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Fractional transport equations are used to build an effective model for transport across the running
sandpile [T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).]. It is shown that both temporal
and spatial fractional derivatives must be considered to properly reproduce the sandpile transport
features, that are non-Markovian and non-local, at least over sufficiently long/large scales. In
contrast to other applications of fractional transport equations to other systems, the specifics of
sand motion require in this case that the spatial fractional derivatives used for the running sandpile
must be of the completely asymmetrical Riesz-Feller type. Appropriate values for the fractional
exponents that define these derivatives in the case of the running sandpile are obtained numerically.

I. INTRODUCTION

The sandpile automaton became the posterchild for
self-organized criticality (SOC) from the very early days1,
and many variants have been constructed to provide sim-
plified frameworks in which the complex dynamics of
many different systems could be studied, from earth-
quakes to forest fires, from solar flares to accretion
disks2–8. All of these variants of the sandpile contain,
in one way or another, the main ingredients needed for
SOC dynamics to appear: an open, driven system with
a local instability threshold and a large separation of
scales between local drive and instability relaxation. The
resulting dynamic steady state, once the external drive
and sandpile losses are balanced on average, is known as
the SOC state1. It exhibits properties typical of critical
points such as scale-invariance, long-term memory and
divergent correlations. Transport through the system is
inherently bursty and of non-diffusive nature, being dom-
inated by avalanches.

In the field of magnetically confined fusion (MCF)
toroidal plasmas, a variant of the sandpile automaton
known as the running sandpile9–12 has been used exten-
sively to try to understand turbulent transport charac-
teristics in tokamaks and stellarators13. A main feature
of the running sandpile, that somewhat moves it away
from other sandpile automata often discussed in the lit-
erature, is that the separation between the timescales
of drive and relaxation is finite and, sometimes, not very
large. This comes about because, in contrast to the stan-
dard sandpile, the drive is not stopped once an avalanche
starts and reactivated after all avalanching activity dies
away. Instead, the sandpile keeps on being driven as
avalanches progress in time. This choice of rules makes
both analytical progress and numerical characterization
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of avalanches more challenging (avalanches do overlap,
for instance) but, at the same time, introduces a time
scale in the problem that is essential for many practical
applications and, in particular, in the context of MCF
plasmas13–15.

Among the many needs of the MCF tokamak program,
an important one is the development of effective mean-
field transport models with reliable predictive capabili-
ties regarding the confinement of the plasma density and
energy in these toroidal traps16. Several authors have
suggested that, at least in those plasma regimes in which
SOC-like dynamics appear to dominate radial transport,
these effective models would require the use of fractional
transport equations13,17–21. In this article, we describe
in detail how one such effective transport model could be
built for the running sandpile, given its role as a simple,
but still meaningful paradigm for the transport dynam-
ics taking place in MCF plasmas while in a SOC-like
regime. The results reported here, albeit meaningful in
their own right within the context of the study of sandpile
automata, might also teach some useful lessons regarding
the construction of effective models in MCF plasmas as
well.

The article is thus organized as follows: in Sec. II
the running sandpile is briefly introduced. Then, an ef-
fective transport equation is built for the running sand-
pile in Sec. III starting from a continuous-time random
walk (CTRW) model. The resulting effective transport
equation contains both fractional derivatives in space and
time. The most relevant free parameters that define the
fractional transport model, namely its fractional expo-
nents, are then quantified numerically in Sec. IV, with
the help of tracers. We will then proceed to discuss the
meaning of these results in Sec. V and draw some final
conclusions in Sec. VI.
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II. THE RUNNING SANDPILE MODEL

The running sandpile that we will consider is a one-
dimensional, driven and directed running sandpile9,10

(see Fig. 1). The sandpile domain consists of L cells
or sites, numbered from n = 1 to n = L. To each cell n,
a variable hn is assigned that represents the amount of
sand stored (or its height) in the cell. The running sand-
pile state is evolved by randomly dropping Nb grains of
sand on every cell at each iteration with probability P0.
The SOC character of the sandpile dynamics arises from
the existence of a critical slope Zc > 0 that, when locally
overcome (i.e., when the local gradient Zn = hn+1 − hn
exceeds −Zc), causes the removal of Nf grains of sand
to the adjacent position. The inertia of the relaxation
is important for SOC to be established, which requires
Nf > Nb. Also, that Nf > P0NbL in order to avoid the
sandpile becoming overdriven. All cells are checked for
instability once per iteration. The rules of the running
sandpile are completed by imposing a closed boundary
condition at n = 1, so that no particle flux enters that
cell from the left, and an open boundary condition at
n = L, so that all particles reaching the bottom edge of
the sandpile are removed from the system.

