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An asymptotic expansion is performed to obtain quasi-axisymmetric magnetic configu-
rations that are weakly non-axisymmetric. A large space of solutions is identified, which
satisfy the condition of quasi-axisymmetry on a single magnetic flux surface, while (non-
axisymmetric) globally quasi-axisymmetric solutions are shown to not exist, agreeing
with the conclusions of previous theoretical work. The solutions found are shown to be
geometrically constrained at low aspect ratio or high toroidal period number. Solutions
satisfying the more general condition of omnigeneity (generalized quasi-axisymmetry)
are also shown to exist, and it is found that quasi-axisymmetric deformations can be
superposed with an omnigenous solution, while preserving the property of omnigeneity,
effectively extending the space of “good” configurations. A numerical solution of the
first order quasi-axisymmetry problem is demonstrated and compared with solutions
found with a widely used MHD equilibrium solver, independently verifying that quasi-
axisymmetry is satisfied at the appropriate order. It is thereby demonstrated that
approximately quasi-axisymmetric solutions can be directly constructed, i.e. without
using numerical search algorithms.

1. Introduction
3D MHD equilibrium solutions with topologically toroidal magnetic flux are conven-

tionally specified by the plasma current, pressure profile and the shape of a flux surface
(Bauer et al. 1984). In a vacuum, merely imposing the surface shape is sufficient; this
corresponds to a Neumman boundary condition, since the magnetic field, which is then
equal to the gradient of a scalar field, has no component perpendicular to the surface, and
so the normal derivative of the scalar field is zero. It seems plausible that another kind of
differential constraint might be substituted at the boundary, instead of surface shape, to
constitute an alternative boundary condition (or an alternative “problem specification”).
The condition of quasi-symmetry, a symmetry of the magnetic field strength in expressed
in Boozer angles (Nührenberg and Zille 1988), is one such possibility. This property
ensures that the magnetic field confines collisionless particle orbits. In fact, it was argued
by Garren and Boozer (1991a) that, although it is generally not possible to satisfy quasi-
symmetry across the entire volume, it should be possible to do so exactly on one surface,
since there is a sufficient amount of freedom in the solution. However, a proof of the
existence of such solutions has not been given, nor is it known how many such solutions
exist. Our understanding of such issues is even more incomplete for the general class
of “omnigenous” equilibria, which have good particle confinement without (necessarily)
having quasi-symmetry.

A subclass of quasi-symmetry, known as quasi-axisymmetry (QAS) (Nührenberg et al.
1994), is particularly interesting, as it can be thought of as a generalization of ax-
isymmetry. It has been suggested that QAS configurations might be accessed by non-
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axisymmetric shaping of tokamak equilibria (Boozer 2008). Practically speaking, non-
axisymmetric shaping is a possible avenue for mitigating major problems faced with
tokamaks, related to stability and disruptions (Ku and Boozer 2009). The stabilizing
influence of non-axisymmetric shaping has been verified experimentally in recent years
(Hartwell et al. 2017), but the shaping was not designed to preserve QAS. In light of
the success of optimized stellarator design, i.e. with the Helically Symmetric Experiment
and Wendelstein 7-X, it seems realistic to expect that stabilization by non-axisymmetric
shaping of tokamaks could be achieved while also preserving the good confinement of
particle orbits. This further motivates us to reconsider the theory of QAS equilibria.

In the present work, we perform an expansion about axisymmetry, establishing the
existence of QAS equilibria (i.e. satisfying QAS on a single surface), characterizing the
space of these solutions, and relating them to the more general class of “omnigenous”
solutions. A numerical method to explicitly find QAS solutions is also provided. QAS is
different from other forms of quasi-symmetry, since there is a (known) case (namely true
axi-symmetry) where the QAS condition is exactly satisfied globally, and for this reason
it has been suggested that QAS equilibria may be obtained by continuous deformation of
tokamak equilibria . (Equilibria with helical or cylindrical symmetry are globally quasi-
symmetric, but such equilibria do not close toroidally.) We find that QAS can indeed
be satisfied at a single surface, to all orders in the expansion, lending support to the
conclusion of Garren and Boozer (1991a), though not establishing it exactly (i.e. non-
perturbatively).

In the expansion, the deviation from axisymmetry is controlled by the (arbitrary)
small parameter ε. In this work, we consider the vacuum case, because it is significantly
simpler than the non-vacuum case; it also has the convenient feature that any obtained
rotational transform can be attributed entirely to 3D shaping, since none can arise from
the zeroth-order axisymmetric solution.

Our findings can be summarized as follows. Due to axi-symmetry at zeroth order, the
linear first order equations have an ignorable coordinate, and thus a free parameter, the
toroidal mode number N . We treat this as a parameter of first-order deformation, and
note that it can then be interpreted as the number of field periods of the stellarator, since
higher order contributions only involve harmonics of this fundamental mode number.
From the first order equations, a single linear 2nd order PDE for a single scalar field
is obtained, whose solution completely determines the magnetic field. QAS is expressed
as a simple differential constraint, and it is demonstrated that it cannot be satisfied
globally, except for the trivial case where axisymmetry is preserved by the perturbation.
The constraint of QAS can, however, be applied on a single surface as a non-standard
boundary condition for the PDE, in which case the problem takes the form of an “oblique
derivative” problem. The solution of this mathematical problem is generally non-unique,
but for our case (a homogeneous elliptic PDE), exactly two linearly independent solutions
are guaranteed to exist. We conclude that there is a certain freedom in these single-
surface QAS equilibrium: (1) The freedom of an arbitrary surface shape for the zeroth
order axisymmetric flux surfaces; (2) the toroidal mode number N of the deformation
(toroidal field period); and (3) two complex amplitudes for the independent solutions of
the oblique derivative problem.

