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A set of equations is derived describing the macroscopic transport of particles and

energy in a thermonuclear plasma on the energy confinement time. The equations

thus derived allow studying collisional and turbulent transport self-consistently, re-

taining the effect of magnetic field geometry without postulating any scale separation

between the reference state and fluctuations. Previously, assuming scale separation,

transport equations have been derived from kinetic equations by means of multiple-

scale perturbation analysis and spatio-temporal averaging. In this work, the evolu-

tion equations for the moments of the distribution function are obtained following

the standard approach; meanwhile, gyrokinetic theory has been used to explicitly

express the fluctuation induced fluxes. In this way, equations for the transport of

particles and energy up to the transport time scale can be derived using standard

first order gyrokinetics.
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I. INTRODUCTION

Predicting the dynamics of a thermonuclear plasma is fundamental in order to make

nuclear fusion a reliable source of energy. A precise and quantitative definition of what

this means essentially implies discussing and understanding the spatiotemporal scales of

nonlinear evolution of plasma profiles due to Coulomb collisions and fluctuating fields on

the same footing. This also implies a proper definition of a plasma reference state and of

the deviation of the system from that ”average” condition.

In collisionless fusion plasmas the turbulent fluctuation spectrum is dominated by fre-

quencies usually larger than the inverse characteristic collisional relaxation time. Meanwhile,

due to the assumption of strong magnetization, transport parallel to the ambient magnetic

field is much faster than across magnetic flux surfaces. Therefore, transport theory in fusion

plasmas has been developed as intrinsically local in order to describe the evolution of the

reference state on a short timescale, dominated by fluctuation induced cross-field transport

(across equilibrium magnetic flux surfaces) on the micro-scales characterizing drift wave tur-

bulence. The study of plasma global evolution has been often pursued by means of analysis

based on ad hoc models. Only a limited number of works have tackled self-consistently colli-

sional and fluctuation induced transport, e.g. Refs. 1–5. A practical and effective approach

to this problem intuitively yields to defining suitable time and spatial averages. In fact,

plasma reference state should evolve slowly in some sense, while cross field transport should

cause the distortion of plasma profiles on a sufficiently long length scale. The derivation

of a set of equations describing the plasma global evolution on a given time scale is the

main requirement to reach this goal. The self-consistency of the adopted description is of

fundamental importance in order to understand transport processes on a given time scale

because of the possible interplay between collisions and turbulence. In turn, this is crucial in

order to predict fluxes of particle and energy and, ultimately, the overall plasma evolution.

The aim of this work is the self-consistent study of transport processes in a thermonu-

clear plasma on the energy confinement time scale. We adopt a moment equation approach

to transport equations6, combined with the conceptual framework of nonlinear gyrokinetic

theory7,8. In this way, we provide a compact and physically transparent derivation of cross-

field particle and energy fluxes, which include collisional and fluctuation induced transport

processes on the same footing. The resulting transport equations generalize and extend the
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analysis of Ref. 6 to fluctuation induced transport. More precisely, fluctuations generally

describe the deviation of the plasma from the reference state, which evolves in time con-

sistently with the fluctuation spectrum and is characterized by spatiotemporal scales that

are consistent with the so-called transport ordering typical of strongly magnetized fusion

plasmas6. Meanwhile, the fluctuation spectrum is assumed to be generic and consistently

imposed with the gyrokinetic ordering of spatiotemporal scales. Fluctuation induced fluxes

are described using gyrokinetic field theory8 and are expressed in terms of the gyrocenter

distribution function. The main advantage of studying the evolution equations for the mo-

ments instead of directly writing the kinetic expression of fluxes in terms of the particle

distribution function is that we derive the equations for the fluctuations induced fluxes up

to the transport time scale using standard first order gyrokinetic theory. Our analysis also

recovers, in the appropriate limit, the results originally proposed in Refs. 1,2,9.

The work is organized as follows. In Section II, we provide a description of the notation

and of the ordering of the physical quantities. In Sections III and IV, we extend the analysis

of Ref. 6 to fluctuation induced transport obtaining expressions for collisional and fluctuation

induced fluxes that are valid up to the energy confinement time scale. Section V contains the

derivation of the fluctuation induced fluxes in terms of the gyrocenter distribution function.

In section VI, we briefly discuss the further analysis required to derive a set of transport

equations valid on longer timescales. Final conclusions and discussions are given in Section

VII.