The running sandpile will always reach a steady state
under a continuous, fixed-average external drive. The
average slope of the sandpile, at steady state, is roughly
given by Z̄ ' −(Zc − Nf/2). Transport across the
sandpile domain will be driven by avalanches, that ex-
hibit an approximately self-similar distribution of linear
sizes and durations over an extended range of scales (or
mesorange) that is limited only by finite size effects10.
Avalanche initiation points are roughly uniformly dis-
tributed throughout the pile, except at the very edge,

FIG. 1: (Color online) (left) Sketch of the one-dimensional
sandpile in real space explaining the corresponding automaton
rules. (right) Sketch of an avalanche taking place.

where the open boundary condition imposes a larger
mean slope. The probability of an avalanche stopping
increases with the cell index, n, due to the fact22 that
the sand that needs to be transported down the slope
must increase to balance the integrated drive over all
cells n′ < n. Furthermore, the time series of the sand-
pile activity, defined as the number of unstable cells
at each time, exhibits long-term persistence over scales
much longer than the maximum avalanche duration10,23.
In particular, persistence in the running sandpile has
been extensively studied using, among other methods, its
power spectrum (that scales as f−a, 0 < a < 1 over the
SOC mesorange) or determining its Hurst exponent (that
satisfies H > 0.5 over the SOC mesorange timescales).

In order to characterize the particle confinement in the
sandpile from a global perspective, it is useful to measure
the average time taken for a marked grain of sand to move
across the whole sandpile and reach the edge. We will
later describe in detail how these marked grains are ad-
vanced (see Sec. IV). For now, it suffices to say that their
average confinement time τc has been estimated using a
large number of marked grains and then fit to a product
of powers of the main sandpile parameters. Namely, the
sandpile length L, the number of grains locally moved
when unstable Nf , the number of grains dropped on ev-
ery cell at each iteration Nb and the rain probability P0

[The critical threshold Zc does not affect the confinement
time. It has been set to Zc = 200 in all simulations.]. The
resulting global scaling for τc is (see also, Fig. 2):

τc = 0.34L0.4Nf (NbP0)
−1
. (1)

Clearly, the most remarkably feature of this global scal-
ing law, that reveals its non-diffusive (i.e., avalanche) dy-
namics, is the value of the L-exponent.

FIG. 2: (Color online) Global scaling of the mean value of the
transit time (τc) with sandpile parameters L, Nf , Nb and P0.
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III. MEAN FIELD TRANSPORT MODEL FOR
THE RUNNING SANDPILE IN TERMS OF

FRACTIONAL DERIVATIVES

In this section, we will construct an effective mean
field transport model for the running sandpile just de-
scribed. The starting point is the well-known continuous-
time random walk (CTRW) formalism24, adapted to the
running sandpile reality. The effective transport model
will then result from taking the long-time, large-distance
limit of the resulting CTRW, as it is traditionally done
for many other problems25. In a one-dimensional CTRW,
a number of walkers N are considered. Each walker stays
at its initial position, x0, for a waiting time ∆t. Then,
it carries out a jump of size ∆x, that takes the walker
to its new position, x0 + ∆x. The process is repeated
many times by each walker. The CTRW is defined, nat-
urally, by prescribing the pdf of both jump sizes, p(∆x),
and waiting-times, ψ(∆t). In a diffusive system, the
transport process is expected to have finite characteris-
tic scales, both in time and space (in a gas, for instance,
these scales could be the mean free path and the inverse
collision frequency, respectively). In a SOC system, how-
ever, the self-similar, critical nature of the SOC state
prevents these characteristic scales from existing. The
choices for p and ψ that must be made in order to define
the CTRW must naturally reflect these features, as will
be discussed soon.

Before getting into that discussion, it is however conve-
nient to solve the CTRW. By that, we mean to calculate
its propagator, G(x, t|t0, t0), as a function of the choices
made for p(∆x) and ψ(∆t). The propagator simply gives
the probability of finding one walker at position x and
time t, assuming it was at position x0 at time t0. Once
known, the general solution of the CTRW can be written,
for arbitrary initial (i.e., t = 0) walker density, n0(x) and
external source of walkers, S(x, t) as:

n(x, t) =

∫ t

0

dt′
∫ ∞
−∞

dx′G(x, t|x′, t′)Saug(x′, t′), (2)

where the augmented source is simply given by
Saug(x, t) = S(x, t) + n0(x)δ(t). The propagator of the
CTRW can straightforwardly be found if one moves to
Fourier-Laplace space. It is24:

Ḡ(k, s) =
(1− ψ̃(s))/s

1− ψ̃(s)p̂(k)
. (3)

Here, s and k respectively stand for the Laplace and
Fourier variables related to ∆t and ∆x. The Laplace
transform is represented by a tilde on top of the function
being transformed, the Fourier transform by a hat, whilst
the double Laplace-Fourier transform by a bar.

