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Hidden drifts in turbulence

M. Vlad, F. Spineanu

National Institute of Laser, Plasma and Radiation Physics,
Atomistilor 409, 077125 Magurele, Bucharest, Romania

Abstract

The paper discusses the concept of hidden drifts in two-dimensional

turbulence. They are ordered components of the trajectories that

average to zero and do not produce direct transport. Their effects

appear in the evolution of the turbulence as generation of a special

type of fluxes, which consist of average motion of positive and negative

fluctuations in opposite directions.

The transport by continuous movements is the generalization of the Brow-
nian diffusion for smooth velocity fields that correspond to finite correlation
lengths λ. The main characteristic of the trajectories determined by such
fields consists of the existence of quasi-coherence that lasts for short time in-
tervals of the order of the time of flight τfl = λ/V, where V is the amplitude
of the stochastic velocity. In special cases, as the two-dimensional incom-
pressible turbulence, the coherence can last for much larger time essentially
because the trajectories are trapped in the correlated zone.

The turbulence that is dominantly two dimensional has a self-organizing
character [1]. It consists of the generation of quasi-coherent structure (vor-
tices). This property appears at the basic level of particle trajectories. They
are random sequences of trapping or eddying events and long jumps. The
trapping process [2]-[4] strongly modifies the diffusion coefficients and leads
to strong nonlinear effects. The long jumps are random while the motion
during the trapping events has a high degree of order.

The ordered components of the motion are represented by quasi-coherent
structures and flows, but also by more subtle effects: the hidden drifts (HDs).
The paper discuss this special type of order and two important effects that
the HDs determine on turbulence evolution.

We show that the HDs provide a mechanism of generation of zonal flow
modes in plasma turbulence. These modes that are oscillations along the
density and temperature gradients contribute to the saturation of turbulence
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amplitude and to a strong decrease of the transport [5], [6]. The physical ex-
planation that is generally accepted is based on the Reynold stress produced
by potential cell tilting. Zonal flow modes and their effects of improving the
confinement is presently a very active research topic ([7]-[9]).

The relaxation of turbulent states in two dimensional ideal fluids is char-
acterized by the separation of the vorticity according to its sign and by the
inverse cascade that corresponds to energy flow towards large scales [10]-[12].
The physical bases of these processes is shown to be connected to the HDs.

1 Hidden drifts

Tracer trajectories in two-dimensional stochastic velocity fields are obtained
from the equation

dx

dt
= v(x,t) + Vde2, v(x,t) = −∇φ(x,t)× e3, (1)

where e1, e2 are the unit vectors in the plane of the motion x = (x1, x2), e3
is perpendicular on this plane and Vd is a constant average velocity. The
stochastic velocity field v(x,t), determined by the potential (or stream func-
tion) φ(x,t), has zero divergence. The Hamiltonian structure of Eq. (1) is
the origin of the order that characterizes the two-dimensional incompressible
turbulence. The velocity is tangent to the contour lines of the total potential
φt(x,t) = φ(x,t) + x1Vd at any moment, and, in the case of time indepen-
dent potentials, the trajectories remain on these lines. They reflect the space
structure of the potential.

The statistical characteristics of the trajectories are determined using
the decorrelation trajectory method (DTM, [13], [4], [14]). This is a semi-
analytic method that is in agreement with the statistical consequences of the
invariance of the potential. The main idea of this approach is to determine
the Lagrangian averages not on the whole set of trajectories but to group
together trajectories that are similar, to average on them and then to perform
averages of these averages. Similar trajectories are obtained by imposing
supplementary initial conditions besides the necessary one x(0) = 0. The
supplementary initial conditions are the values of the potential and of the
velocity in the starting point of the trajectory

S : φ0 = φ(0,0),v0 = v(0,0). (2)

They define a set of subensembles S of the realizations of the potential. Con-
ditional averages lead to space-time dependent average potential ΦS(x,t) and
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velocity VS(x,t) in each subensemble S and to simple trajectories that repre-
sent average particle motion: the decorrelation trajectories (DTs)X(t;φ0,v0).
The DTs are the main ingredient of DTM. They are smooth, simple trajec-
tories determined from an equation with the same structure as Eq. (1)

dX

dt
= VS(X,t) + Vde2, VS(X,t) = −∇ΦS(X,t)× e3, (3)

but with the stochastic potential replaced by ΦS(x,t). The average potential
is determined by the Eulerian correlation (EC) of the stochastic fields, E(x,t)

ΦS(X,t) = φ0E(X,t)

E(0,0)
− v01

E2(X,t)

E22(0,0)
+ v02

E1(X,t)

E11(0,0)
, (4)

where Eij are space derivatives Ei(x,t) = ∂E(x,t)/∂xi. The DTs are much
different from particle trajectories as they saturate after the decorrelation
time. They represent the average evolution of the particles through the
correlated zone of the potential and describe the decorrelation process.