II. THEORETICAL FRAMEWORK AND ORDERING ASSUMPTIONS

In this work, we study transport processes in the core of a thermonuclear plasma and,

therefore, we can assume that the plasma is strongly magnetized. Thus, the particle dis-

tribution function can be written as the sum of a reference distribution F0 function and a

small perturbation δf :

f = F0 + δf , (1)

where the characteristic length scale of variation of the reference distribution function, i.e.

L, is such that δf/F ∼ ρ/L ∼ δ � 1 where ρ is the Larmor radius. Following Refs. 6,7, we

assume that reference states evolve sufficiently slowly and are characterized by macroscopic

3



profiles (conventionally denoted as p0) satisfying the following scaling assumption:

ω−1 ∂

∂t
ln p0 = ω−1p−1

0

∂p0

∂t
∼ O(δ2) , (2)

where p0 stands for n0 etc., and we use the notation for the moments of the distribution

function introduced in Ref. 10. We further assume the so-called drift ordering:

cE

B0vth
∼ O(δ) , (3)

where vth is the particle thermal speed, and other symbols are standard. Consistently with

this standard approach6, we write electromagnetic fields as the sum of reference fields, self-

consistently determined within the reference state, varying on the equilibrium lengthscale

L, and fluctuations. Following Ref. 7, we adopt the gyrokinetic ordering for fluctuating

quantities:
|∂/∂t|
|Ω|

∼
∣∣∣∣δBB0

∣∣∣∣ ∼ ∇‖
∇⊥
∼

k‖
k⊥
∼ O(δ) , (4)

where Ω is the particle cyclotron frequency in the reference state magnetic field. We also

adopt straight magnetic field line toroidal flux coordinates, see e.g. Ref. 11, and we assume

axisymmetry of the reference state. Therefore, without loss of generality, the reference

magnetic field has the following expression:

B0 = F∇φ+ ∇φ×∇ψ. (5)

With these assumptions, the distribution function can be assumed as Maxwellian at the

leading order:

f = fM +O(δ), fM = n0(π1/2vth)
−3e−(v/vth)2 . (6)

Following Ref. 6, we assume that the parallel flow is strongly subsonic and that there is

small pressure anisotropy between the directions perpendicular and parallel to B0 due to

Coulomb collisions. Thus, we obtain:

{nV ,F ,Q, [P − Ip], [R− I(5/2)p(T/m)]} ∼ O(δ). (7)

Here, again, the notation for moments of the particle distribution function is that of Ref.

10; i.e., nV is the particle flux, F is the friction force, Q is the energy flux, P is the stress

tensor, and R is the energy-weighted stress tensor. Meanwhile, with standard notation, I

denotes the unit diagonal matrix. Furthermore, space and time scales are normalized to
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|ρ| and |Ω−1|, respectively, density is expressed in units of its local equilibrium value, etc.

Consistent with this, we obtain6:

E = −∇Φ +O(δ) (8)

and, thus, a consequence of this ordering is that the reference state electric field is mainly

electrostatic and satisfies the drift ordering of Eq. (3). From the lowest order parallel force

balance equation and parallel energy flux conservation, it follows that b ·∇n = O(δ) and

b ·∇Φ = O(δ) with b = B0/B0. That is, at the lowest order, temperature and density

are constant along magnetic field lines of the reference state and, because of their ergodic

properties6, they are also constant on magnetic surfaces.

III. PARTICLE TRANSPORT

In this section, as anticipated in Secs. I and II, we adopt the same approach and theo-

retical framework of Ref. 6, with the additional element of taking into account the effect of

fluctuating fields on transport processes. The fluctuation spectrum is generic, but assumed

to be consistent with the gyrokinetic ordering of spatiotemporal scales given by Eq. (4).

In the following, we proceed in the derivation of the equation describing particle transport

up to the energy confinement time by acting with the projection operator R2∇φ · on the

momentum equation6. Adopting the theoretical framework and ordering introduced in Sec.

II, it can be shown that the P tensor is symmetric up to O(δ) and, thus, due to the anti-

symmetry of ∇(R2∇φ), we obtain the following expression:〈
R2∇φ · ∂t(nmV )

〉
ψ

+
1

V ′
∂

∂ψ

〈
V ′∇ψ · P ·R2∇φ

〉
ψ

=
〈
R2∇φ · (enE + F )

〉
ψ

+ (9)

+
〈
R2∇φ · (en/cV ×B)

〉
ψ

where V ′ = dV/dψ and dV is the element of volume. Note that, here, the electric field

E = E0 + δE satisfies the drift ordering of Eq. (3). We now use the identity:

B0 ×R2∇φ = ∇ψ, (10)

in order to obtain the following relation, which is valid up to O(δωn0mvthL):