A mean field transport model can now be built by first
proposing suitable choices for p(∆x) and ψ(∆t), and then
taking the long-time, large-distance limit of the resulting
propagator. In Fourier-Laplace space, this means taking
the limits k → 0 and s → 0. For instance, the classical

diffusive equation is obtained25 by choosing p and ψ to
be, respectively, a Gaussian (with zero mean and vari-
ance σ2) and exponential pdf (with mean time τ0). The
Gaussian law satisfies that,

p̂(k) ∼ 1− σ2k2, k → 0, (4)

and the exponential pdf that,

ψ̃(s) ∼ 1− τ0s, s→ 0. (5)

This leads to a limit propagator of the form,

lim
s→0,k→0

Ḡ(k, s) =
1

s+ (σ2/τ0)k2
. (6)

Inserting this propagator into Eq. 2, one can easily re-
order terms and get,

sn̄(k, s)− n̂0(k) = −σ
2

τ0
k2n̄(k, s) + S̄(k, s), (7)

whose Laplace-Fourier inverse becomes the usual diffu-
sive equation:

∂n

∂t
=
σ2

τ0

∂2n

∂x2
+ S(x, t), n(x, 0) = n0(x). (8)

It should be noted that, in the diffusive case, σ and τ0
provide the finite characteristic scales for transport. For
that reason, one must choose functions for p(∆x) and
ψ(∆t) that respectively lack a finite variance and a finite
mean if the intention is to build a transport model for a
system in which the dynamics are self-similar and diver-
gent. The same central limit that advises picking Gaus-
sians in many situations, points us now towards strictly
stable Lévy distributions L[α,λ,σ](x) (see Appendix A),

all of which lack a finite variance26. The parameter
α ∈ (0, 2) determines the tail behaviour of the distribu-
tion, that scales as L(x) ∼ x−(1+α) for large values of the
argument. Since α < 2, all Lévy pdfs do lack a finite vari-
ance as stated (in fact, for α ≤ 1, they also lack a finite
mean!). Next, λ ∈ [−1, 1], is a symmetry parameter, with
the Lévy law being symmetric (i.e., L(−x) = L(x), ∀x)
only for λ = 0. σ, on the other hand, is a shape param-
eter that measures the width of the distribution in the
sense that its finite moments (p < α),

〈|x|p〉 :=

∫ ∞
−∞

dxL[α,λ,σ](x)|x|p = cpα,λ(p)σp, (9)

are proportional to powers of σ. The definition of the con-
stant cα,λ(p) can be found elsewhere26. For symmetric
Lévy pdfs (i.e., those with λ = 0), one can even define an
effective width w by means of the expression wp := 〈|x|p〉.

In many applications20, the microscopic transport pro-
cess is unbiased and symmetric in space, that leads to the
choice of p(∆x) = Lα,0,σ(∆x) as the jump size distribu-
tion, for some appropriate values of α < 2 and σ > 0
that must be determined. On the other hand, waiting-
times can only be positive and must therefore lack a finite
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mean if a characteristic scale does not exist. It is thus
convenient to choose ψ(∆t) = Lβ,1,τ (∆t) as waiting-time
pdf, for appropriate β < 1 and τ > 0. Distributions
with β = 1 are part of a subfamily known as extremal
Lévy distributions (see Appendix A), that have the nice
property of being defined only for ∆t > 0. Extremal
Lévy pdfs also lack a finite mean since they scale as
ψ(∆t) ∼ ∆t−(1+β) for large ∆t.

In the case of the running sandpile, however, sand can
only travel in one direction: down the slope. Thus, a
symmetric Levy pdf would be an inappropriate choice
for the jump pdf. Instead, we will choose a second ex-
tremal distribution, p(∆x) = Lα,1,σ(∆x), with α < 1
and σ > 0. This choice will however result in a transport
equation that is a bit different from what is often used in
other applications, as it will become apparent very soon.
To proceed with the derivation of the effective transport
model, we use now two properties of all extremal Levy
distributions26. Namely, that their Laplace transform
verifies that,

L̃[β,1,τ ](s) ∼ 1− τβsβ

cos(πβ/2)
, s→ 0, (10)

and that its Fourier transform verifies, for k → 0, that
(i =

√
−1),

L̂[α,1,σ](k) ∼ 1− σα|k|α
(

1− ik

|k|
tan

(πα
2

))
. (11)

Inserting these asymptotic behaviours in the CTRW
propagator (Eq. 3), one obtains:

lim
s→0,k→0

Ḡ(k, s) =

=
sβ−1

sβ + cos
(
πβ
2

)
σα

τβ |k|α
(

1− ik
|k| tan

(
πα
2

)) . (12)

The Laplace-Fourier transform of the CTRW general so-
lution (Eq. 2) then becomes, after some straightforward
reordering,

sn̄(k, s)− n̂(k, 0) ' S̄(k, s)−

− sβ−1
[
Dα,β |k|α

(
1− i k

|k|
tan

(πα
2

))]
n̄(k, s),

(13)

where we have defined a fractional transport coefficient
Dα,β := cos(πβ/2)σα/τβ . This equation can be Fourier-
Laplace inverted to yield,

∂n

∂t
= 0D

1−β
t

[
Dα,β

∂α,1n

∂|x|α,1

]
+ S(x, t), (14)

by introducing a Rieman-Liouville fractional derivative
(see Appendix B) in time and a Riesz-Feller fractional
derivative (see Appendix C) in space. In particular,

0D
1−β
t is a Rieman-Liouville fractional derivative of or-

der 1 − β and start point at t = 0. On the other hand,

∂α,1/∂|x|α,1 is a completely asymmetrical (and left-sided)
Riesz-Feller fractional derivative of order α.