At second order, the MHD equations with the QAS constraint is again reformulated
as an oblique derivative problem, but in this case the system is non-homogeneous. The
problem is known to have solutions, but the number of solutions cannot generally be
predicted. The externally induced rotational transform (i.e. due to the non-axisymmetric
deformation) is obtained at second order (but in terms of first order quantities), i.e.
it scales as ε2 – this is the amount that can be attributed to the non-axisymmetric
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deformation. At third and higher order, the problems takes a form similar to the second
order problem, and therefore a solution is guaranteed to exist each order. We conclude
that QAS can be satisfied at all orders in the expansion.

At the surface where QAS is satisfied, a local MHD equilibrium condition is derived,
from which a general conclusion can be drawn about QAS equilibria, namely that the
non-axisymmetric perturbation in the field is confined to the inboard side at low aspect
ratio, and the effect is amplified at high toroidal mode number. This may be a useful
consideration in the design of QAS devices. Finally, we observe that, as an alternative
to QAS, the condition of omnigeneity (also referred to as “generalized quasi-symmetry”
Landreman and Catto (2012)) can be imposed on the field strength B0 + εB1 as a
function of Boozer angles on a single magnetic surface. It is noted that the QAS solution
represents a homogeneous solution to this general problem, and therefore represent an
arbitrary freedom in the solution.

The paper is organized as follows. In Sec. 2, the basic equations, assumptions, and
notation are introduced. In Sec. 3, the problem formulation is stated, and the expansion
about axi-symmetry is performed. The main theoretical results are presented here,
although some details are contained in appendices. In Sec. 4, a numerical solution of the
first order QAS problem is demonstrated, and a comparison with the widely-used VMEC
equilibrium solver (Hirshman and Whitson 1983) is made to confirm the validity of the
solutions. In Sec. 5, the extension of the method to treat generalized QAS (omnigeneity)
is discussed. Sec. 6 contains further discussion and conclusions.

2. Preliminaries
The MHD equilibrium equations are

∇×B = µ0j, (2.1)
∇ ·B = 0, (2.2)

j ×B = ∇ψ dp
dψ , (2.3)

We assume topologically toroidal flux surfaces, labeled by ψ, such that p = p(ψ). To
solve these equations, we use a similar approach as previous works (Garren and Boozer
1991b,a; Hegna 2000; Boozer 2002; Weitzner 2014). Boozer angles (Boozer 1981) are
denoted θ and ϕ. The contravariant form of B is written

Bcon = ∇ψ ×∇θ − ι×∇ψ ×∇ϕ, (2.4)
where ι× is the rotational transform, and 2πψ is the toroidal magnetic flux. This form
of B satisfies zero divergence and assumes flux-surface geometry. The covariant form is
written

Bcov = G(ψ)∇ϕ+ I(ψ)∇θ +K(ψ, θ, ϕ)∇ψ. (2.5)
This form is a consequence of j ·∇ψ = 0 (2.3), and Ampere’s law (2.1), which itself
implies ∇ · j = 0. See e.g. Helander (2014).

The basic strategy to find an equilibrium is to assert Bcon = Bcov together with
force balance (2.3), relying on the fact that these forms of the magnetic field incorporate
Eqns. 2.1 and 2.2 as well as the assumption of magnetic flux surfaces. Either the magnetic
coordinates ψ, θ, and ϕ can be considered as unknown functions of spatial coordinates
(“direct formulation"), or the coordinate mapping x(ψ, θ, ϕ) can be considered as an
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unknown function of magnetic coordinates (“inverse formulation”). The direct formulation
is appropriate for the axisymmetric problem, where symmetry is defined relative to the
geometric toroidal angle, while the inverse formulation is appropriate for higher orders in
the expansion, where axisymmetry is broken and the condition of QAS can be enforced
as a symmetry in the Boozer toroidal angle ϕ.

In what follows we assume vacuum conditions: dG/dψ = 0, and I = K = 0. The
vacuum case has the curious feature that flux surfaces are not uniquely defined for the
zeroth order axisymmetric solution, since the field has no rotational transform. However,
the non-axisymmetric perturbation introduces a non-zero rotational transform, which
then makes the surfaces unique.

3. Quasi-axisymmetry near axisymmetry
If the equilibrium is expressed as a function of Boozer coordinates ψ, θ, and ϕ, then

the condition of QAS can be simply enforced as a constraint, ∂B/∂ϕ = 0. In the “inverse”
formulation, the unknown of the theory is the coordinate mapping x(ψ, θ, ϕ), and the
equilibrium equations are written in terms of various derivatives, denoted as e1 = ∂x/∂ψ,
e2 = ∂x/∂θ, and e3 = ∂x/∂ϕ. These equations can be translated into equations involving
the metrics via the usual identities (reviewed in Appx. A). The equation Bcon = Bcov

becomes

e3 + ι×e2 = Ge1 × e2. (3.1)
From this, a local MHD constraint (Skovoroda 2007) (involving only derivatives within
the surface) can be constructed:

g23 + ι×g22 = 0. (3.2)
Note, this follows directly. A noteworthy consequence of this constraint is discussed in
Appendix E.

