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Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-Planck (VFP)
codes to assess their accuracy in situations relevant to both inertial fusion hohlraums and tokamak scrape-off
layers. The models tested are (i) a moment-based approach using an eigenvector integral closure (EIC)
originally developed by Ji, Held and Sovinec; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits,
Joseph and Umansky; and (iii) Schurtz, Nicoläı and Busquet’s multigroup diffusion model (SNB). We find
that while the EIC and NFLF models accurately predict the damping rate of a small-amplitude temperature
perturbation (within 10% at moderate collisionalities), they overestimate the peak heat flow by as much as 35%
and do not predict preheat in the more relevant case where there is a large temperature difference. The SNB
model, however, agrees better with VFP results for the latter problem if care is taken with the definition of
the mean free path. Additionally, we present for the first time a comparison of the SNB model against a VFP
code for a hohlraum-relevant problem with inhomogeneous ionisation and show that the model overestimates
the heat flow in the helium gas-fill by a factor of ∼2 despite predicting the peak heat flux to within 16%.

I. INTRODUCTION

Performing full integrated simulations of large-scale
fusion devices, such as the National Ignition Facility (NIF)
or the ITER tokamak, is very challenging due to the wide
range of scales over which the important physical processes
occur. Codes, such as HYDRA1 and BOUT++2, used to
perform integrated simulations of inertial and magnetic
confinement fusion (ICF/MCF) respectively, often include
reduced models to capture complex aspects of the physics.
The accuracy of the models used naturally affects the
predictive capability of these codes. In this paper we
compare three different models for kinetic (i.e. nonlocal)
effects on electron thermal conduction against Vlasov-
Fokker-Planck simulations: (i) the EIC3–5 and (ii) the
NFLF6,7 models, which have recently been suggested
for application in the tokamak edge and scrape-off layer
(SOL); and (iii) the SNB model8–12, which is currently
the most widely used in inertial fusion and laser-plasma
applications.

In collisional plasmas (where the mean free path is
much less than the temperature scalelength), the electron
heat flow, parallel to any magnetic field in the plasma,

a)Electronic mail: jonathan.brodrick@york.ac.uk

has been shown by Braginskii13 to obey Fourier’s law:

QB = −κBnevTλ
(B)
ei ∇kBTe, (1)

where κB is the dimensionless thermal conductivity, ne the
electron density, vT =

√
kBTe/me is the thermal velocity,

λ
(B)
ei = 3

√
π

2

(kBTe)
2

4πZnee4 log Λ
(2)

is an averaged electron-ion mean free path (mfp) in Gaus-
sian units, kB is Boltzmann’s constant, Te is the electron
temperature, Z is the average ionisation, e is the magni-
tude of the electron charge, and log Λ is the Coulomb loga-
rithm for electron-ion scattering. Note that Epperlein and
Haines14 have calculated κB to an increased accuracy and
shown that it is approximated well by κB ≈ ξ(Z)128/3π,
where ξ(Z) = (Z + 0.24)/(Z + 4.2).

Equation 1 breaks down if the collisionality of the
electrons becomes low. This is due to the inadequacy of
the assumption that the electron distribution function
is close to Maxwellian; electrons with mfp’s larger than
the temperature scalelength can in fact escape gradients
before being scattered and depositing their energy into
the plasma, leading to a distortion of the distribution
function.

The largest contribution to the heat flow comes from
suprathermal electrons with a velocity of approximately



2

4vT. Due to the v4 scaling of the appropriate mfp’s,
these suprathermals can travel over a hundred times fur-
ther than thermal electrons enabling excess heat to be
deposited beyond the steepest part of the temperature
profile (often referred to as ‘preheat’ in the literature15).
A reduced population of suprathermals is left behind in
the region of steep temperature gradient, contributing to
a reduction in the heat flux. These ‘nonlocal’ effects can
become important even for temperature scalelengths as
long as ∼200 thermal mfp’s.8