It is at this point where the most meaningful differ-
ence with systems in which unbiased, symmetric trans-
port takes place at the microscopic level. In the unbiased
case, one usually picks p(∆x) = Lα,0,σ(∆x) as the jump
size distribution, which leads to the transport equation,

∂n

∂t
= 0D

1−β
t

[
Dα,β

∂αn

∂|x|α

]
+ S(x, t), (15)

that contains the symmetric Reisz operator (Appendix
C). As a result, changes in n(x, t) at location x is cal-
culated by collecting the contributions from all locations
x′ < x and x′ > x. In contrast, Eq. 14 contains the
asymmetrical (left-sided) Reisz-Feller derivative, that is
defined as:

∂α,1n

∂|x|α,1
∝ dk

dxk

[∫ x

−∞

n(x′)dx′

(x− x′)α−k+1

]
, (16)

with k defined as the integer satisfying k − 1 < α < k.
Here, only points x′ < x contribute to the integral, a
reflection of the fact that net transport can only come
from the left (i.e., down the slope, in the running sand-
pile), and not from the right.

This distinction means that some usual associations
made in the context of Eq. 15 are no longer true. For
instance, it is traditional to define a transport exponent
H = β/α, that quantifies how the finite moments of the
propagator of Eq. 15 grow with time:

〈|x− x0|pGEq. 15(x, t|x0, 0)〉 ∝ tpH . (17)

For unbiased, symmetric motion, H > 1/2 is often re-
ferred to as superdiffusive behaviour, whilst H < 1/2 is
subdiffusive behaviour. These names reflect the fact that
the propagator spreads faster or slower than their diffu-
sive counterpart (i.e., β = 1, α = 2). For biased motion,
on the other hand, an exponent H = β/α could still be
defined, but it would make no sense to use it to compare
with diffusive transport, since the propagator is now fully
asymmetric. Therefore, Eq. 17 no longer quantifies how
the propagator spreads around its “center of mass”, but
how fast the “center of mass” itself moves down the slope
(which, for symmetric motion, it does not!).

IV. FRACTIONAL EXPONENTS FOR THE
RUNNING SANDPILE

In order to use Eq. 14 as a mean field model for trans-
port in the sandpile, we need to estimate first the frac-
tional exponents α and β. There are several ways to do
this. One of the simplest ones is to take advantage of
the asymptotic behavior of the propagator of the trans-
port equation defined in Eq. 12. In particular, it can be
shown that, for fixed tc, it satisfies that27:

G(x, tc|x0) ∼ (x− x0)−(1+α), x− x0 � D
1/β
α,β t

β/α
c . (18)
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On the other hand, for fixed xc > x0, it satisfies that,

G(xc, t|x0, 0) ∼ tβ , t� D
1/β
α,βx

α/β
c , (19)

and,

G(xc, t|x0, 0) ∼ t−β , t� D
1/β
α,βx

α/β
c . (20)

Therefore, one can estimate α and β by constructing
the propagator of transport in the running sandpile and
quantifying how it changes at fixed position and time.
How can one estimate this propagator, though? In our
case, we do it by introducing tracers in the sandpile.

A. Advancing tracers in the running sandpile

The propagator of the CTRW gave the probability of
finding a walker at position x and time t after having
been at x0 at time t0. The propagator of the transport
equation, on the other hand, gives the temporal evolution
of the initial condition n(x, 0) = δ(x − x0). Therefore,
one can in principle estimate it by following the motion
of a sufficiently large number of marked grains of sand
(or tracers) that are initially localized very close to each
other. In order to do this, we need to consider however
a different population of sand grains that, although ad-
vanced together with the normal sand, are inert in the
sense that they are not considered when a cell is checked
for instability. Or, in other words, none of these tracers
are considered when updating the local sandpile height
or gradient.