3.1. The condition of quasi-axisymmetry (QAS)
Quasi-symmetry can be stated as the condition that the magnetic field strength is a

function of only a single helicity of the Boozer angles (Nührenberg and Zille 1988), i.e.
B = B(ψ,Mθ −Nϕ) where M and N are integers. QAS is the N = 0 case, i.e. simply
the condition that the magnetic field strength is independent of the Boozer angle ϕ, i.e.
∂B/∂ϕ = 0. Defining E = G2/B2 and using Eqn. B 3, we can express the quantity E in
terms of the surface metrics:

E = g33 + 2ι×g23 + ι×2g22. (3.3)
We can then restate QAS as ∂E/∂ϕ = 0, i.e.

∂

∂ϕ

(
g33 + 2ι×g23 + ι×2g22

)
= 0. (3.4)

3.2. The expansion about axisymmetry
We write the coordinate mapping x(ψ, θ, ϕ) as a series expansion in the small param-

eter ε,

x = x0 + εx1 + ε2x2 + . . . , (3.5)
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where x0 corresponds to the zeroth-order axisymmetric equilibrium. For simplicity, we
will consider the current G as fixed to its zeroth order values (there is no loss of
generality as these functions can always be adjusted at zeroth order). We however allow
the deformation to modify ι×, since we would like to determine how much “external”
rotational transform can be achieved by the 3D shaping.

ι×(ψ) = ι×0 + ει×1 + ε2 ι×2 + . . . . (3.6)

We also introduce the following notation for expanding the metrics:

gij = g
(0)
ij + εg

(1)
ij + ε2g

(2)
ij + . . . . (3.7)

3.2.1. O(ε0)

The coordinate mapping at zeroth order is written

x0 = R̂R0(θ, ψ) + ẑZ0(θ, ψ), (3.8)

where, for the axisymmetric case, the geometric toroidal coordinate is equal to the Boozer
toroidal angle (see Appendix C.1)

φ0 = ϕ, (3.9)

We note that at this order and and at all higher orders, the unit vectors φ̂, R̂ and ẑ
will be fixed so that they are defined with respect to the Boozer angle ϕ, i.e. (this will
simplify the vector algebra somewhat)

R̂ = x̂ cos(ϕ) + ŷ sin(ϕ), (3.10)

φ̂ = ŷ cos(ϕ)− x̂ sin(ϕ). (3.11)

We emphasize that these are not the usual cylindrical basis vectors, as the Boozer toroidal
angle only corresponds with the geometric toroidal angle at zeroth order. Substituting
Eqn. 3.8 into Eqn. 3.1, and projecting along the φ̂, R̂ and ẑ directions, yields only a
single nontrivial constraint

G {Z0, R0} = R0, (3.12)

where we define

{A,B} ≡ ∂A

∂ψ

∂B

∂θ
− ∂B

∂ψ

∂A

∂θ
(3.13)

Of course, QAS is satisfied at this order, ∂E0/∂ϕ = 0, as

E0 = R2
0. (3.14)

Note that Eqn. 3.12 does not constrain the choice of the zeroth order equilibrium very
much. In fact, we may freely choose not only the shape of the outer flux surface, but the
shape of all the interior surfaces as well; see Appendix C.2.
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3.2.2. O(ε1)

So as to preserve the unit vectors, as mentioned above, we do not perturb the geometric
angle φ. Instead, we include a (third) component of x1 in the φ̂ direction, i.e. we write

x1 = R̂R1(θ, ψ, ϕ) + ẑZ1(θ, ψ, ϕ) + φ̂Φ1(θ, ψ, ϕ). (3.15)

As ϕ is an ignorable coordinate in the first order equilibrium equations, we will assume

R1 = R̄1(θ, ψ) + 2Re[R̂1(θ, ψ) exp(iNϕ)], (3.16)
Z1 = Z̄1(θ, ψ) + 2Re[Ẑ1(θ, ψ) exp(iNϕ)], (3.17)
Φ1 = Φ̄1(θ, ψ) + 2Re[Φ̂1(θ, ψ) exp(iNϕ)], (3.18)

where N 6= 0 is an integer (to be interpreted as the field period number). The ϕ-averaged
part of the local MHD constraint (Eqn. 3.2, ι×1g

(0)
22 + g

(1)
23 = 0) yields

∂

∂θ

(
Φ̄1

R0

)
= − ι×1

R2
0

[(
∂Z0

∂θ

)2

+

(
∂R0

∂θ

)2
]
. (3.19)

Periodicity of Φ̄1/R0 yields the solubility constraint

ι×1
∮

dθ

R2
0

[(
∂Z0

∂θ

)2

+

(
∂R0

∂θ

)2
]

= 0, (3.20)

implying ι×1 = 0. Then, from Eqn. 3.19, we find Φ̄1 = C1R0, where C1 is an arbitrary
constant. The only remaining useful information that can be obtained from the ϕ-average
of Eqn. 3.1 comes from its φ̂ component, which gives a relationship between R̄1 and Z̄1:

R̄1 = G
({
Z̄1, R0

}
+
{
Z0, R̄1

})
. (3.21)

We are thus free to set Φ̄1 = R̄1 = Z̄1 = 0 at this point. For the ϕ-dependent part of
the first-order solution, we take components of the MHD equation (Eqn. 3.1) in the φ̂,
R̂ and ẑ directions to obtain

iNΦ̂1 + R̂1 = G
({
Ẑ1, R0

}
+
{
Z0, R̂1

})
, (3.22)

iNR̂1 − Φ̂1 = G
{
Φ̂1, Z0

}
, (3.23)

iNẐ1 = G
{
R0, Φ̂1

}
. (3.24)

A single second order equation for Φ̂1 can be obtained from this system by substituting
Eqns. 3.23 and 3.24 into Eqn. 3.22.