Such situations occur frequently in important regions
of both MCF and ICF experiments: In tokamaks, non-
local thermal transport is thought to play a role in heat
flow from the core plasma to the ‘divertor’, a region of
the tokamak edge specifically designed to absorb and ex-
haust excess heat from the plasma. Thermal electrons
entering the SOL at the separatrix have mfp’s ranging
from 1% (C-Mod) to 20% (DIII-D/Tokamak de Varennes
(TdeV)) of the distance to the divertor target (connec-
tion length). For ITER this is estimated to be 8%. In

fact, the ratio of λ
(B)
ei to the local temperature scalelength

LT = 1/∇‖ log Te tends to vary along the SOL from ap-
proximately 1 (TdeV) or 0.1 (DIII-D) near the separatrix,
to 0.01 near the colder divertor.16 These ratios are all two
orders of magnitude higher for suprathermal electrons,
rendering the heat transport inherently nonlocal. Further-
more, transient events—Edge Localised Modes (ELMs),
disruptions and filaments—can create even higher temper-
atures and steeper gradients, with which the associated
suprathermals would be almost collisionless.4

Current state of the art codes, such as SOLPS17,18

and UEDGE19, have been shown to significantly under-
estimate the outer divertor target electron temperature
and overestimate its density compared to experiment in
existing tokamaks, which in turn affects other plasma
parameters. Chankin and Coster20 have suggested that
nonlocal effects in addition to inadequate treatment of
neutrals (which has largely been ruled out by a sensitivity
analysis) and inappropriate use of time-averaging could
explain this discrepancy. Another important factor is the
effect of the enhanced suprathermal population on Lang-
muir probe characteristics21: Ďuran et al.22 have shown
that a more sophisticated interpretation of probe results
can reduce but not eliminate the discrepancy. Resolution
of this discrepancy is critical as excessive heat loads could
erode and severely limit the lifetimes of the divertor target
plates.23

For the case of indirect-drive inertial fusion, steep tem-
perature gradients of approximately 100 µm are set up
near the inner surface of the gold hohlraum that con-
tains both the helium gas-fill and the fuel capsule. This
is induced by the high-energy lasers which ionise and

ablate the hohlraum wall. Ratios of λ
(B)
ei /LT exceeding

10-20% in this region have been reported.8 Significant non-
local effects on the thermal conduction are consequently
observed, particularly in the neighbouring low-density
gas-fill where the mfp’s of heat-carrying electrons can be
very long. Failure to simulate this nonlocality accurately

can have implications for hohlraum temperatures and
implosion symmetry.1

A common approach to incorporate the flux reduction
aspect of nonlocal transport is to restrict the local heat
flow to some fraction f of the free-streaming limit Qfs =
nekBTevT. However, at best the flux-limiter f must be
tuned against previous experiments, limiting predictive
capability—values ranging from 0.03 to 0.15 have been
suggested for NIF design codes1,24 and up to 3 for SOL
modeling25—and preheat effects cannot be predicted.

The most complete way to take nonlocal effects into
account, however, is with a fully kinetic approach. By
solving the Vlasov-Fokker-Planck (VFP) equation for
the electron distribution function directly (along with
self-consistent electric and magnetic fields) we need not
assume it is close to Maxwellian; nonlocal effects are
calculated ab-initio. However, due to the extra dimen-
sionality associated with solving in velocity-space, such
an approach is computationally intensive and difficult
to incorporate into existing integrated modeling codes.
Therefore, alternative models that have more predictive
capability than flux-limiters, and reduced computational
requirements compared to a full kinetic simulation, are
desirable. A dedicated experiment to measure nonlocal
effects performed by Gregori et al.26 has shown that a
model of this kind can approximate measured temperature
profiles better than flux-limiters.

A large number of reduced models for nonlocal electron
thermal transport have been suggested for applications
in inertial fusion and laser-plasmas8–12,15,27–30 and to the
SOL3–7,31,32. This paper focuses on three of these models,
here referred to as the SNB8–12, EIC3–5 and NFLF6,7

models (described in section III), and compares them for
accuracy against VFP simulations.While the SNB model
has recently been compared to VFP results by Marocchino
et al.33, this has shown that the two approaches agree
well for Z = 1 but begin to deviate from each other as the
ionisation increases. This is surprising as the SNB model
was originally derived in the high-Z (Lorentz) limit and
we observe here that such findings are sensitive to precise
implementation details of the model. Additionally, while
the EIC and NFLF models have been shown to predict
similar heat-fluxes7, they have not yet been validated
against a full time-dependent VFP code.