〈(en/c)V · ∇ψ〉ψ = −
〈
(enE + F ) ·R2∇φ

〉
ψ

+ (11)

+
〈
(en/c)V · (B0 −B)×R2∇φ

〉
ψ
.
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This is the analogue of Eq. (2.93) in Ref. 6, where we have considered also the contri-

bution of the fluctuating fields. We note that the term 〈R2∇φ · ∂t(nmV )〉ψ is generally

non-negligible in the presence of fluctuations. In particular, since 〈∂t (nV )〉ψ ∼ V 〈∂tn〉ψ,

we can estimate its magnitude from the surface averaged continuity equation. Nonlinear

(fluctuation-induced) terms may generally have characteristic length-scale in between those

of the turbulent fluctuation spectrum and of reference profiles; that is, mesoscale struc-

tures. Thus, an approach that postulates a systematic scale separation between fluctuation-

induced profile distortions and reference profiles is questionable. Labeling the characteristic

length-scale of these structures as k−1
z , we obtain 〈∂tn〉ψ ∼ δ2kzn0vth. On the characteristic

lengthscale of reference profiles, the evolution of the density is obtained by letting k−1
z ∼ L

and, therefore, Eq. (11) follows. From this argument, we deduce that studying the evolution

equations for the moments of the distribution function, a fluid approach instead of a kinetic

description, is particularly convenient only on the length-scale of the reference profiles, while

it gets increasingly more difficult, although in principle feasible, on smaller length-scales. For

this reason, in the present work we investigate how the evolution of reference states on the

macroscales is affected by a prescribed generic spectrum of (gyrokinetic) fluctuations. In

other words, fluctuations themselves can be generally microscopic, consistent with Eq. (4),

but their effect on profile evolution are computed on the characteristic spatiotemporal scales

of the reference states themselves; that is, the possible formation of mesoscale structure will

be ignored. We will study transport on an arbitrary length-scales (including mesoscales) in a

future work, using directly the nonlinear gyrokinetic equation (see Ref. 12). The expression

for the particle flux, Eq.(11), can be used to compute the evolution of the density profile in

the continuity equation. Using this method, we can describe the fluxes up to second order

using the information on the distribution function accurate up to first order6. Equation (11)

includes classical, neoclassical and fluctuation-induced transport and, therefore, generalizes

the result derived in Ref. 6. Using the following relation:

b×∇ψ = Fb−BR2∇φ, (12)

starting from the expression for the fluxes derived in Ref. 6, we can identify the classical

(subscript “c”) and neoclassical (subscript “NC”) contributions in Eq. (11), obtaining:

〈(en/c)V · ∇ψ〉ψc = −
〈
F⊥ ·R2∇φ

〉
ψ
, 〈(en/c)V · ∇ψ〉ψNC = −

〈
(enE0 + F‖) ·R2∇φ

〉
ψ
.

(13)
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The distinction of classical and neoclassical fluxes is somewhat conventional, e.g., see Refs.

6,13, since it ultimately resorts to the effect of Coulomb collisions. The remaining terms of

Eq. (11), which can be attributed to fluctuations (subscript “gk”) as they vanish in their

absence, read:

〈(en/c)V · ∇ψ〉ψgk = −
〈
(enE − enE0) ·R2∇φ

〉
ψ

+
〈
(en/c)V · (B0 −B)×R2∇φ

〉
ψ
. (14)

Collecting the various contributions derived above, the density transport equation can be

written as:

〈∂tn〉ψ = − 1

V ′
∂

∂ψ

[
V ′ 〈nV · ∇ψ〉ψc + V ′ 〈nV · ∇ψ〉ψNC + V ′ 〈nV · ∇ψ〉ψgk

]
(15)

where n = n0 + δn. This additive form does not imply that transport processes are in-

dependent of each other and it is a mere consequence of the formal classification adopted

here. It is readily recognized that the neoclassical flux in Eq. (15) could also depend on

fluctuations intensity, although not at the leading order, (see, e.g., Ref. 14). Exploring trans-

port processes more in depth, fluctuations may enhance the deviation of system from local

thermodynamic equilibrium and cause structure formation in the particle phase space, e.g.,

see Refs. 15–17, which are eventually damped by collisions (enhanced collisional damping).

Meanwhile, collisions may damp long lived structures formed by saturated instabilities, such

as zonal flows18–23, or more generally zonal structures16,24–27, which, in turn, regulate turbu-

lent transport itself. We conclude this section by stressing that Eq. (15) describes all radial

particle transport processes on the characteristic length-scale of the reference state, and it

is predictive on the energy confinement time-scale.