(N2 − 1)Φ̂1 + 2G
{
Z0, Φ̂1

}
= G2

({
R0,

{
R0, Φ̂1

}}
+
{
Z0,
{
Z0, Φ̂1

}})
. (3.25)

We are further able to simplify the resulting equation significantly by changing coordi-
nates from (ψ, θ) to (R0, Z0). Defining

P1(R0, Z0) = Φ̂1(ψ(R0, Z0), θ(R0, Z0)), (3.26)
and using Eqn. 3.12 (see also Appx. D), we obtain finally the simple equation
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(N2 − 1)P1 = R2
0∆
∗
0P1, (3.27)

where we encounter the familiar Grad-Shafranov operator

∆∗0 = R0
∂

∂R0

(
1

R0

∂

∂R0

)
+

∂2

∂Z2
0

. (3.28)

The QAS condition is enforced by setting ∂E1/∂ϕ = 0. Using E1 = g
(1)
33 we obtain

iNR0(iNΦ̂1 + R̂1) = 0, (3.29)
i.e. iNΦ̂1 + R̂1 = 0. Using Eqn. 3.23 we obtain from this a condition on P1,

(N2 − 1)P1 +R0
∂P1

∂R0
= 0. (3.30)

It can be easily verified that (except for a trivial N = 1 case corresponding to rotation;
see Appendix F) the only way to satisfy this condition across the entire plasma volume
is to have P1 = 0. Global QAS is thereby proved impossible, supporting the conclusions
of Garren and Boozer (1991a). If, however, we require Eqn. 3.30 to be satisfied on
a single surface, denoted ψ = ψbc, then Eqn. 3.30 constitutes an “oblique” (or more
specifically, “tangential-oblique”) boundary condition for the elliptic homogeneous second
order equation 3.27. This problem was first studied by Poincaré (Poincaré 1910), and is
therefore sometimes called “Poncaré’s problem”. The chief difficulty in the problem is due
to the fact that the direction of the derivative is tangential to the boundary surface ψbc
at a discrete set of points. In the present case, because Eqn. 3.27 is homogeneous, and the
direction of the derivative does not rotate as the boundary curve is traced, it is known
that exactly 2 linearly independent solutions exist (Vekua (1953); see also Chapter III,
Section 23 of Miranda (1970)), aside from the trivial null solution P1 = 0.

For completeness we state the equations for R̂1 and Ẑ1 in terms of P1. From Eqns. 3.23-
3.24 we have

iNR̂1 = P1 −R0
∂P

∂R0
, (3.31)

iNẐ1 = −R0
∂P

∂Z0
. (3.32)

3.2.3. O(ε2)

We note that, at second order, the finite-toroidal-number components of the MHD
equations will generally be non-zero for n = ±2N due to source terms that are quadratic
in first order quantities. We are free to choose the other components to be zero, and
write the coordinate mapping in the same form as at first order, i.e. x2 = R̂R2(θ, ψ, ϕ)+

ẑZ2(θ, ψ, ϕ) + φ̂Φ2(θ, ψ, ϕ), with

R2 = R̄2(θ, ψ) + 2Re[R̂2(θ, ψ) exp(2iNϕ)], (3.33)
Z2 = Z̄2(θ, ψ) + 2Re[Ẑ2(θ, ψ) exp(2iNϕ)], (3.34)
Φ2 = Φ̄2(θ, ψ) + 2Re[Φ̂2(θ, ψ) exp(2iNϕ)]. (3.35)

To find ι×2 we can use the local MHD constraint (Eqn. 3.2) at second order, i.e. ι×2g
(0)
22 +

g
(2)
23 = 0. Taking the ϕ-average, we obtain
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ι×2

[(
∂Z0

∂θ

)2

+

(
∂R0

∂θ

)2
]

+R2
0

∂

∂θ

(
Φ̄2

R0

)

+ 2Re

[
∂R̂∗1
∂θ

(iNR̂1 − Φ̂1) + iN
∂Ẑ∗1
∂θ

Z1 +
∂Φ̂∗1
∂θ

(R̂1 + iNΦ̂1)

]
= 0. (3.36)

Integrating over θ (at constant ψ) we obtain ι×2 as a solubility constraint for Φ̄2:

ι×2 = −

∮
dθ 2

R2
0
Re
[
∂R̂∗

1

∂θ (iNR̂1 − Φ̂1) + iN
∂Ẑ∗

1

∂θ Z1 +
∂Φ̂∗

1

∂θ (R̂1 + iNΦ̂1)
]

∮
dθ
R2

0

[(
∂Z0

∂θ

)2
+
(
∂R0

∂θ

)2] (3.37)

Following essentially the same procedure used at first order, we can obtain a single
elliptic partial differential equation for P2(R0, Z0) = Φ̂2(ψ(R0, Z0), θ(R0, Z0)),

(4N2 − 1)P2 −R2
0∆
∗
0P2

= 2iNR0

{
Ẑ1, R̂1

}
R0Z0

+R2
0

(
∂

∂Z0

{
R̂1, Φ̂1

}
R0Z0

+
∂

∂R0

{
Φ̂1, Ẑ1

}
R0Z0

)
, (3.38)

where {A,B}R0Z0
= ∂R0A∂Z0B − ∂R0B∂Z0A. The condition of QAS is stated as

(2N2 − 1)P2 +R0
∂P2

∂R0
= −R0

{
Φ̂1, Ẑ1

}
R0Z0

+
iN

R0

[
(iNR̂1 − Φ̂1)2 + (iNẐ1)2

]
. (3.39)

which is again an oblique boundary condition. Eqn. 3.38 with boundary condition 3.39
is solvable (Vekua 1953; Miranda 1970).