The first problem we investigate here is the damping
of a small-amplitude sinusoidal temperature profile of
various wavelengths in section IV. This test will be used
to justify a tuning parameter which can be applied to the
SNB model to improve agreement with VFP simulations.
We will additionally suggest a new analytic fit for the
conductivity reduction and use this to obtain improved
coefficients for the NFLF model.

In section V A, we will then consider the case, more
relevant to both hohlraums and the SOL, of a plasma with
a large temperature variation. We will show that the SNB
model agrees very well with VFP simulations using the
same tuning factor as in the linearised problem described
above and that the EIC and NFLF models overpredict



3

the peak heat flux. While this suggests that the SNB
model may also be useful in SOL simulations, we also
consider potential improvements to the other models to
improve their performance.

Finally, we will show in section V B that the SNB
model can significantly overpredict the heat flow relative
to VFP in the low-density helium gas-fill using a problem
particularly relevant to the ablated hohlraum wall. The
importance of gradients in both ionisation and density
here could mean the findings could also be important for
the detached divertor scenario.

II. VLASOV-FOKKER-PLANCK MODELING

The evolution of the electron distribution function f ,
assuming small-angle scattering from binary collisions,
can be described by the Vlasov-Fokker-Planck equation34

∂f

∂t
+ v · ∇f − e

me

(
E +

v ×B

c

)
· ∂f
∂v

= C(f), (3)

where v is the electron velocity, E, B are the electric
and magnetic fields respectively (in Gaussian units), me

is the electron mass and C is the collision operator (for
both electron-electron and electron-ion collisions). All
VFP codes used here employ a zero-current constraint,∫∞

0
fvd3v = 0, (quasineutrality) to calculate the electric

field.
For the case where variations only occur along mag-

netic field lines, symmetry in the perpendicular direc-
tion allows for elimination of the magnetic field by ‘gyro-
averaging’ (integrating azimuthally around the v‖ axis,
this process is still valid even in the absence of magnetic
fields); this yields the 1d2v (one-dimensional in space,
two-dimensional in velocity) equation

∂f

∂t
+ v‖

∂f

∂s‖
−
eE‖

me

∂f

∂v‖
= C(f), (4)

where f and C now represent their gyro-averaged forms,
and ‖ denotes components of vectors parallel to the mag-
netic field.

The KIPP code35 is designed to solve this equation
using Cartesian spatial and velocity grids. The code
uses an operator splitting method suggested by Shoucri
and Gagne36 that treats the spatial derivative using a
second-order explicit scheme followed by the electric field
and collision operator terms using a first-order (in time,
second-order in velocity) implicit scheme.

A simplified approach that is valid in more collisional
regimes is the diffusion approximation: This consists
of expanding the distribution function in Cartesian ten-
sors and truncating all but the first two terms, which
reduces the number of velocity-space dimensions to one,
thereby increasing efficiency. The IMPACT code34 (two-
dimensional in space) employs this approach and makes
a further simplification of ignoring angular scattering
due to electron-electron collisions, valid in the Lorentz

limit. In order to recover the correct local thermal conduc-
tivity for lower-Z plasmas the factor ξ(Z) is used in the
electron-ion collision frequency. Our comparisons between
IMPACT and KIPP suggest that these approximations
do not greatly affect the results for the problems studied
in section V A. The equations solved by IMPACT, along
with Ampere and Faraday’s Law are thus

∂f0

∂t
+
v

3
∇ · f1 −

eE

3mev2
· ∂v

2f1

∂v
= Cee0 [f0] , (5)

∂f1

∂t
+ v∇f0 −

eE

me

∂f0

∂v
− e (B × f1)

mec
= −νei

ξ
f1, (6)

where

νei =
4πZnee

4 log Λei

m2
ev

3
(7)

is the velocity-dependent electron-ion collision frequency
in Gaussian units.