IV. ENERGY TRANSPORT

Using the same theoretical framework and approach of Sec. III, we can derive an ex-

pression for the radial energy transport on the characteristic spatiotemporal scales of the

reference states themselves. Taking the dot product of R2∇φ with the energy transport
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equation and taking the flux surface average yields6:〈
∂Q

∂t
·R2∇φ

〉
ψ

+
〈
∇ ·R ·R2∇φ

〉
ψ
−
〈 e
m
E · ( P − p⊥I ) ·R2∇φ

〉
ψ

+

−
〈
e

m
E · I

(
2p⊥ +

1

2
p‖ +

m

2
nV 2

)
·R2∇φ

〉
ψ

−
〈 e

mc
Q×B ·R2 ·∇φ

〉
=
〈
G ·R2∇φ

〉
.

Here, for the sake of generality, we have assumed that the leading order stress tensor is

given in the Chew-Golberger-Low form28, PCGL = p⊥I + (p‖ − p⊥)bb, having in mind the

application to collisionless fusion plasmas; and G denotes the collisional change in the energy

flux6. Proceeding as in Sec. III and applying the drift ordering, we obtain, up to order O(δ2):

〈Q · ∇ψ〉ψ = 〈Q · ∇ψ〉ψc + 〈Q · ∇ψ〉ψNC + 〈Q · ∇ψ〉ψgk , (16)

where:

〈Q · ∇ψ〉ψc = −(mc/e)
〈
G⊥ ·R2∇φ

〉
ψ

(17)

〈Q · ∇ψ〉ψNC = −
〈
(cE0(2p⊥ + p‖/2) + (mc/e)G‖) ·R2∇φ

〉
ψ

(18)

〈Q · ∇ψ〉ψgk =−
〈
c(E −E0)(2p⊥ + p‖/2) ·R2∇φ

〉
ψ
−
〈
Q · (B −B0)×R2∇φ

〉
ψ
. (19)

The fluxes expressions are similar to the particle fluxes derived in the previous section. In

order to compare these results, we note that the energy transport equation can be cast in

the following form:

∂t
(
p⊥ + p‖/2

)
+ ∇ ·Q = W + (enE + F ) · V − ∂t

(m
2
nV 2

)
, (20)

with W representing the collisional energy exchange (denoted as Q in Ref. 6). Equation

(20) can be re-written at the required order by using the leading order expression for V :

∂t
〈
p⊥ + p‖/2

〉
ψ

+
1

V ′
∂

∂ψ

[
V ′
(
〈Q ·∇ψ〉ψ +

〈
cp⊥E ·R2∇φ

〉
ψ

)]
= 〈W 〉ψ ; (21)

and, thus, we have demonstrated that, at the relevant order in our asymptotic expansion in

the drift parameter, the evolution equation for (p⊥ + p‖/2) is a transport equation with a

collisional heating source 〈W 〉ψ and with an effective radial flux:

〈Qeff ·∇ψ〉ψ ≡ 〈Q ·∇ψ〉ψ +
〈
cp⊥E ·R2∇φ

〉
ψ
. (22)
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Using this result we can write the expressions for the effective fluxes to be used in the energy

evolution equation:

〈Qeff · ∇ψ〉ψc = −(mc/e)
〈
G⊥ ·R2∇φ

〉
ψ

(23)

〈Qeff · ∇ψ〉ψNC = −
〈
(cE0(p⊥ + p‖/2) + (mc/e)G‖) ·R2∇φ

〉
ψ

(24)

〈Qeff · ∇ψ〉ψgk = −
〈
c(E −E0)(p⊥ + p‖/2) ·R2∇φ

〉
ψ
−
〈
Q · (B −B0)×R2∇φ

〉
ψ
. (25)

By direct comparison with the collisional and gyrokinetic particle fluxes, we readily see

that the expression are formally the same, with energy fluxes weighted by mv2/2. This is

consistent with the results obtained directly from kinetic theory, see Ref. 12, which will be

analyzed in a future work.

V. FLUCTUATION INDUCED FLUXES

The explicit calculation of the fluxes derived in the previous sections requires neoclassical

transport theory, e.g., see Ref. 6, and nonlinear gyrokinetic theory, e.g., see Ref. 7,8. In this

work, we calculate the explicit expressions of fluctuation induced fluxes in terms of the first

order distribution function, adopting the well-known perturbation expansion assumed in

the nonlinear gyrokinetic description; while the calculation of collisional fluxes in arbitrary

geometry is analyzed in detail in several other works, e.g., Ref. 29. In particular, following

the gyrokinetic field theory approach8, below we introduce the pull-back representation of

the particle distribution function in gyrocenter coordinates. This allows us to express the

moments of the distribution function, appearing in the fluctuation induced fluxes expres-

sion, in terms of the gyrocenter distribution function which, for example, can be computed

by means of a gyrokinetic code (cf. Ref. 30 for a recent review). As a result, the moment

equation approach to transport equations6 combined with the conceptual framework of non-

linear gyrokinetic theory and the push-forward representation of particle moments7,8, allows

a compact and physically transparent derivation of cross-field particle and energy fluxes,

which include collisional and fluctuation induced transport processes on the same footing12.