Following Ref. 28, we will focus on a narrow strip of
width Nf at the sandpile surface, which is the active layer
where motion takes place. We will consider N marked
grains of sand that will be initially located close to the
center of the sandpile. The temporal evolution of the
marked population, as it is transported down the pile,
will be used to build the propagator we are looking for.
The m-th marked grain will be positioned, at some initial
time, tm0 , at an arbitrary cell im, chosen randomly from
within a reduced number of cells near the top of the pile.
The initial position of the m-th grain is then xm(0) =
im; its depth in the im column, as measured from its
top, will be initially set to dm(0) = uNf , where u is a
random number uniformly distributed in [0, 1]. As the
sandpile is iterated, the position, xm, and depth dm of
the marked grain of sand will change. Their values, at
the k-th iteration, will be updated after finding out which
of the following rules applies28:

1. the current cell is stable and no grains of sand have
been dropped on it in the previous driving phase;
then dm(k) = dm(k − 1); xm(k) = xm(k − 1);

2. the current cell is stable, but Nb grains of sand have
fallen on it in the previous driving phase;
then dm(k) = dm(k− 1) +Nb; x

m(k) = xm(k− 1);

3. the current cell is stable, but the previous one is
unstable and moves Nf grains over to the current
cell;
then dm(k) = dm(k− 1) +Nf ; xm(k) = xm(k− 1);

4. the current cell is stable, the previous one is unsta-
ble and, in the driving phase, Nb grains have fallen
on the current cell;
then dm(k) = dm(k − 1) + Nf + Nb; xm(k) =
xm(k − 1);

5. the current cell is unstable and Nf grains are thus
moved to the following cell; no grains of sand have
been dropped on the current cell in the driving
phase;
then, if dm(k − 1) ≤ Nf −→ dm(k) = uNf ;
xm(k) = xm(k − 1) + 1;
if dm(k − 1) > Nf −→ dm(k) = dm(k)−Nf ;
xm(k) = xm(k − 1);

6. the current cell is unstable and Nf grains are thus
moved to the following cell; at the previous driving
phase, Nb grains of rain have fallen on the current
cell;
then, if dm(k − 1) ≤ Nf −Nb −→ dm(k) = uNf ;
xm(k) = xm(k − 1) + 1;
if dm(k − 1) > Nf − Nb −→ dm(k) = dm(k) −
Nf +Nb;
xm(k) = xm(k − 1);

The majority of these rules are rather self-explanatory.
Basically, they state that, when it is time to move Nf
particles to the next cell, our marked grain will be trans-
ported together with that bunch only if its depth in the
cell is at most Nf . In that case, the marked grain of

FIG. 3: (Color online) Motion across the sandpile of size
L = 10000 of ten selected particles, with initial locations ran-
domly chosen within the central half of the pile. The vertical
parts of the trajectories correspond to periods in which the
particle is at rest on some cell; the (almost) horizontal parts,
to periods of time in which the particle is transported radially,
carried away by passing avalanches.
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sand will reset its depth at the new cell to a new value,
randomly chosen between 0 and Nf since u is a random
number uniformly distributed in [0, 1]. If the marked
grain is however deeper than Nf , it remains at the cur-
rent cell. In the (relatively rare) case that sand has been
dropped during the previous driving phase on the same
cell where the marked grain sits, the depth of the marked
grain is increased by Nb.

Fig. 3 shows the motion across the sandpile (size L =
10000, critical slope Zc = 200, toppling size Nf = 30,
rain probability p0 = 10−4 and rain size Nb = 1) of ten
marked grains of sand for the first 106 iterations. As
can be appreciated, the grains alternate radial displace-
ments when carried by a passing avalanche −that appear
as nearly horizontal segments (in fact, they are not ex-
actly horizontal since particles advance one position per
iteration. However, the scale of the temporal axis used
in the figure makes them look so)−, with periods of rest
at the same cell, while the grain remains trapped there
−that appear as vertical segments.

B. Propagator estimation in the running sandpile

The recorded positions of the marked grains of sand
can be used to build a discrete version of the sandpile
propagator. All that is needed is to calculate, at each
iteration, the pdf of the particle displacements with re-
spect to their respective initial locations, p(∆x; k). By
using relative displacements (from each initial location),
we can seed many more marked grains than the Nf that
would fit within the active narrow layer at a single lo-
cation. We can now initialize up to Nf of them at as
many cells as desired, which greatly improves the statis-
tics. It must be said, though, that by doing so we have
implicitly assumed that all these cells have similar dy-
namics. This is, to a great extent, the case for the run-
ning sandpile due to the uniformly spread random drive.
Each marked grain will contribute with the displacement
value ∆xm(k) = xm(k) − xm(0) (m = 1, · · · , N) at it-
eration k. Since p(∆x; k) thus gives the probability of a
particle having been displaced a distance ∆x in a time
k, averaged over its initial location, we can write that,

p(∆x; k) ' 〈G(x0 + ∆x, k|x0, 0)〉x0
, (21)

which is the estimate of the propagator of the running
sandpile we are looking for.

