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Abstract 

Radial hidden drifts (HDs) of ions are generated in turbulence by a poloidal average velocity when the 

decorrelation time is larger than the time of flight. These drifts represent quasi-coherent motion that 

does not determine an average velocity but opposite displacements that compensate. We have shown 

that the polarization drift of the W ions determines a perturbation of this equilibrium of the HDs that 

generates an average radial velocity VHD. The dependences of VHD on plasma parameters and on the 

shape of the time dependence of the Eulerian correlation of the potential were studied by developing a 

computer code based on the decorrelation trajectory method (DTM). The pinch velocity for W ions 

depends on plasma rotation (L and H modes) and on the type of turbulence.  

 

1. Introduction 

 

Tungsten is chosen as the material for plasma facing components in ITER due to its low erosion rate, low 

hydrogen retention and good thermal properties. The main problem is related to the large radiation of 

this high charge ions that can strongly affect the energy balance if they accumulate in the core plasma in 

concentration higher that 10-4. It is very important to have a correct understanding of impurity transport 

and to identify methods for controlling the concentration of W in tokamak core plasmas. Many 

experimental [1-6], theoretical [7, 8] and numerical studies [9, 10] with these goals were developed 

during the last twenty years. The conclusion is that the behaviour of the heavy impurities with high Z is 

different from that of low Z impurities. Both neoclassical and turbulence effects are shown to be 

important in the first case while the anomalous transport dominates in the second case  [11-13]. The 

centrifugal force or ion-cyclotron resonance heating of minority ions can strongly influence the 

neoclassical transport through the generation of poloidal asymmetry. The radial convection that can 

have neoclassical or turbulence origins is a complex process, which can determine W-accumulation or 

decay. 

 This paper presents a theoretical analysis of the turbulent transport of heavy impurities. We 

show that a radial pinch velocity can be generated by the combined action of the hidden drifts (HDs) and 

of the polarization drift. The HDs are quasi-coherent (organized) components of ion motion in the radial 

direction that appear in the presence of a poloidal average velocity [14]. This motion consists of 

symmetrical positive and negative displacements that have zero average and do not determine a 

convective velocity. The polarization drift of the W ions perturbs the equilibrium of the HDs leading to 

radial convection. The aim of this paper is to analyse this fundamental nonlinear process and to evaluate 

the dependence of the pinch velocity on the parameters of the turbulence and on the poloidal velocity. 

 The test particle transport model is presented in Section 2 together with a review of the 

statistical method. Section 3 describes the new concept of HDs. The combined effects of the HDs and of 

the polarization drift are studied in Section 4, which also contains a general discussion of the expected 



results in JET plasmas. The conclusions are summarised in Section 5.  

 

2. The transport model and the statistical method 

 

The test particle model developed in the first stage includes the ExB drift, the parallel motion, the 

diamagnetic velocity and the magnetic drifts. The equation for the impurity ion trajectories is 
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where the first term in the stochastic electric drift, the second term is the polarization drift,  mv   is the 

magnetic drift and  V   is the diamagnetic velocity, which appears as an average velocity in the frame 

that moves with the potential, and rV  is the rotation velocity. The magnetic field is along  ze   axis and  

),( yxx   is in the perpendicular plane, with  x   the radial and y the poloidal coordinate. We study 

impurity transport in the slab approximation, in the meridional plane of the plasma at the low field side. 

The magnetic field varies along  xe   axis as  ,/)( 0 RBRB    where  R   is the major radius. The 

cyclotron frequency of the ions is  ,)/( iAZ    where  Z   is the ionization rate of the impurities,  A   

is their mass number and  pi meB /   is the cyclotron frequency of the protons. The magnetic drift is 
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where ,IIv    v   are the parallel and perpendicular components on the impurity velocity,   is the pitch 

angle of impurity velocity and  iT   is the temperature of the plasma ions. Dimensionless quantities are 

used, with the units:  i   (for the distances and the correlation lengths  ),, yx    the small radius  a   

(for the parallel distances and the correlation length  ),z    thiva /0    (for time) and the amplitude of 

the potential fluctuations     (for the potential). thiv  is the thermal velocity of plasma ions.  The 

equations (1) become 
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where  ),,( tzx   is the stochastic potential of the turbulence normalised with the amplitude  . They 

evidence five dimensionless parameters, which determine the trajectories. The parameter  
'

*K   is the 

dimensionless measure of turbulence amplitude 
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This parameter is proportional to the Kubo number that describes the decorrelation by an average 

velocity  .V  The parameter of the polarization drift  AC   is 
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It depends on the mass and charge numbers (A and Z) and on the size parameter of the plasma  