The statistics of the trajectories is represented by weighted averages along
the DTs. The weighting factors are the probabilities of the subensembles that
correspond to the DTs, P (φ0, v01, v

0
2) . The DTM essentially determines the

correlations of the trajectories with the quantities that define the subensem-
bles and the probability of the small scale displacements (until decorrelation).

The hidden drifts (HDs) are ordered displacements that average to zero
and do not drive flows. They appear in the presence of an average velocity
Vd and they are perpendicular on Vd.

The HDs are found by analyzing the average displacements conditioned
by the initial value of the potential 〈xi(t)〉φ0 , which are evaluated in the frame
of the DTM by

〈xi(t)〉φ0 =

∫

∞

−∞

dv01dv
0

2X(t;φ0, v0i )P
(

v01, v
0

2

)

. (5)

The conditional displacements are zero for Vd = 0, but finite values of the
component along x1 axis, 〈x1(t)〉φ0 , yield in the presence of an average veloc-
ity Vd directed along x2 axis. A typical example is presented in Figure 1.a,
which shows that 〈x1(0)〉φ0 = 0 at t = 0 and that it increases and eventually
saturates. Moreover, the sign of 〈x1(t)〉φ0 is the same as the sign of the initial
potential.

The average displacements conditioned by the sign of the potential are
defined by

〈xi(t)〉+ =

∫

∞

0

dφ0 〈xi(t)〉φ0 P (φ0), (6)

〈xi(t)〉− =

∫

0

−∞

dφ0 〈xi(t)〉φ0 P (φ0)
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They are, as seen in Figure 1.b, time dependent functions that saturate. The
sum 〈xi(t)〉+ + 〈xi(t)〉− = 0, which shows that there is no average motion.

Any process of decorrelation of the trajectories from the contour lines of
the potential leads to conditional average velocities. The trajectories x(t)
for t >> τd consists in this case of a time sequence of segments of duration
τd that are statistically independent. Both the mean square displacement
∆2(τ) =

〈

(x(ti + τ)− x(ti))
2
〉

and the average δ(τ) = 〈x(ti + τ)− x(ti)〉
saturate for τ > τd at values ∆ and δ that represent the steps of the random
and ordered walks, respectively. They lead at large time to diffusive and
direct transport (or average velocity).

The displacements (6) saturate to δ+ and δ−, that represent ordered steps
in opposite direction. They do not lead to direct transport (average velocity),
but to a pair of conditional average velocities with opposite orientations

V+ =
〈xi(τd)〉+

τd
=

δ+
τd

, V− =
〈xi(τd)〉−

τd
=

δ−
τd

.

These are the hidden drifts (HDs).
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Figure 1: The average displacements that start from φ0 () as functions of φ0

for Vd = 4 (left panel) and the conditional average displacements 〈xi(t)〉− ,
〈xi(t)〉+ as functions of time for the values of the average velocity Vd that
label the curves. The other parameters are eΦ/Te = 0.04, λx = 5, λy = 2,
k0 = 1.

We note that in 2-dimensional velocity fields with ∇ · −→v = 0, the proba-
bility of the Lagrangian velocity is time independent (equal to the probability
of the Eulerian velocity). In particular, the average Lagrangian velocity has
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to be equal to the Eulerian average velocity, which is zero along x1 direction.
This means that it is not possible to exist an average Lagrangian velocity
along the x1 axis. However, the ordered motion as symmetrical positive
and negative flows that compensate is not forbidden by the zero-divergence
condition.

The physical explanation of the HDs is based on two elements.
Firstly, the average velocity Vde2 modifies the structure of the potential.

The external contour lines that correspond to small values of the potential,
situated in the side of the potential cells where the ExB velocity is parallel
to Vde2, are opened. The field lines with φ0 < φlim(Vd), where φlim(Vd) is
an increasing function of Vd, form bands of open lines that extends along
the average velocity, while oscillating in the perpendicular direction. The
inner contour lines with φ0 > φlim(Vd) remain closed, but they are elongated
towards the side where the ExB drift is antiparallel to the average velocity.
The potential cells with opposite signs approach in this zone. They form
pairs of positive and negative potential cells that are surrounded by bands
of opened lines. The pair has the negative cell located at larger x1 than the
positive one. Thus, the average velocity Vde2 reduces the size of the potential
cells and produces a polarization effect.