3.2.4. O(εn), n > 2

At higher order, there will be more equations to solve due to the nonlinear interaction
of lower order contributions. For instance, at third order, there will be nonzero n =
−3N,−N, 0, N, 3N components due to the source terms arising from the product of first
and second order quantities. However, these problems will be of the type as found at
second order, and therefore must have solutions. We conclude that QAS (at a single
surface) can be satisfied to all orders in the expansion.

4. Numerical solution of quasi-axisymmetric equilibria at first order
We turn now to the numerical solution of Eqn. 3.27, imposing the oblique boundary

condition, Eqn. 3.30, corresponding to the condition of QAS. Note that, upon solving for
P1, the functions R̂1 and Ẑ1 can then be immediately calculated from Eqns. 3.31-3.32
and, fixing ε, the total mapping can be constructed as

x ≈ R̂(R0 + 2εRe[R̂1 exp(iNϕ)]) + ẑ(Z0 + 2εRe[Ẑ1 exp(iNϕ)]) + 2φ̂εRe[Φ̂1 exp(iNϕ)].
(4.1)

Due to the change of variables to (R0, Z0) space, the only knowledge of the zeroth order
solution needed is the shape of the outer flux surface, which defines the computational
domain. If the first order deformation is specified, along with the amplitude ε, then x is
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determined by Eqn. 4.1, in the coordinates R0, Z0 and ϕ. We will henceforth drop the
subscripts and work directly with the following equations for P in the R-Z plane:

(N2 − 1)P −R∂P
∂R

= (R̂∂R + ẑ∂Z) ·
(
R̂R2 ∂P

∂R
+ ẑR2 ∂P

∂Z

)
, (4.2)

(N2 − 1)P +R
∂P

∂R
= 0. (4.3)

Note that Eqn. 4.3 is simply Eqn. 3.30, with the diffusive term rewritten in conservative
form.

The numerical method used to solve Eqn. 4.2 with boundary condition 4.3 is based on
a standard finite element method approach to a Neumman boundary value problem. As
usual, the function P is expressed as a sum of basis functions that have finite support
over mesh elements. Multiplying Eqn. 4.2 by a basis function and integrating over the
domain, one obtains a matrix equation containing the so-called stiffness matrix. Part of
the stiffness matrix is due to the flux at the boundary (arising from the conservative
term on the right hand side of Eqn. 4.2), and involves the normal derivative of P . This
flux term is evaluated using our boundary condition, 4.3. That is, the derivative term
in Eqn. 4.3 is rewritten in terms of components that are tangential and normal to be
boundary:

(N2 − 1)P + γ(l)
∂P

∂n
+ β(l)

∂P

∂l
= 0. (4.4)

The functions γ and β depend on the shape of the boundary. Eqn. 4.4 is divided by γ to
obtain an expression for the normal derivative, and the resulting equation is discretized
over a one-dimensional mesh whose nodes match the boundary nodes of the finite element
mesh. The result is used to evaluate the relevant contribution the stiffness matrix obtained
from the discretization of Eqn. 4.2.

The only difficulty in this procedure arises from the fact that the coefficient of the
normal derivative, γ(l), passes through zero at a discrete set of boundary points (those
where the normal vector points in the ẑ direction) and so the flux is not determined by
Eqn. 4.4 at those points. To overcome this, we only need to avoid these points when
choosing the nodes of the mesh that lie on the boundary.

The final result of the above procedure is a homogeneous matrix equation. The two
eigenfunctions with eigenvalues that tend toward zero (with increasing resolution) are
identified as the solutions. The solutions can (due to their linear independence) be chosen
such that one is even and the other is odd in a suitably defined geometric angle θ. A sum
of the two solutions can be taken, and the relative phase and amplitude can be adjusted
to maximize the rotational transform.

Let us illustrate the above procedure with the simple example of a circular boundary
centered at R = Rc with radius 1. This case yields γ(l) = [Rc + cos(l)] cos(l), and β(l) =
−[Rc + cos(l)] sin(l). The resulting mesh and two independent solutions are depicted in
Fig. 1.

The even and odd solutions are superposed to create a total solution P = APe +BPo,
where A and B are arbitrary complex constants. To obtain finite rotational transform
for the present example, it is necessary to assume a non-zero phase shift between these
amplitudes. Taking A = 1 and B = exp(−iπ/2) and fixing ε the surface shape, according
to Eqn. 4.1, is plotted in Fig. 2.

To independently confirm the result, the surface shape, determined by Eqn. 4.1, can be
used as input for the VMEC code. This shape specification has a free parameter ε, which
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Figure 1. Solution for circular boundary. On the left is a visualization of a circular second-order
mesh, with boundary nodes indicated with blue dots, and the two points of tangency indicated
with red dots. The numerical solution, including mesh generation, is done with the recently
introduced finite-element-method capabilities of Mathematica 10. In the center and right are
two independent solutions found for P (R0, Z0). Note that due to the up-down mirror symmetry
of the equilibrium solution, the two solutions can be chosen as even (center) and odd (right).