There are some limitations that must be however con-
sidered while estimating the propagator in this way.
They are due to the unavoidable fact that each marked
grain does eventually reach the end of the sandpile.
Therefore, Eq. 21 should not be used beyond the typical
number of iterations required for the closest marked par-
ticles to reach the pile edge. In addition, one also needs
to consider that, since marked grains have been initial-
ized at different locations in order to improve statistics,
each one travels a different distance to reach the edge of
the sandpile. To avoid possible distortions, contributions

FIG. 4: (Color online) (a) Sandpile propagator for times cor-
responding to (0.8, 1.0, 1.2, 1.4 and 1.6) × 106 iterations us-
ing 10000 tracer particles for the L = 10000 sandpile with
Zc = 200, Nf = 30, Nb = 1 and P0 = 10−4. In (b), the
same propagators have been shifted to better appreciate the
power-law regions scaling as P (∆x) ∼ ∆x−1.8. The algebraic
scaling ∆x−2 is also shown (in black) to guide the eye.

to Eq. 21 from any ∆x larger than the minimum of these
distances should also be disregarded.

Fig. 4(a) shows snapshots of the sandpile propa-
gator obtained at different times using N = 10000
marked grains, that were uniformly initialized at cells
with xm(0) ≤ xmax = L/10 = 1000 for any tracer
m ∈ [1, N ] (note that L = 10000 for all these simula-
tions). In Fig. 4(b) the same propagators have been
shifted up (magenta and cyan) and down (red and green)
to better appreciate the power-law regions where the cor-
responding fits have been performed. The propagators
exhibit power law regions beyond certain displacement
values, that are eventually replaced by exponential cut-
offs due to finite-size effects. In particular, power-law
scalings close to p (∆x) ∼ ∆x−1.8 are apparent that be-
come distorted at times of the order of 106 iterations and
above. This number is of the order of the number of iter-
ations required for a sizable amount of marked particles
to have reached the sandpile edge. By using Eq. 18, we
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FIG. 5: (Color online) Estimate of the evolution of the sand-
pile propagator at fixed positions, ∆x = 250, ∆x = 500 and
∆x = 750, as a function of time using 10000 tracer particles
for the L = 10000 sandpile with Zc = 200, Nf = 30, Nb = 1
and P0 = 10−4. As expected, the local value first grows and
then decays algebraically as P (∆t) ∼ ∆t±0.5.

can thus infer a value α ∼ 0.8 for the spatial fractional
exponent of the effective fractional transport model (Eq.
14) for the running sandpile.

We estimate next the temporal fractional exponent by
quantifying the initial growth (Eq. 19) and later de-
cay (Eq. 20) of the propagator at a fixed location. In
Fig. 5, its temporal evolution is shown at three differ-
ent fixed displacement values, ∆x = 250, ∆x = 500 and
∆x = 750. For the smallest displacement, the propa-
gator grows as p (∆t) ∼ ∆t0.5 for ∆t < 4 × 105, and
then decreases as p (∆t) ∼ ∆t−0.5 for ∆t > 4× 105. For
∆x = 500, the propagator grows as p (∆t) ∼ ∆t0.5 but
for time lapses lasting double, ∆t < 8 × 105. Then de-
creases also as p (∆t) ∼ ∆t−0.5 for ∆t > 8×105. Finally,
for the largest displacement, the decay phase is however
not seen within the 106 iterations considered. In fact, it
would take approximately 1.6 × 106 iterations to appre-
ciate the beginning of this phase for this displacement.
Therefore, from Eqs. 19 and 20 we can infer a value
β ∼ 0.5 for the temporal exponent of the effective frac-
tional transport model (Eq. 3) for the running sandpile.

In order to increase our confidence in these exponent
values, we have also estimated the pdfs of waiting-times
and jump sizes of the marked grains directly. To do it,
we have considered the (almost) horizontal marker dis-
placements in Fig. 3 as the instantaneous jumps, and
the vertical segments as waiting times. Their pdfs are
shown in Fig. 6. As can be seen, p(∆x) ∼ ∆x−1.8

over sufficiently large values, before the appearance of
the unavoidable exponential cutoff at the largest scales;
on the other hand, ψ (∆t) ∼ ∆t−1.5 over the mesorange
scales. Therefore, these pdfs are consistent with the val-
ues α ∼ 0.8 and β ∼ 0.5 that were obtained from the

FIG. 6: (Color online) Probability density functions for the
jump sizes (left) and waiting times (right) of marked grains
of sand moving across a running sandpile L = 10000 sandpile
with Zc = 200, Nf = 30, Nb = 1 and P0 = 10−4.

propagator analysis.

V. DISCUSSION

In the previous section, we have found that the long-
range, large-scale features of transport across the run-
ning sandpile seem to be well modelled by Eq. 14
with α ∼ 0.8 and β ∼ 0.5. The range of lengthscales
over which the exponent α is well defined is, roughly,
∆x ∈

[
102 − 103

]
, well separated from the minimum

(1) and maximum (10000) sizes allowed in the sandpile
(L = 10000), where finite size effects are expected. The
range of timescales over which β is well defined is longer,
roughly ∆t ∈

[
104 − 106

]
. That is, much longer than the

maximum duration avalanches can have in the sandpile,
which is of the order of L. This suggests that the fact
that exponent β is significantly smaller than 1 is needed
to capture the long-term persistence that is associated
to the evolution of the roughness of the sandpile height
profile. Or, in other words, to the influence of the foot-
prints left behind by previous avalanches on the future
transport across the sandpile.

