal linear instability but non-linear sta-
bility, i.e. saturated mode amplitudes for the studied
plasma configurations. To compare the analytic exter-
nal kink amplitudes with VMEC, and thus verify that
VMEC corrugations are those of standard non-linear
saturated external kinks, the spectra of the VMEC

fluctuations are converted to spectra of a straight field
line coordinate system. The Fourier spectrum calcu-
lated in this coordinate system shows one dominant
mode, thus indicating consistency between 3D VMEC
equilibria and analytical external kink models. Even
though the mode amplitude scales weakly with βN ,
the external perturbations seen in VMEC are of con-
siderable size already at low βN , indicating a current
driven mode. Finite pressure is shown to have a weakly
destabilising effect. The edge displacement in VMEC
is found to be comparable to the analytically calcu-
lated saturated external kink mode amplitude. Small
differences are observed in the value of qa where the
amplitude reaches a maximum. Due to the lack of the
stabilizing effect of a conducting wall the 3D equilib-
rium simulations overestimate the saturated amplitude
of a real tokamak by about 25 % (for a wall distance
b = 1.2a), the difference having been quantified via
the analytic approach. We conclude that VMEC free-
boundary calculations capture the salient features of
saturated external kink modes, thus enabling efficient
prediction of non-linear instability amplitudes, and e.g.
fast ion and impurity transport studies.
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