Figure 2. Visualization of boundary surface shape up to first order, assuming circular
zeroth-order shape (same case as Fig. 1). Here ε = 2.0; note that the eigenfunctions are
normalized to small numerical absolute value, as shown in Fig. 1, so the total deformation
is small even though ε is not. The toroidal cuts and lines of constant poloidal and toroidal angle
are included for purely stylistic reasons.

can be varied to test the degree to which the result satisfies the QAS constraint. Since
the solution is only correct to first order, the “exact” solution obtained from VMEC will
be expected to deviate from Quasiaxisymmetry at second order. Therefore, we conduct
a series of runs with increasing strength of perturbation, ε. The resulting equilibrium
solution is then passed to a separate code “BOOZ_XFORM” (Sanchez et al. 2000),
which computes the components of |B| in Boozer angles on each flux surface. The ratio
of the non-QAS part to the full field, does indeed scale as ε2. For comparison, the scaling
of a control (non-QAS, non-axisymmetric) deformation is also computed, and found
to be linear in ε as expected; See Fig. 3. In this figure the quantity Q measures the
deviation from QAS, and is defined in terms of the Fourier component of the magnetic
field magnitude expressed in Boozer coordinates B̂mn, where m and n are the poloidal
and toroidal mode numbers respectively:
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Figure 3. Demonstration that QAS is satisfied to first order in size of non-axisymmetric
perturbation; the quantity Q is defined by Eqn. 4.5. Here the field period number is N = 2
and the zeroth order flux surface shape is circular with an aspect ratio of 4. Solution of Eqn. 4.2
with boundary condition Eqn. 4.3 leads to expected scaling with ε2, as shown in the first
plot. In the second plot, a “control” (non-QAS) deformation is used for comparison (Φ1 = 0,
R1 = 0.4 cos(ϑ − 2ϕ) and Z1 = 0.4 sin(ϑ − 2ϕ), where ϑ is a geometric poloidal angle), and
it is found that QAS is broken at first order in ε, as expected. Visualization of surface shape
(for largest value of ε) is included within each plot. (Note that ε is somewhat arbitrary as the
solutions are linear and subject to arbitrary normalization.)

Q =

(∑
m,n 6=0 |B̂mn|2

)1/2
(∑

m,n |B̂mn|2
)1/2 . (4.5)

5. Omnigeneity
Omnigeneity (Hall and McNamara 1975) is the more general condition of having

zero average radial particle drift. This can be shown to be equivalent to the geometric
condition that points of equal magnetic field strength have constant separation in Boozer
angles, i.e. the separation (∆θ, ∆ϕ) is independent of the field line chosen (see also
Landreman and Catto (2012) for further discussion of this). It has been argued that
exactly omnigenous configurations, must be quasi-symmetric if they are to be analytic
(Cary and Shasharina 1997). The same authors point out, however, that analytic fields
can be specified that are arbitrarily close to being omnigenous, while also being far from
quasi-symmetric. One can conclude that omnigeneity is a useful target for optimization.
Indeed, it is fair to say, roughly speaking, that nearly quasi-symmetric configurations
represent a small subspace of nearly omnigenous configurations. Therefore, it may be
useful to be able to impose omnigeneity instead of quasi-symmetry as a boundary
condition in our expansion near axi-symmetry. As will be shown, we can impose an
arbitrary modification to the magnetic field strength, E1(θ, ϕ). This function can, in
particular, be chosen such that E0 + εE1 satisfies the condition of omnigeneity. We write
E1 as a Fourier series,

E1 = Ē1(ψ, θ) +
∑
n 6=0

Ê1(ψ, θ, n) exp(inϕ), (5.1)

and first consider the ϕ-independent part, Ē1. Note that the MHD constraint, Eqn. 3.1,
was already solved for the QAS problem, and yields Φ̄1 = C1R0 and ι×1 = 0. From
Eqn. 3.3, we then find that Ē1 = 2R0R̄1, i.e.
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R̄1 =
Ē1

2R0
. (5.2)

We now can rewrite Eqn. 3.21, which relates Z̄1 to R̄1, using Eqn. 3.12, in terms of
independent variables Z0 and R0 as follows

∂Z̄1

∂Z0
= R̄1 −

∂R̄1

∂R0
. (5.3)

Thus Z̄1 is determined by R̄1 via Eqn. 5.3, completing the ϕ-independent part of the
solution. For the ϕ-dependent part of the solution, we essentially only need to add a
non-zero contribution to the right-hand-side of Eqn. 3.30, noting, however, that the
resulting equation must be satisfied for all toroidal mode numbers. We therefore modify
the notation N → n, and obtain the following PDE for P1(R0, Z0, n), with n 6= 0:

(n2 − 1)P1 = R2
0∆
∗
0P1. (5.4)

The boundary condition, now with an inhomogeneity proportional to Ê1(ψ, θ, n), becomes
(for n 6= 0)

R0(n2 − 1)P1 +R2
0

∂P1

∂R0
= −inÊ1. (5.5)

We note first, that the existence of at least one solution is guaranteed for this non-
homogeneous oblique derivative problem. This problem is more difficult to solve than the
QAS problem, since the equations for all necessary Fourier components of E1 must be
solved. Furthermore, it seems necessary to solve for the θ(R0, Z0) to be able to construct
a function E1 such that the total field is omnigenous; this was not necessary for the QAS
problem since only the shape of the zeroth-order boundary flux surface was needed to
solve the first order system.

We may draw an interesting conclusion at this point, namely that the QAS problems,
which can be indexed by n 6= 0, are valid homogeneous solutions of the omnigenous
problem, i.e. the corresponding deformations do not modify the magnitude of the mag-
netic field (by construction), so they can be added to a solution of the general first order
problem (Eqns. 5.4 and 5.5), and the result will still satisfy Eqns. 5.4 across the volume,
and Eqn. 5.5 on the boundary. The QAS deformations therefore represent an arbitrary
freedom for omnigenous solutions.