Another interesting point regards the aforementioned
transport exponent, H = β/α. As we mentioned pre-
viously, this transport exponent is often used when dis-
cussing symmetric transport13,25. Indeed, H = 0.5 is
usually called a diffusive scaling, whilst H > 0.5 is re-
ferred to as superdiffusion, and H < 0.5, as subdiffusion.
In the running sandpile, however, this interpretation is
meaningless since the propagator for Eq. 14 is not only
asymmetric, but fully biased towards the down-the-slope
direction. Therefore, although one could still estimate
this transport exponent to be H ∼ 0.62, its value cannot
be interpreted as indicative of superdiffusive transport
taking place across the running sandpile. Indeed, H no
longer quantifies how the propagator spreads with respect
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to its “center of mass” (as it does for symmetric motion),
but how fast the “center of mass” moves down the slope
(which, in a symmetric case, it does not!).

Finally, we will make some comments regarding the
practical use of Eq. 14 as an effective model for the
running sandpile. The first comment is that the starting
point of the spatial integral in Eq. 14 must be replaced by
0, the innermost sandpile position (or one could assume
that n(x, t) = 0, ∀x < 0, at all times). Secondly, the
kernel of the Riesz-Feller integral must be regularized to
avoid the divergence at the starting point, x = 0. These
two manipulations are relatively standard in practical ap-
plications of fractional transport equations21. Their main
consequence is that the regularized/truncated fractional
model should only be expected to capture the true, self-
similar transport dynamics away from the starting point.

VI. CONCLUSIONS

In this work, we have constructed an effective model
for transport across the running sandpile based on frac-
tional derivatives. The resulting equation (Eq. 14) must
be written in terms of fully asymmetric fractional deriva-
tives both in space and time, due to the fully biased na-
ture of sand motion in the sandpile, that only takes place
down the slope. This is in contrast with more common
applications of fractional transport equations, that often
describe systems in which unbiased, symmetric motion
takes place, resulting in the use of symmetric fractional
derivatives in space. This difference forces us to revise
the interpretation of some of the exponents that charac-
terize the model. We have also estimated the fractional
exponents required to complete the effective model by us-
ing marked grains of sand as a diagnostic tool. We expect
that this exercise might serve as a guide to address sim-
ilar problems in more complicated systems such as, for
example, the construction of reliable effective transport
models for the radial transport of energy and particles
out of a tokamak in near-marginal regimes13.
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Appendix A: stable Lévy distributions

The Lévy family of pdfs comprises all the limit dis-
tributions that are strictly stable with respect to the
sum of N independent and identically distributed ran-
dom variables26. They can be defined in closed form only
via their characteristic function (or Fourier transform):

L[α,λ,σ](k) = exp

{
−σα|k|α

[
1− iλk

|k|
tan

(πα
2

)]}
,

(22)
with the parameters varying in α ∈ (0, 2], |λ| ≤ 1 and
σ > 0. Here, i =

√
−1.

Meaning of parameters.- Each parameter has a
very different meaning. First, |λ| ≤ 1 measures the asym-
metry of the distribution since26,

L[α,λ,σ](y) = L[α,−λ,σ](−y). (23)

If λ = 0, the pdf is symmetric (and, for α = 1, 2, it is the
only possible value). Secondly, α characterizes the tail
behaviour of the pdf. For α 6= 1, it happens that26,

L[α,λ,σ](y) ∼
{
Cα
(
1−λ
2

)
σα|y|−(1+α), y → −∞

Cα
(
1+λ
2

)
σα|y|−(1+α), y → +∞ , (24)

with the constant given by:

Cα =
α(α− 1)

Γ(2− α) cos (πα/2)
, (25)

being Γ(x) the usual Gamma function. In the special
case α = 1, the Lévy pdf (known as a Cauchy pdf) de-
cays as L[1,0,σ](y) ∼ (σ/π) |y|−2. Finally, σ is the scale

parameter because26,

L[α,λ,σ](ay) = L[α,sgn(a)λ,|a|σ](y). (26)

Extremal Lévy distributions.- A Lévy distribution
is called extremal if λ = ±1 [This can only happen for
α 6= 1, 2.]. According to Eq. 24, the power-law decay
is only observed for one of the two tails (for positive or
negative y’s) depending on the sign of λ, with the other
tail decaying exponentially fast. Indeed, for 1 < α < 2,
λ = ±1 forces the tail for y → ∓∞ to decay exponen-
tially. For 0 < α < 1 the extremal distribution becomes
one-sided26. That is, they are defined only for y > 0 if
λ = +1, and for y < 0 if λ = −1. In that case, the expo-
nential tail is found in the limit y → 0± for λ → ∓1. A
useful property of extremal Lévy distributions is that its
Laplace transform is given by:

L̃[α,1,σ](s) = exp

(
− σα

cos (πα/2)
sα
)
. (27)
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Appendix B: Riemann-Liouville fractional
derivatives

Riemann-Lioville (RL) fractional derivatives are
integro-differential operators that provide interpolants
between derivatives of integer order29.