Following Ref. 8, the particle distribution function can be expressed in terms of the

guiding-center distribution function F , which, in turn, can be written in terms of the gyro-
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center distribution function F̄ :

f = e−ρ·∇F =e−ρ·∇F̄ − e
m
e−ρ·∇ 〈δψgc〉

(
∂F̄
∂E + 1

B0

∂F̄
∂µ

)
+
[
e
m
δφ∂F̄

∂E

]
+ (26)

+
[
e
m

(
δφ− v‖

c
δA‖

)
1
B0

∂F̄
∂µ

+ δA⊥ × b
B0
·∇F̄

]
,

where E = v2/2 is the energy per unit mass, µ is the magnetic moment adiabatic invariant

µ = v2
⊥/(2B0) + . . . and:

δψgc = δφgc −
v

c
· δAgc = eρ·∇

(
δφ− v

c
· δA

)
≡ eρ·∇δψ. (27)

The gyrophase average 〈δψgc〉 involves introducing Bessel functions as integral operators:

〈δψgc〉 = Î0

(
δφ−

v‖
c
δA‖

)
+
m

e
µÎ1δB‖ , (28)

where În(x) ≡ (2/x)nJn(x), Jn(x) are the Bessel functions and the definition of În acting on

a generic function g(r) =
∫
ĝ(k) exp(ik · r)dk is the following:

Îng(r) ≡
∫
dkeik·rÎn(λ)ĝ(k) (29)

where λ2 ≡ 2(µB0/Ω
2)k2
⊥. At the leading order in the asymptotic expansion (with δ = ρ/L

as expansion parameter), we can show that:

〈
e−ρ·∇(...)

〉
= Î0(...) ;

〈
e−ρ·∇v(...)

〉
= Î0v‖b(...) +

mc

e
µÎ1b×∇(...). (30)

Denoting velocity space integration as 〈. . . 〉v and using these relations we can show that:

〈f〉v =

〈
Î0

[
F̄ − e

m

(
∂F̄

∂E
+

1

B0

∂F̄

∂µ

)
〈δψgc〉

]〉
v

+ (31)

+
e

m

〈
∂F̄

∂E

〉
v

δφ+
e

m

〈
1

B0

∂F̄

∂µ

(
δφ−

v‖
c
δA‖

)〉
v

+ δA⊥ ×
b

B0

·∇
〈
F̄
〉
v

〈v⊥f〉v =
mc

e
b×

〈
µÎ1∇

[
F̄ − e

m

(
∂F̄

∂E
+

1

B0

∂F̄

∂µ

)
〈δψgc〉

]〉
v

. (32)

By means of Eq. (31), we can compute the leading order of the first term on the right hand

side of Eq. (14). In particular, we obtain the following expression:

−
〈
(enE − enE0) ·R2∇φ

〉
ψ

= e

〈(
1

c

∂

∂t
δA + ∇δφ

)
·R2∇φ 〈f〉v

〉
ψ

=

= e
〈
R2∇φ ·∇δφ

〈
Î0δḠ

〉
v

〉
ψ
, (33)
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where we have introduced the function Ḡ7:

Ḡ = F̄ − e

m

∂F̄

∂E
〈δψgc〉 ,

which satisfies the Frieman-Chen nonlinear gyrokinetic equation up to O(δ)8,31. By means

of Eq. (32), and proceeding in the same way with formal manipulations of the second term

on the right hand side of Eq. (14), after some calculations shown in Appendix A, we obtain:

〈
(en/c)V · (B0 −B)×R2∇φ

〉
ψ

=
〈
(e/c) 〈vf〉v ·R

2∇φ× (∇× δA)
〉
ψ

= (34)

= e

〈〈
v‖
c

∇ψ · δB⊥
B0

Î0δḠ

〉
v

〉
ψ

+

−m
〈〈(

δB‖R
2∇φ− F

B0

δB⊥

)
· µÎ1∇⊥δḠ

〉
v

〉
ψ

=

= e
〈
R2∇φ ·

〈
∇
(
−
v‖
c
δA‖

)
Î0δḠ+ ∇

(m
e
µδB‖

)
Î1δḠ

〉
v

〉
ψ
.