6. Conclusions
One of the perhaps surprising outcomes of this work is the abundance of QAS solutions.

Instead of being isolated, they form a continuum in the vicinity of axisymmetric solutions.
The parameter space for this continuum consists of the (1) the space of axi-symmetric
flux-surface shape functions, (2) the discrete parameter N , defining the stellarator field
period number, and (3) the two complex amplitudes of the solutions of the oblique-
derivative problem. From one perspective, the size of this space might be expected: The
axisymmetric part of our solution satisfies QAS in a trivial sense, and globally. So much
of the freedom in the solution corresponds to the part of the solution that is known to be
exceptional. If, as we suspect, the results found in the vacuum case are also valid for the
non-vacuum case, a striking and simple conclusion could be drawn – namely, that a large
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space of QAS stellarator configurations are accessible via suitably small deformations of
any tokamak.

We reach another interesting conclusion, following the discussion of Sec. 5, namely that
an alternative problem specification is possible, by fixing the perturbation in magnetic
field strength at the boundary flux surface, as a function of Boozer angles. A solution
is guaranteed to exist for this problem, and we note that an arbitrary QAS deformation
may be added to this solution, such that the total solution still satisfies the field-
strength boundary condition. Furthermore, the field strength may be chosen such that a
generalized form of QAS (omnigeneity) is satisfied, significantly broadening the space of
“good” configurations that can be found in the neighborhood of axi-symmetry. Although
a deformation can only satisfy exact QAS at one surface, it remains an open question
whether omnigeneity can be satisfied throughout the volume.
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Appendix A. Magnetic geometry
Given arbitrary toroidal coordinates (ψ, θ, ϕ), whose handedness is ∇ϕ ·(∇ψ×∇θ) >

0, it is the convention to work with local basis vectors, (∇ψ, ∇θ, ∇ϕ) and (e1 = ∂x/∂ψ,
e2 = ∂x/∂θ, e3 = ∂x/∂ϕ). The metric components are defined in the usual way

gij ≡ ei · ej , (A 1)
and the Jacobian for these coordinates is

J =
1

∇ψ · (∇θ ×∇ϕ)
= e1 · (e2 × e3) (A 2)

Additionally, assigning (u1, u2, u3) = (ψ, θ, ϕ), we see that ei · ∇uj = δij , and the
following identities are easily verified

e1 = J(∇u2 ×∇u3), e2 = J(∇u3 ×∇u1), e3 = J(∇u1 ×∇u2), (A 3)

∇u1 =
e2 × e3
J

, ∇u2 =
e3 × e1
J

, ∇u3 =
e1 × e2
J

. (A 4)

Appendix B. Useful forms of J and B

Taking B2 = Bcov ·Bcon gives

JB2 = G+ ι×I. (B 1)
Taking B2 = Bcon ·Bcon gives

J2B2 = |e3 + ι×e2|2 = g33 + 2ι×g23 + ι×2g22. (B 2)
Using Eqn. B 1-B 2 we can express the magnetic field strength “locally” (in terms of only
surface metrics),
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(G+ ι×I)2

B2
= g33 + 2ι×g23 + ι×2g22. (B 3)

Using Eqn. B 1-B 2 we can also express the Jacobian locally,

J(G+ ι×I) = g33 + 2ι×g23 + ι×2g22. (B 4)

Appendix C. General axisymmetric equilibrium in Boozer
coordinates

The condition of axi-symmetry can be stated as the condition that the R̂, φ̂ and
ẑ components of B are independent of φ. This implies that the flux surfaces must be
themselves axisymmetric, so φ̂ ·∇ψ = 0, i.e. ∂φψ = 0. Then from ∂φ(φ̂ ·Bcov) = 0 we
obtain

G
∂2ϕ

∂φ2
+ I

∂2θ

∂φ2
= 0. (C 1)

Integrating, using ϕ = φ+ ν, and periodicity in φ we obtain

G
∂ν

∂φ
+ I

∂θ

∂φ
= 0. (C 2)

Now, taking the ∂φ(R̂ ·Bcon) = 0, we likewise obtain

∂θ

∂φ
− ι×

∂ν

∂φ
= 0. (C 3)

From Eqns. C 2-C 3, we conclude that

∂θ

∂φ
=
∂ν

∂φ
= 0. (C 4)

C.1. Axisymmetric equilibrium in direct formulation
Switching to the direct formulation, let us consider magnetic coordinates ψ, θ, ϕ as

functions of cylindrical coordinates R, Z and φ. Here Z is the distance along the axis of
symmetry (of the zeroth order solution), R is the distance from the origin in the plane
perpendicular to Z, and φ is the geometric toroidal angle measuring the rotation about
the Z axis. Writing Bcon = Bcov we have

G(ψ)∇ϕ+ I(ψ)∇θ +K(ψ, θ, ϕ)∇ψ = ∇ψ ×∇θ − ι×∇ψ ×∇ϕ, (C 5)
In a vacuum axisymmetric field we have ι× = K = I = 0 and dG/dψ = 0, i.e.

G∇ϕ = ∇ψ ×∇θ, (C 6)
By axisymmetry, ψ and θ are independent of φ (see Appendix C), whereas ϕ can

generally be expressed as

ϕ = φ+ ν(R,Z) (C 7)

The right hand side of Eqn. C 6 has only a toroidal component, so the R̂ and ẑ
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components of the equation require that ν is a constant, which we set to zero. The
φ̂ component of Eqn. C 5 yields the only nontrivial constraint.