Riemann-Liouville fractional derivatives.- The
left-sided RL fractional derivative of order p > 0 of a
function f(t) is defined as29:

aD
p
t f(t) ≡ 1

Γ(k − p)
dk

dtk

∫ t

a

(t− τ)
k−p−1

f(τ)dτ, (28)

where the integer k satisfies that k − 1 ≤ p < k. For
p = n, the RL fractional derivative reduces to the stan-
dard derivative of order n. Right-sided RL fractional
derivatives can also be defined:

bDp
t f(t) ≡ 1

Γ(k − p)
dk

dtk

∫ b

t

(τ − t)k−p−1 f(τ)dτ. (29)

Their properties are analogous to the left-sided counter-
part.

RL fractional derivatives have interesting, but some-
what not intuitive properties. The most striking prop-
erty is probably that the fractional derivative of a con-
stant function is not zero. Indeed, using the fact that
the derivative of a power law can be calculated to be26

(p > 0, ν > −1, t > 0):

aD
p
t · (t− a)ν =

Γ(1 + ν)

Γ(1 + ν − p)
(t− a)

ν−p
, (30)

it is clear that choosing ν = 0 does not yield a constant,
but (t− a)−p/Γ(1− p).

RL fractional derivatives can be combined with other
derivatives (fractional or integer). But the combinations
are not always simple. For instance, the action of normal
derivatives on RL fractional derivatives is:

dm

dtm
· aDp

t f(t) = aD
p+m
t f(t). (31)

For the right side RL derivatives, this property becomes:

(−1)m
dm

dtm
· bDp

t f(t) = bDp+m
t f(t). (32)

However, the action of the RL fractional derivative on a
normal derivative is much more complicated26.

Relatively simple expressions exist for the Laplace
transform of the left-sided RL fractional derivative of or-
der p, if the starting point is a = 0:

L [ 0D
p
t · f(t)] = spf̃(s)−

k−1∑
j=0

sj
[

0D
p−j−1
t · f(t)

]
t=0

.

(33)
This expression is very reminiscent of the one for nor-
mal derivatives. Similarly, the Fourier transform of the
left-sided RL fractional derivative satisfies a very simple
relation when the starting point is a = −∞:

F [ −∞D
p
t · f(t)] = (iω)

p
f̂(ω). (34)

For the right-sided fractional integral with ending point
b =∞, the Fourier transform satisfies:

F [ ∞Dp
t · f(t)] = (−iω)

p
f̂(ω). (35)

Appendix C: The Riesz-Feller fractional
derivatives

The Riesz fractional derivative of order α is defined by
the integral:

∂αf

∂|x|α
:= − 1

2Γ(α) cos (απ/2)

∫ ∞
−∞

dx′
f(x′)

|x− x′|α+1
. (36)

The most remarkable property of this derivative has to
do with its Fourier transform, that satisfies30:

F

[
∂αf

∂|x|α

]
= −|k|αf̂(k). (37)

Using now the complex identity (i =
√
−1),

(ik)α + (−ik)α = 2 cos
(πα

2

)
|k|α, (38)

it is very easy to prove that the Riesz derivative can also
be expressed as a symmetric sum of two RL fractional
derivatives (one left-sided, one right-sided) of order α26,

∂αf

∂|x|α
= − 1

2Γ(α) cos (απ/2)
[−∞D

α
x + ∞Dα

x ] . (39)

An asymmetric version of the Riesz-Feller derivative
also exists31. It is often referred to as the Riesz-Feller
fractional derivative of order α with asymmetry param-
eter |λ| ≤ 1. It is more easily defined through its Fourier
transform, that is:

F

[
∂α,λf

∂|x|α,λ

]
= −|k|α

[
1− iλ |k|

k
tan

(απ
2

)]
f̂(k). (40)

For λ = 0, the standard symmetric Riesz derivative is re-
covered. The asymmetric Riesz-Feller derivative can also
be expressed as an asymmetric sum of two RL fractional
derivatives of order α32:

∂α,λf

∂|x|α,λ
=− 1

2Γ(α) cos (απ/2)
·

· [c−(α, λ)−∞D
α
xf + c+(α, λ)∞Dα

xf ] ,

(41)

with the c± coefficients being defined as:

c±(α, λ) :=
1∓ λ

1 + λ cos
(
απ
2

) . (42)

Thus, in the limit of λ = 1, only the left-sided RL deriva-
tive −∞D

α
x remains, whilst for λ = −1, only the right-

side RL derivative ∞Dα
x does.
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