Details of the derivation of Eq. (34) are also given in A. Here, it is crucial to stress that, for

consistency with the transport analysis of Secs. III and IV, based on the moment approach,

the contribution to particle fluxes in Eqs. (33) and (34) must be understood as “effectively

averaged” consistently with the spatiotemporal scales of the reference state.

From these expressions, recalling that ∇φ ·∇ ∼ R−2∂φ, we can see that the fluctuation

induced transport is due only to toroidally symmetry breaking perturbations, as expected.

Meanwhile, the push forward expression for the energy fluxes are identical to the density

fluxes except for the weighting factor mv2/2, which multiplies every term, as demonstrated

in Sec. IV. Again, we note that the expressions for fluctuation induced fluxes and ensuing

transport are valid for generic short-wavelength turbulence; that is, for drift wave fluctu-

ations at frequencies much lower than the cyclotron frequency but wavelength as short as

the particle Larmor radius. Nonetheless, our moment approach is based on an asymptotic

expansion, which assumes that the effect of fluctuation induced transport is given for struc-

tures that are sufficiently longer scale than the Larmor radius. In other words, although

drift-wave turbulence is described by nonlinear gyrokinetic theory, its effect on transport is

accounted for on the length scale typical of the plasma equilibrium. This assumption has

been used in the derivation of Eqs. (14) and Eq. (16) several times, e.g., neglecting terms

with the partial time derivative of momentum/energy density. As already stated, these re-

sults generalize and extend the analysis of Ref. 6. At the same time, our results recover those
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originally proposed in Refs. 1,2,9 derived assuming a systematic spatiotemporal scale separa-

tion between dynamically evolving plasma equilibrium and turbulent fluctuation spectrum.

In fact, by introduction of suitable radial and time averages, Refs. 1,2,9 compute the slow

evolution of smoothed equilibrium density and pressure profiles. Our approach, instead,

based on moment equations and nonlinear gyrokinetic theory, focuses on the modification

to the reference state on sufficiently long (spatiotemporal) scales only, without introducing

any averaging operation. In other words, for reasonably smooth (or macroscopic) fluctua-

tions, the expressions we derive hold point-wise in time and space, contrary to the results

obtained in Refs. 1,2,9. It is to be expected that the spatiotemporal average description of

Refs. 1,2,9 and our novel approach are consistent. We can verify this by substituting the

pull-back representation of the distribution function, Eq. (26), into Eq. (A.20) of Ref. 2,

which describes the transport of particles analogously to Eq. (15). The same correspondence

can be verified with Eq. (A.25) of Ref. 2, which describes energy transport analogously to

Eq. (21), obtaining, up to the required order, the averaged version of the equations already

derived by means of the moment method.

VI. LONGER TIMESCALES

In the previous sections, we have calculated collisional and fluctuation induced transport

processes in an axisymmetric tokamak plasma, using nonlinear gyrokinetic theory. A number

of other works dealing with the same problem exist in the literature,3–5 and this issue has

been analyzed in depth even more recently1. In all these works, including the present one,

collisional and turbulent fluxes are calculated up to O(δ2) in the asymptotic expansion.

Using the characteristic length and time-scales of a modern magnetic fusion device, we can

estimate the corresponding time-scale of validity of transport equations, which is of the order

of seconds. This is relatively short when compared with the expected duration of a pulse

in the next generation Tokamaks, i.e. ITER, which is > 3000s32. Therefore, even if a set

of equations for the fluxes with a precision of O(δ2) is not enough in order to predict the

behavior of the plasma during a whole ITER plasma discharge, it could be used for the real

time control of plasma dynamic evolution based on properly designed actuators (see, e.g.,

Refs. 33,34). Nonetheless, it is quite obvious to address collisional and fluctuation induced

fluxes up to O(δ3) in order to have predictive simulations of the extremely long time scales of

12



plasmas in fusion reactors. Thus, transport equations are needed with higher accuracy, and

the distribution function, e.g., is needed with an accuracy ofO(δ2). Furthermore, plasma and

the surrounding material components need to be considered as “integrated” and “complex”

system with extremely diverse spatiotemporal scales. For example, the characteristic length

and time-scales considered in this work typically apply to the core region of thermonuclear

plasmas. Generally addressing the problem of the plasma transport as the edge plasma

region is approached, where equilibrium magnetic field is modified from closed to open field

lines, poses severe issues. In fact, the relative ordering of spatiotemporal scale of turbulent

fluctuation spectra and transport phenomena is also modified and not so well separated

as in the plasma core. In particular, the radial gradient scale length can be of the same

order of the banana width of thermal ions (see, e.g., Ref. 35) in the pedestal region, where

plasma profile are characterized by sharp variations. Therefore, conventional neoclassical

transport theory cannot be applied. For these reasons the study of higher order terms of the

asymptotic expansion may be of crucial importance. Thus, studying formal expressions of

particle, momentum and energy fluxes that are valid on the time scale of an ITER discharge

requires the parallel development of a gyrokinetic theory correct, at least, up to O(δ2) and

of a corresponding more accurate form of collisional fluxes.