Secondly, the modifications of the structure of the potential contour lines
by Vd yields ordered perpendicular displacements and HDs. In the closed po-
tential cells, the velocity along the contour lines is statistically non homoge-
neous due to Vde2, which leads to total velocity Vt that is enhanced on half of
the cells and reduced on the opposite half. The trajectories are concentrated
on the zones with small Vt, which leads to an average displacement that has
the sign of the potential. The opened trajectories also contribute to the condi-
tional displacements (6), but due to a different reason. The invariance of the
potential along the opened trajectories with initial φ0, φ(x(t))+x1(t)Vd = φ0,
shows that the average displacement is 〈x1(t)〉 = φ0/Vd because the average
potential on these trajectories is zero. Thus, the opened lines determine an
average velocity with the same sign as the potential. It is larger than in the
case of closed contour lines.

It is interesting to note that HDs are not related to the quasi-coherent
structures that can be generated in turbulence. HDs exists even when the
structures are absent. They are the effects of the space correlation of the total
potential that includes the average velocity Vd. The HDs reflect the order of
the contour lines of the potential. The existing condition for the HDs involves
the decorrelation time τd. It has to be long enough such that the trajectories
stick on the contour lines for lengths of the order of the correlation length.

HDs do not yield a direct influence on transport because the contribution
of the ordered steps δ is implicitly included in the mean square displacement
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that defines the step ∆ of the random motion. However, they represent a
reservoir for direct transport. Perturbations produced by other components
of the motion that determine a weak compressibility can perturb the equi-
librium of the HDs leading to an average velocity of the test particles.

The main effect of the HDs consists of the change of turbulence param-
eters, which eventually determines the modification of the transport. We
discuss here the effects of the HDs in two cases: drift turbulence in collision-
less (hot) plasmas confined in strong magnetic fields and the relaxation of
turbulent states in two-dimensional ideal (inviscid) fluid turbulence. These
physical systems are described by similar evolution equations that represent
the advection along characteristics obtained from Eq. (1). They are for-
mally linear, but there are in both cases nonlinear constraints that strongly
influence the evolution. The nature of the nonlinearity and the physical sig-
nificance of the advected fields are completely different in the two systems.
We show that these differences lead to completely different effects of the
hidden drifts, although they are the same in the two systems.

2 Hidden drifts in turbulent plasmas

We consider a plasma confined by an uniform magnetic field B taken along
the e3 axis of a rectangular system of coordinates. A density gradient (along
e1 axis, with characteristic length Ln) makes plasma unstable (see e.g. [15],
[16]). Drift wave instability that is produced by electron kinetic effect and
ion polarization drift velocity is analyzed here using the test mode approach.

The main idea of the studies of test modes on turbulent plasmas is to
separate the distribution function into an approximate equilibrium f0 and
the response h to the small perturbation (with wave number components ki
and frequency ω), δφ exp(ikixi− iωt), that adds to the background potential
φb(x, t). The function f0(x, t) is solution of the approximate evolution equa-
tion obtained by neglecting the small terms. The latter are not important at
small time, but only at large times when the small effects accumulate. The
function h can be linearized in the small perturbation δφ. The solution of the
dispersion relation yields the frequencies ω(k) that can be supported by the
system and the tendency of amplification or damping given by the growth
rate γ(k), the imaginary part of ω(k). These quantities, which include the
effects of the small terms neglected in the evolution of f0, provide the short
time change of the spectrum of the background turbulence.

Drift modes have small parallel wave numbers k3 ≪ k1, k2 and small
frequency such that vT i ≪ ω/ |k3| ≪ vTe, where vT i, vTe are the thermal
velocities of the ions and electrons, respectively. The fast parallel motion of
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the electrons leads to the adiabatic approximate equilibrium of the electrons
and to the response to the perturbation δφ

δne = n0(x)
eδφ

Te

(

1 + i

√

π

2

ω − kyV∗

|kz| vTe

)

(7)

that does not depend on the background turbulence [15]. V∗ = ρscs/Ln is the
electron diamagnetic velocity (where ρs = cs/Ωi, cs =

√

Te/mi is the sound
velocity and Ωi = eB/mi is the ion cyclotron frequency).