./ ai    nd LaV /   is the normalized diamagnetic velocity, and  mV   is the normalized magnetic 

drift 
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The potential   ),,( tzx   is modelled as a Gaussian field with the Eulerian correlation (EC) 

corresponding to drift type turbulence [15-17] 
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We have used the DTM [18, 19] for the study of this transport model. This method is based on a set of 
deterministic trajectories, the decorrelation trajectories (DTs), which are obtained from the EC of the 

potential. A set of subensembles S  with given values of the stochastic functions at the origin of the 

trajectories  ,0x    0t    
00 )0,(,)0,( v0v0                                                            (8) 

is defined in order to impose supplementary initial conditions to the trajectories in S. 

ztt ex-xv  ),(),(   is proportional to the ExB stochastic velocity. The potential in each 

subensemble S is a Gaussian field with the average  
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where  )0,(2
0EV yx    and )0,(2

0EV xy   are the amplitudes of the velocity components. 

The subensemble average potential (9) is a function of the EC.  The DTs are approximate average 
trajectories in the subensembles obtained by solving the equations 
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In each S. The fluctuations of the trajectories are neglected in (10). This approximation is supported by 
the high degree of similarity of the trajectories in a subensemble, which occurs due to the 
supplementary initial conditions (8), and to the small amplitude of the velocity fluctuations in a 
subensemble [19].  



The DTs are very simple trajectories obtained from equations (10), which have the same structure as the 
equations of motion (3), but with the stochastic potential replaced by the subesnsemble average 
potential (9). The DTs essentially describe the average motion inside the correlated zone during the 
decorrelation time τd. This characteristic time is determined by the time variation of the potential and 
by the parallel motion. 
The statistical characteristics of the stochastic trajectories are obtained by summing the contributions of 
all subensembles, as weighted averages of the DTs. In particular, the time dependent diffusion 
coefficient and the average radial displacement are 
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Where ),( 00

yx vvP  is the probability of the initial velocity (obtained from the probability of the potential 

)( 0P ). 

 
The implementation of the DTM is made by a computer code that calculates a large number of 

DTs such that the integrals of the type (11), (12) can be evaluated with required precision. The number 

of DTs for the results presented in the next section is 500,000 – 1,000,000. The accuracy in the 

integration of equations (10) results from imposing departures smaller than 10% for 1000 rotations of 

the trajectories on the contour lines of the subensemble average potential in the case of static 2D 

turbulence. The typical run time is of the order 100 minutes. 

 

3. Hidden drifts in trajectory statistics 

 

Particle trajectories determined by the electric drift show both random and quasi-coherent 

aspects. The coherent motion is associated with trapping or eddying in the structure of the stochastic 

field. It generates quasi-coherent trajectory structures.  The random motion leads to diffusive transport 

while the structures determine a micro-confinement process [20]. The strength of each of these aspects 

depends on the parameters of the turbulence. They are also strongly influenced by the presence of 

other components of the motion as in Eq. (1). We have shown in several studies that the transport 

process is completely different in the presence of structures in the sense that the dependence on the 

parameters is different. The quasi-coherence of the motion can also be represented by the generation 

of flows (that appear, for instance, due to the gradient of the confining magnetic field [17] or due the 

space-dependent amplitude of the turbulence).  

We have show that a particular effect of the quasi-coherence appears in the presence of an 

average velocity Vt [14]. It is represented by the hidden drifts (HDs):  

 HDs are ordered displacements that average to zero and do not drive flows  

 HDs appear in the presence of an average velocity and they are perpendicular to this velocity 

 

The HDs were found by analyzing the displacements conditioned by the initial value of the 

potential 
0

)(


tx , which are evaluated in the frame of the DTM by 
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using the decorrelation trajectories ),;( 00

0 yxvvtX  , the basic concept of this method.  

The conditioned displacements are zero in the case of the motion determined only by the ExB 

drift, but they have finite values in the presence of an average velocity Vt (as in Eq. (1)). A typical 

example (obtained for an isotropic static turbulence) is presented in Figure 1.a, which shows that  
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tx  at t=0 and that it increases and eventually saturates. Moreover, the sign of 
0
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

tx  is the 

same as the sign of the initial potential .0  

The average displacements conditioned by the sign of the potential are defined by 
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They are, as seen in Figure 1.b, time dependent functions that saturate.  

The sum 0)()( 


txtx , which shows that there is no average motion, in agreement with the 

constraint of the zero divergence velocity fields that states the time invariance of the distribution 

function of the Lagrangian velocity. In particular, the average Lagrangian velocity has to be equal to the 

Eulerian average velocity, which is zero along x direction (the average velocity Vt that generates the 

conditioned displacements is along the y direction).  

The displacements 


)(,)( txtx  depend on the average velocity represented by the parameter 

r=Vt/V, where V is the amplitude of the ExB stochastic velocity (see Figure 1.b).  