Gyrokinetics is based on an asymptotic theory, where the expansion parameter is defined

as the ratio between the gyroradius and the characteristic length scale of variation of the

equilibrium magnetic field. This is achieved in two steps: first, the fluctuating electromag-

netic fields are ignored and only the background (equilibrium non-uniform) magnetic field

is considered; then, the turbulent fields are introduced and the corresponding plasma re-

sponses are calculated. Each step is based on an asymptotic expansion done with different

perturbation parameters, which are respectively denoted, see e.g. Ref. 8, by εB and εδ. The

gyrokinetic ordering typically assumes εB ∼ εδ ∼ δ. The asymptotic expansion in εδ needs to

be carried out at least at up to second order to obtain an energy like invariant. Meanwhile,

terms of order ε2B are usually neglected in practical applications because of their complexity

and, therefore, the gyrokinetic ordering is not carried out on an equal footing with respect

to fluctuation intensity and equilibrium magnetic field non-uniformity8. Generally, this is

justified as εB is typically smaller than εδ in cases of practical interest. Nonetheless, this

issue is known in the fusion research community and efforts are being carried out to de-

rive more accurate perturbation expansions based on gyro-kinetics, which may be applied
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on longer time scales, e.g. Ref. 36, or in plasma conditions where expansion parameters

underlying the asymptotic theory may be not as small as in typical burning plasma core

region. This is, e.g., the situation of fusion plasmas in the edge region, as anticipated above,

where the presence of material walls surrounding the core plasma volume and of sharp spa-

tial gradients may challenge the standard approach to gyrokinetic theory37. In general, the

perturbative expansions have been consistently carried out up to the second order in δ only

in the electrostatic case, i.e. when the turbulent fluctuation spectrum does not significantly

affect the magnetic field38. The more general case of a fully electromagnetic fluctuation

spectrum in non-uniform toroidal plasmas has not been addressed to date. Therefore, the

extended form of the pullback of the distribution function, Eq. (26), up to the second order

in δ has not been given. This is mainly a technical issue. In fact, it is worthwhile remind-

ing that, in principle, the non-canonical perturbation theory39 allows to formally derive the

desired pullback operator at any order of the asymptotic expansion8. However, the calcu-

lation becomes very convoluted already for the second order electrostatic case. Extending

transport theory on long time scales also affects the analysis of Coulomb collisions. It is well

known6,40 that neoclassical as well as classical transport theory deal with a linear collision

operator which approximates the Landau collision integral. These theories show that the

approximated collision operator is consistent with a positive production of entropy and the

Onsager symmetry41 in the linear relations connecting the thermodynamic forces and the

fluxes. These are linear closure relations and, therefore, they have a clear interpretation in

terms of non-equilibrium thermodynamics. In the study of higher order terms of the asymp-

totic expansion, we need to deal, in general, with nonlinear closure relations. In transport

theory, the nonlinear closure relations and the (nonlinear) Landau collision operator have

been studied with different approaches. In particular, in Ref.35 this problem has been ad-

dressed by means of numerical simulations, while an analytic approach has been carried

out by G.Sonnino in a series of works, see Refs. 42–46 and the more recent Ref. 47. This

author introduces and describes the Thermodynamic Field Theory as a useful tool to derive

corrections to the linear closure relations with applications to plasma physics.
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VII. CONCLUSIONS

In this work we have analyzed particle and energy transport on the energy confinement

time scale in a magnetized plasma taking into account the contributions of Coulomb collisions

and fluctuations on the same footing. These equations hold at every point in space and do not

involve any radial averaging operation. However, our approach assumes that plasma profiles

evolve on the macro-scales only; thus, some sort of spatiotemporal averaging is embedded in

our approach at this level. This is one difference with the previous works on this topic, i.e.