The drift kinetic equation for the ions is

∂tf
i −

∇φb × b

B
· ∇f i + f i∇ · up = 0, (8)

where the parallel motion is neglected due to their small velocity. The ion
polarization drift up

up =
1

BΩi

∂tE⊥. (9)

is also small, but it was maintained in Eq. (8) because it determines a com-
pressibility effect that makes drift waves unstable. The last term is neglected
when determining the approximate equilibrium solution in turbulent plasma.
Using the constraint of neutrality one obtains

f i
0 = n0(x)F

i
M exp

(

eφb(x−V∗t)

Te

)

. (10)

The short time equilibrium solution shows that the background poten-
tial determines density fluctuations that are proportional with the potential
(δn/n ∼= eφb/Te, since the potential energy is small eφb ≪ Te). This means
that the average velocity Vde2 produces the polarization of both potential
and density cells. In the presence of a decorrelation process (finite τd), HDs
of density appear, which move the density fluctuations in opposite directions
according to their sign.

The linearized equation in the perturbation δφ and ion response h is

∂th−
∇φb × b

B
· ∇h = −in0(x)F

i
M

eδφ

Te

(

kyV∗ − ωρ2sk
2

⊥

)

, (11)

where the compressibility term h∇ · up was neglected for simplicity (see an
analysis of its effects in [17], [14]). The formal solution is

h(x, v, t) = −n0(x)F
i
M

eδφ

Te

(

kyV∗ − ωρ2sk
2

⊥

)

Π
i
, (12)
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where the propagator is

Π
i

= i

∫ t

−∞

dτ M(τ) exp [−iω (τ − t)] , (13)

M(τ) ≡

〈

exp

[

eφb(x(τ))

Te

+ ik· (x(τ)− x)

]〉

, (14)

and the average 〈〉 is on the trajectories obtained from Eq. (1) in the back-
ground potential φb.

The HDs lead to the correlation of the potential and the displacements in
the propagator (14). Introducing the formal expression of the displacement
as the integral of the velocity and using the stationarity of the background
turbulence and the fact that the ”initial” condition for a trajectory (1) can
be any of its points, one obtains

〈φb(x(τ)) x1(τ)〉 = 〈φb(0) x1(τ)〉 (15)

The decorrelation of the trajectories from the contour lines of the potential
leads to an average velocity determined by HDs

VHD =
e

Te

〈φb(0) x1(τd)〉

τd
(16)

This average velocity is due to a sequence of ordered steps produced by
the polarization of the potential cells. They are symmetrical and have zero
average, but their sign is the same as the sign of the density fluctuations,
which means that the peaks of the density move in the positive direction
while the holes move in the opposite direction. Both contribute to a positive
flux of density.

The normalized average velocity determined by the HDs VHD/V∗0 is shown
in Figure 2 as function of the decorrelation time τd for several values of the
background turbulence amplitude. V∗0 = ρscs/a and a is plasma size. VHD is
small at small τd, it has a maximum and eventually decays as 1/τd because
the average in Eq. (16) saturates.

The average in Eq. (14) that is over the background potential and the
stochastic trajectories is calculated taking into account the trajectory struc-
tures as in [17]. One obtains for the case of weak turbulence that corresponds
to small fraction of trapped ions

M(τ) ≡ A

〈

exp

[

ik1VHD(τ − t)−
1

2
k2

iDi(τ − t)

]〉

, (17)

A = exp

(

1

2

(

eΦb

Te

)2

−
1

2
k2

i s
2

i

)

, (18)
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Figure 2: The radial velocity VHD determined by the HDs as function of the
decorrelation time for the values of the amplitude that label the curves and
Vd = 4. The other parameters are as in Fig.1.

where si, i = 1, 2 are the average sizes of the trajectory structure along the
x1 and x2 axis. The HDs determine a new term in Eq. (17) through the
correlation of the displacements with the background potential (15).

The dispersion relation for test modes in turbulent plasma obtained from
the quasineutrality condition δne = δni,

−
(

kyV∗e − ωρ2sk
2
⊥

)

Π
i
= 1 + i

√

π

2

ω − kyV∗e

|kz| vTe

, (19)

has the solution

ω =
Ak2V∗ − k1VHD

1 + Ak2
⊥

(20)

γ = cA
(k2V∗ + k1VHD) (k2V∗(1 + Ak2

⊥
−A) + k1VHDk

2
⊥
)

(1 + Ak2
⊥
)
3

− k2
iDi, (21)

where c =
√

π/2/ |k3| vTe
.

The velocity determined by the HDs modifies both the frequency and the
growth rate. It destabilizes a new type of modes that have k2 = 0, the zonal
flow modes. Their growth rate

γzfm =

√

π

2

A

|k3| vTe

k4
1V

2
HD

(1 + Ak2
1)

3

that is determined by VHD (16) increases with the increase of the amplitude
Φ of the background turbulence.
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We have found here a different mechanism for the generation of the zonal
flow modes. It is associated to the HDs, which combined with the adiabatic
fluctuations of the density determine an average radial velocity that drive
potential oscillations along x1 axis.