 

 

Figure 1. Left: the conditioned displacements 
0

)(


tx  as functions of the initial potential;  

Right: The ordered displacements as functions of time for the values of the normalized average velocity that labels the curves. 

 

The conditioned displacements are generated also in time dependent potentials that have a 

finite correlation time c . They are ordered steps that appear beside the random steps (represented by 

the mean square displacements c ). The latter produce the diffusion of the trajectories, while the 



ordered steps determine average velocities. In this case, there are conditioned average velocities, that 

have opposite orientations. They are determined as 
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They represent ordered motion that does not determine a flow since  

.0  hhHD VVV                                                                     (11) 

These are the hidden drifts (HDs). It is interesting to note that HDs are not related to the quasi-coherent 

structures that can be generated in turbulence. HDs exists even if 1r  or flc    when the structures 

are absent ( fl is the time of flight of the trajectories over the correlation length of the potential). 

 

The effect of the HDs on the turbulent transport is rather complex and subtle. They influence 

the evolution of the turbulence [14], which indirectly changes the transport. HDs appear in turbulent 

plasmas and they can have strong effects on the characteristics of the turbulence in the nonlinear 

regime when its amplitude is large. These effects essentially appear due to the correlation of the 

potential and density fluctuations. Such correlation does not exist for impurities, which are passively 

advected by the turbulence. However, we have found important effects produce by the hidden drifts in 

connection with the polarization drift. These direct effects corresponding to the test particle transport 

are essentially determined by the perturbation of the equilibrium between the positive hV  and the 

negative hV  drift, which is produced by the polarization drift. 

 

4. Combined effects of the hidden and polarization drifts on impurity transport  

 

The transport model (1)-(7) was studied using the DTM.  

We have found that the polarization drift determines significant modifications of the HDs. We present 

three typical cases with and without polarization drift and with two type of time dependence of the 

correlation of the potential. As the polarization drift contains the time derivative of the stochastic 

electric field, it is expected that the influence is not only determined by the decorrelation time d , but 

by details of the function E(t). We have considered an exponential decay and an oscillating decay. The 

cases presented in Figures 1-5 are:  

 (a) exponentially decaying E(t) without polarization drift (CA=0),  

 (b) exponentially decaying E(t) and polarization drift with CA=0.2,  

 (c)  oscillating E(t) and polarization drift with CA=0.2.   

One can see in Figure 2 the conditioned displacements for the three cases.  

 (a): The conditioned displacements are anti-symmetrical functions of the initial potential at any time 

when the polarization drift is zero. The HDs are symmetrical and the average velocity VHD is zero.  

 (b): The presence of the polarization drift perturbs the symmetry of the displacements at large times 

by increasing the positive displacements and decreasing the negative ones. This leads to a finite 

positive average velocity VHD. 

 (c): The perturbation of the symmetry of the conditioned displacements is much stronger for the 



oscillatory decay of E(t). It leads to the reversal of the sign of the displacements for positive initial 

potential at large time. 

 

 

 

Figure 2. The conditioned displacements )()( 0

0




Ptx  as functions of the initial potential for t=0.4 (green), 1.6 (red), 6 

(cyan), 23 (magenta), 76 (black) for (a) exponential EC without polarization drift, (b) exponential EC with polarization drift and 

(c) oscillating EC with polarization drift. 

 

This behaviour can also be seen in Figure 3 where the ordered displacements obtained from the results 

of Figure 2 are shown. It clearly appears that the polarization drift destroys the symmetry of the ordered 

displacements and that this process is much more efficient for oscillating E(t) than for exponential E(t).  

 
Figure 3. The ordered displacements as functions of time for the three cases presented in Figure 2: (a) dashed black lines, (b) 

blue lines and (c) red lines. 

 

The average velocity generated from the combined action of the HDs and polarization drift for 

the three cases in shown in Figure 4. The direct transport is much larger for the oscillating EC and its 

velocity VHD becomes negative. The largest radial velocity appears in the case of oscillating EC, besides 

the small HDs seen in Figure 2c. The cause of this behaviour is the large perturbation of the HDs 

produced by the polarization drift in the case (c). 

 



 
Figure 4. The average velocity determined by the HDs for the three cases presented in Figure 2: (a) dashed black line, (b) blue 

line and (c) red line. 

 

The strongest influence that is produced by oscillating potentials is observed also in the diffusion 

coefficient. Figure 5 shows that Dx is unchanged by the polarization drift in the case of exponentially 

decaying E(t) (case (b) is superposed on case (a)) and that the asymptotic value of the diffusion 

coefficient increases significantly in case (c). 

  

 
Figure 5. The diffusion coefficient for the three cases presented in Figure 2: (a) and (b) dashed black line, (c) red line. 