G

R
= {θ, ψ}RZ , (C 8)

where {A,B}RZ = ∂RA∂ZB − ∂RB∂ZA. To summarize,

ψ = ψ(R,Z), (C 9)
θ = θ(R,Z), (C 10)

ϕ = φ. (C 11)

C.2. Freedom at zeroth order according to Eqn. 3.12
Consider a set of nested arbitrarily-shaped axisymmetric surfaces, labeled by the

variable ρ; let these correspond to constant-ψ surfaces. The function ψ(ρ) is to be
determined, as follows. Let the variable l be the arc length parameterizing a contour
of constant ρ, such that (φ̂×∇ρ) ·∇l > 0. Then Eqn. 3.12 becomes

dψ

dρ

∂θ

∂l
=

G

R0|∇ρ|
≡ F (ρ, l) (C 12)

using
∮
∂θ/∂ldl = −2π we find

ψ =
1

2π

∫ ρ

0

dρ′
∮
dlF (ρ′, l), (C 13)

θ = θ0(ρ)− 2π

∫ l

0

dl′
F (ρ, `′)∮
dl′′F (ρ, l′′)

. (C 14)

where we use that the toroidal flux on axis ψ(ρ = 0) is zero. It is thus shown that the
choice of an arbitrary set of nested axisymmetric surfaces is consistent with Eqn. 3.12,
and this choice determines the spatial dependence of Boozer coordinates ψ and θ up to
an arbitrary angular shift θ0(ρ), which can be inverted to find R0 and Z0 as functions of
ψ and θ.

Appendix D. Using R0 and Z0 as coordinates
The differential operators of Eqn. 3.25 take the form of Possion brackets involving the

functions R0 and Z0. Such operators can be interpreted as 2D advection along the ∇R0

and ∇Z0 directions, which suggests that it could be fruitful to reformulate the equations,
using R0 and Z0 as the independent variables, especially given that these variables are
well-behaved coordinates. Furthermore, it will be useful, for the purposes of numerically
solving the first-order system, to be able to re-use the domain defined already at zeroth
order.

The following relations, found using Eqn. 3.12, may make the derivation of Eqn. 3.27
more transparent. For any function f , we have

{Z0, f} =
R0

G

∂f

∂R0
, (D 1)

{R0, f} = −R0

G

∂f

∂Z0
. (D 2)
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Appendix E. Consequence of the local MHD constraint on the shape
of QAS configurations

A differential constraint involving only in-surface derivatives can be derived directly
from the conditionBcon·(Bcov×∇ψ) = 0. This, which we call the “local MHD constraint”
is given in Eqn. 3.2, repeated here

g23 + ι×g22 = 0. (E 1)
At first order in the expansion about axi-symmetry, Eqn. E 1 yields for N 6= 0

R0
∂Φ̂1

∂θ
+
∂R0

∂θ

(
iNR̂1 − Φ̂1

)
+ iN

∂Z0

∂θ
Ẑ1 = 0. (E 2)

This equation, combined with the condition of QAS, Eqn. 3.29, gives

∂

∂θ

(
Φ̂1R

N2−1
0

)
= −iN ∂Z0

∂θ
RN

2−1
0 Ẑ1, (E 3)

which can be integrated over θ to give the solubility constraint∮
dθ
∂Z0

∂θ
RN

2−1
0 Ẑ1 = 0. (E 4)

This constitutes a rather strong constraint on the behavior of the function Ẑ1(θ) at low
aspect ratio and large field period number N since in that limit the factor RN

2−1
0 varies

strongly in magnitude. This leads to the qualitative behavior around the surface where
QAS is satisfied (indeed, observed in our numerical solutions) of the perturbation favoring
the “inboard” side of the device (locations of small R), i.e. having greater amplitude there;
the surface shape on the outboard side, in such cases, remains mostly unperturbed from
its axisymmetric shape. At small N (i.e. N = 2) and large aspect ratio (i.e. when the
variation in the overall magnitude of R0 is small) this effect is less noticeable.

Appendix F. Non-existence of global QAS equilibria
We show here that the QAS constraint can be satisfied globally only for the special cases

ofN = 1, and, in that case, the deformation merely corresponds to trivial transformations
that preserve axisymmetry. We demonstrate this at first order in the expansion. It is easy
to integrate the QAS constraint (it can be interpreted as a first order ODE since it is
differential in only the R0 variable) to obtain a global solution:

P1 = P̄1(Z0)R1−N2

0 . (F 1)
Substituting this solution into the MHD constraint, Eqn. 3.27, we obtain

P̄ ′′1 /P̄1 = N2(1−N2)R−20 . (F 2)
The left hand of this equation does not depend on R whereas, the right hand clearly
does, unless it is zero, i.e. N = 0, 1 (the N = 0 case is uninteresting). Taking P̄ ′′1 = 0, we
obtain

P̄1 = A0 +A1Z0. (F 3)
The first term corresponds to a translation in the x-y plane, and the second term corre-
sponds to a tilt, i.e. the solution corresponds to a axi-symmetry preserving deformation.
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The solutions for R̂1 and Ẑ1, obtained from Eqns. 3.23-3.24, are also consistent with this
conclusion. The numerical solution also confirms this analytic solution. Therefore, the two
solutions to the boundary value problem in fact satisfy the differential constraint globally,
not just at the boundary, but are correspond to trivial and uninteresting deformations.
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