3 Hidden drifts in fluid turbulence

Turbulence relaxation in ideal fluids is described by the Euler equation with
stochastic initial condition

∂tω + v · ∇ω = 0, (22)

v = −∇φ× ez + Vde2, ω = △φ, (23)

where ω is the vorticity, φ is the stream function and v is the fluid velocity.
Thus vorticity elements are advected by the velocity field and the vorticity
is conserved along the trajectories (1). The nonlinearity of the process is
determined by the relations between v and ω, which show that vorticity is
an active field.

The motion of vorticity elements is determined by Eq. (1), which leads
to HDs. Fluxes of vorticity perpendicular to the average velocity Vde2 are
expected to appear because φ and ω are correlated

〈φ(x,t)ω(x,t)〉 = 〈φ(x,t)△ φ(x,t)〉 = △E(0, 0), (24)

and it has negative values.
In order to determine the displacements x1(t) conditioned by the initial

vorticity 〈x1(t)〉ω0 , the DTM is extended by introducing a supplementary
condition ω(0, 0) = ω0 in the definition (2) of the subensembles S. This
modifies the probability of the subensembles that becomes

P (φ0,v0, ω0) = P (v0)P (ω0)

√

2π

Dφω

exp

(

−
(φ0 − Φω)

2

2Dφω

)

, (25)

Φω = ω0△E(X, t)/△2E(0, 0), Dφω = E(0)−(△E(0, 0))2 /△2E(0, 0), (26)

where Φω is the average potential conditioned by the vorticity and Dφω is
the dispersion of the potential in the subensemble. The potential and the
vorticity are not independent in a point x (as are the velocity components).
The existence of the correlation (24) determines the displacements of the
probability of the potential at Φω that has the sign opposite that of ω0, and
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Figure 3: The velocity of separation of the positive and negative vorticity for
the values of Vd/V that label the curves.

the decrease of its width. the integration over the initial vorticity has to be
introduced in the calculation of the statistical quantities, which leads to the
strong increase of the number of DTs (3) and of the typical run time of the
code (up to 2-3 hours on a PC).

The correlation (24) also modifies the subensemble average potential ΦS

in Eq. (4) by adding the term Φω, which strongly changes the shapes of the
DTs. However, the diffusion coefficient is not much modified.

We have found that the sign of the average displacements 〈x1(t)〉ω0 is
opposite to the sign of ω0 and that symmetrical HDs appear as in the case of
the initial potential. The negative vorticity yields a positive average velocity
V− > 0. These HDs conditioned by the vorticity sign directly lead to a nega-
tive vorticity flux. The positive and the negative vorticity fluctuations sepa-
rate with the average velocity Vω = V− − V+. This velocity is represented in
Figure 3 as function of the normalized decorrelation time for several values of
Vd/V, where V = Φ/λ is the amplitude of the stochastic velocity of the fluid.
The EC of the stream function is E(x, t) = Φ2 exp

(

− (x/λ)2 /2− t/τd
)

.
The average velocity Vde2 can be produced by a large scale vortex. The

flux of the vorticity fluctuations determined be the HDs correspond to the
approach of the large vortex by the small vortices with the same sign and to
the departure of those with opposite sign. This process contributes to the
inverse cascade of energy that characterizes two-dimensional fluid turbulence.
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4 Conclusions

The hidden drifts (HDs) are found in the statistics of the trajectories (1) as
organized components of the motion oriented perpendicular to the average
velocity Vde3. They compensate exactly and do not yield radial average dis-
placements of the trajectories. However, the HDs can drive fluxes of density
and vorticity fluctuations of a special type.

The approximate adiabatic response that characterizes drift type turbu-
lence in confined plasmas determines the correlation of the sign of the density
fluctuations with the sign of the HDs. Positive density fluctuations move in a
direction while the negative fluctuations move in the opposite direction, de-
termining a net flux that is two times larger that produced by the conditional
average velocity V+. This radial flux determine a mechanism of generation
of zonal flow modes, which are very important for turbulence saturation and
for the decrease of the transport.

In turbulent fluids, the correlation of the vorticity ω with the stream func-
tion φ determines a similar flux of vorticity that consists of displacements
of the positive and negative fluctuations in opposite directions. The process
determines the separation of the vorticity according to its sign and the at-
traction of the small scale vortices by a large scale vortex of the same sign,
which corresponds to the inverse cascade of energy. These are fundamental
processes in the relaxation of turbulent states in two-dimensional ideal fluid.

This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053 and also from the
Romanian Ministry of Research and Innovation. The views and opinions
expressed herein do not necessarily reflect those of the European Commission.
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