 

Thus, the interaction of the HDs with the polarization drift determines an average velocity (direct 

transport) in the radial direction (perpendicular to the average velocity Vt). The velocity VHD has a 

complicated dependence on the parameters of the turbulence, on the average velocity in Eqs. (1) and on 

the shape of the time correlation of the potential.  

 

The transport depends on the total velocity Vt. However, it is important to consider the components 

determined by different processes (magnetic drift Vm, diamagnetic velocity Vd and plasma rotation Vr) 

because they depend on different parameters and can have different signs. 



The mass dependent terms in Eqs. (1) are the polarization drift and in the parallel motion. The 

strongest dependence on A is produced by the parallel velocity. The polarization drift remains much 

smaller than the ExB drift, even with the increase given by the factor A/Z. It is thus not expected to bring 

strong A dependent effects.  

The main difference between the heavy and light impurities is the parallel decorrelation time which 

is much larger in the first case. The parallel decorrelation time is very large for W ions, which determines 

strong difference of the diffusion coefficient Dx compared to the plasma ion D0 (see [15]). We have 

found 
ADDx /1/ 0   where the power   is 2/1 in the case of quasi-linear regime and 2/1  

for the nonlinear regime, with values that depend on the space dependence of the EC of the potential. 

These results were obtained for decaying time dependence of the turbulence. In the case of time 

oscillating EC(t), the dependence of Dx and VHD on the parameters is complex and simple transport 

regimes cannot be deduced from the results.     

The dependence of the heavy impurity transport on the velocity Vt  was studied in the frame of 

the complete model (1)-(7). We have shown that the radial velocity VHD produced by the HDs and the 

polarization drifts has a nontrivial dependence on Vt.  

Figure 7 presents the result obtained for the W impurities in the case of oscillating EC(t), for the 

parameters .10,1,2,5,10 0

'

*  zyx kK   One can see that in the absence of the  hidden 

drifts (at Vt=0), the radial velocity is zero, VHD changes the sign when Vt changes the sign (it is anti-

symmetrical in Vt) and that it is negative at 0 < Vt < 2 and positive at larger Vt.  

 

 
Figure 6. The radial drift velocity determined by the combined effect of the HDs and of the polarization drift as function of the 

poloidal average velocity. Both velocities are normalized with the diamagnetic velocity ./* avV
iTi  

 

 The contribution of the magnetic drifts to the total poloidal velocity Vt is negligible for the W 

impurities (due to their charge that is of the order 10, the normalized Vm is of the order 0.1).  

The experiments on JET [21] have obtained in the L mode negative values of the radial electric 

field of the order of few kV/m and, in the H mode, positive electric fields of few tens of kV/m. These are 

value estimated from the measurements at ρ=0.75 in the results presented in [21].  



The normalized diamagnetic velocity is of the order of units Vd~3. It is positive for the ITG 

turbulence and negative for the TEM and drift turbulence. 

Thus, in the L mode, the total poloidal velocity Vt is of the order 4 in the case of ITG turbulence 

and it is around -2 for TEM. According to Figure 7, the average velocity VHD contributes to impurity 

removal in ITG turbulence, while in the case TEM the pinch is in the region of transition between 

positive and negative values. In H modes, Vt is around zero for the ITG and around -7 for TEM 

turbulence. Figure 7 suggests that a rather large pinch can appear in the ITG turbulence, which are 

directed inward or outward (depending on the specific values of the parameters). In the case of TEM 

turbulence the pinch is inward, but with small velocity. 

 

5. Conclusion 

Radial drifts of ions are generated in turbulence by a poloidal average velocity when the decorrelation 

time (produced by the parallel motion or by the time variation of the potential) is larger than the time of 

flight. These drifts that we have named hidden drifts (HDs) represent quasi-coherent motion that does 

not determine an average velocity but opposite displacements that compensate. However, the HDs 

represent a reservoir of radial pinch, because any perturbation of the exact equilibrium of the positive 

and negative organized motion leads to radial pinch. 

We have shown that the polarization drift of the W ions provides such perturbation of the equilibrium of 

the HDs, which generates an average radial velocity VHD. The dependence of this velocity on plasma 

parameters is rather complex. Moreover, VHD is influenced by the shape of the time dependence of the 

Eulerian correlation of the potential. Much stronger effects appear in the case of oscillating E(t) 

compared to exponentially decaying E(t).  

This analysis permitted to draw the physical explanation for the direct transport (average velocity) found 

in the presence of an average poloidal velocity when the polarization drift is large enough. The 

dependence of the average velocity VHD on the poloidal velocity Vt is nontrivial, with several changes of 

the direction. This leads to different behaviours in the L and H modes and also to differences between 

ITG and TEM turbulence. Our present estimations for the ITG turbulence predict an outward pinch in the 

L mode and much larger pinches directed inward or outward (depending on the specific values of the 

parameters) in the H mode.  
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