Refs. 1,2,9, based on the systematic scale separation between fluctuating and equilibrium

quantities. Another element of novelty is the derivation technique, which uses the moment

approach10 and the gyrokinetic push-forward representation of the fluid moments8. As noted

in Sec.V, Eqs. (33) and (34) as well as the corresponding equation for energy fluxes must

be understood as “effectively averaged” consistently with the spatiotemporal scales of the

reference state. This yields to naturally introducing the notion of spatiotemporal scales of

equilibrium variations and of the corresponding structures, which must be self-consistently

determined by nonlinear gyrokinetic theory. More precisely, some of the dynamic evolution of

the reference state that is produced by the fluctuation spectrum and is not consistent with the

well-known transport ordering adopted here6,7 must be considered separately, as distortion

of the reference state itself. Such a distortion is, however, compatible (as it should be) with

the gyrokinetic ordering7 and generally consists of long-lived (undamped by collisionless

dissipation processes) phase space structures with meso-spatiotemporal scales. These “phase

space zonal structures”17 play a crucial role in transport processes of collisionless fusion

plasmas, as they are a measure of the deviation of the system from the local thermodynamic

equilibrium17,31,48; that is, from the considered reference state. Furthermore, their dynamic

evolution can be secular and eventually invalidate the scale separation assumption between

fluctuation and reference state. This issue is discussed in Ref. 12 and will be further analyzed

in a future publication. In summary, we note that the moment equation approach illuminates

the possibility of providing a unified theory of collisional and fluctuation induced transport

by means of a compact and intuitive formulation. It however fails where mesoscale structures

become increasingly more important and a kinetic approach is required12.
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Appendix A: Derivation of the fluctuation induced particle flux

The expression for the particle flux induced by fluctuations of the magnetic field derived

by means of the moment method, i.e. Eq. (33), require to evaluate the following expression

in terms of the gyrocenter distribution function:〈
(e/c) 〈vf〉v ·R

2∇φ× (∇× δA)
〉
ψ
.

We can re-write this expression using Eq. (32):〈
e

c

〈
Î0

[
F̄ − e

m
〈δψgc〉

∂F̄

∂E

]
v‖b

〉
v

·R2∇φ× (∇× δA)

〉
ψ

+

+
〈〈
mµÎ1b×∇δḠ

〉
v
·R2∇× (δB‖b + δB⊥)

〉
ψ
.

Using the following identity:

b ·∇φ× δB = B−1
0 R−2∇ψ · δB

we can re-write the first term as:〈〈ev‖
c
Î0δḠ

〉
v

∇ψ · δB
B0

〉
ψ

.

At the leading order δB⊥ = ∇δA‖ × b and, therefore, we can write:〈〈ev‖
c
Î0δḠ

〉
v
B−1

0 ∇ψ · (∇δA‖ ×B)
〉
ψ
.

Using the identity b×∇ψ = Fb−R2B∇φ we finally obtain:

−e
〈〈

∇
(
δA‖v‖
c

)
Î0δḠ

〉
v

·R2∇φ

〉
ψ

.

The second term to calculate is the following:〈〈
mµÎ1b×∇δḠ

〉
v
·R2∇× (δB‖b + δB⊥)

〉
ψ

(A1)
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which is the sum of two contributions. We can show that:

b×∇δḠ ·R2∇φ× δB⊥ =
F

B0

δB⊥ −∇⊥δḠ

and, therefore, we can re-write the second term of Eq. (A1):〈〈
mµ

F

B0

δB⊥ · Î1∇⊥δḠ
〉
v

〉
ψ

. (A2)

Analogously we can show that (b×∇δḠ) · (∇φ× b) = −∇φ ·∇⊥δḠ and we can re-write

the first term of Eq. (A1) as:

−m
〈〈(

δB‖R
2∇φ− F

B0

δB⊥

)
· µÎ1∇⊥δḠ

〉
v

〉
ψ

. (A3)

This is again the sum of two terms. The first one:

−m
〈〈
δB‖R

2∇φ · µÎ1∇⊥δḠ
〉
v

〉
ψ

can be written at the leading order as:

−m
〈〈

δB‖RµÎ1
∂δḠ

δφ

〉
v

〉
ψ

.

This can be written, noting that the surface average involves an average over the angular

coordinate φ, as:

m
〈〈
R2∇φ ·∇(δB‖µ)Î1δḠ

〉
v

〉
ψ
. (A4)

The second term of Eq. (A3) can be rewritten as:

m

〈〈
F

B0

∇ψ

R2B2
0

·
(
∇δA‖

∂

∂φ
δḠ−∇δḠ

∂

∂φ
δA‖

)〉
v

〉
ψ

which can be neglected with respect to others, being of higher order in a large aspect-ratio

tokamak.
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