IMPACT is fully implicit and first order in time, and
uses fixed-point/Picard iterations to handle nonlinear
terms. Note that the implicit treatment of the electric
field enforces charge conservation at every iteration. The
magnetic field and electron inertia (∂f1/∂t) terms have
not been included in the simulations appearing in this
paper. The main reason for using IMPACT in section
V B is that KIPP has not yet been extended to spatially-
varying ionisation.

Finally, we also include results previously obtained with
the SPRING37 VFP code which takes a Cartesian expan-
sion to arbitrary order and does not neglect/approximate
anisotropic electron-electron collisions. This code uses a
linearised approach, i.e. the spatial gradient operator ∇
is replaced by ik, making it advantageous for analysing
the small-amplitude sinusoidal temperature perturbations
featured in section IV, but not problems with large tem-
perature perturbations.

III. NONLOCAL MODELS

A. Eigenvector Integral Closure

The first model investigated here was originally pro-
posed by Ji, Held and Sovinec3 and is directly derived
from simplifications of the VFP equation. Necessarily,
the time-derivative term is neglected to allow the heat
flow to be calculated based on input density and temper-
ature profiles only, and not the history of the distribu-
tion function; this assumption should be reasonable over
‘mean’ SOL profiles (i.e. averaged over time to eliminate
fine-scalelength fluctuations), but could break down for
transient events with faster timescales such as filaments
and ELMs.

The distribution function is expressed as f = f (0) +
δf , where δf is a perturbation to an initial, usually
Maxwellian, guess f (0). Assuming the perturbation δf is
small, the nonlinear collision and electric field terms in
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the VFP equation are linearised, which (for a Maxwellian
f (0)) yields

∂δf

∂s‖
− CL(δf)

v‖
=

eE‖

mev‖

∂f0

∂v‖
− ∂f0

∂s‖
, (8)

where CL is the linearised collision operator.
The next step is to attempt a separation of variables

into s‖ and v/vT by expressing

δf =
∑
n

An(s‖)ψn(v/vT) such that
CL(ψn)

v‖
=
ψn
λn
,

(9)
where the ψn are eigenfunctions of the operator CL/v‖,
which depends only on v/vT. Substituting (9) into (8) and
assuming that the dependence of ψn on space through
vT is negligible (only valid when relative temperature
perturbations are small globally) yields

∑
n

(
ψn

∂An
∂s‖

+
�
�
�
�>

0

An
∂ψn
∂s‖

+
Anψn
λn

)
=

eE‖

mev‖

∂f0

∂v‖
− ∂f0

∂s‖
.

(10)
By similarly decomposing the right-hand side into (or-

thogonal) eigenfunction contributions, a set of indepen-
dent first-order ODE’s for An is formed that can be solved
efficiently. Consequently, δf can be reconstructed and the
nonlocal correction to the heat flux computed through
an integral in v‖ (hence the nomenclature Eigenvector
Integral Closure or EIC).

The advantage of this approach is that it circumvents
the need to solve in velocity-space at every timestep (as a
VFP code must). The main challenge is identifying a dis-
crete description of the eigenfunctions ψn that converges
rapidly for use in a numerical scheme. In practice, this is
done by using an orthonormal polynomial moment-basis
to express ψn as a vector and the operator CL/v‖ as a

matrix. Ji et al.3 proposed a Legendre-Laguerre basis
in pitch angle and total speed. This converges rapidly
in the hydrodynamic limit but slowly in the collision-
less limit. As an alternative, Omotani et al.5 proposed
a Hermite-Laguerre basis, decoupling parallel and per-
pendicular velocity components, which allows for easier
implementation of sheath boundary conditions.

B. Non-Fourier Landau-Fluid

While there are a lot of computational benefits to the
EIC model over a full VFP code, a large number of
eigenfunctions (at least 120 according to Omotani et al.5)
are needed for convergence. The NFLF model6,7 provides
a cheaper approach, potentially solving as few as three
second-order ODE’s, but without a direct link to the VFP
equation.

The popular Landau-fluid approach initially proposed
by Hammett and Perkins31,38,39 provides a closure for
the nonlocal heat flux Q̃ in Fourier space. This recovers

the correct damping rate of a sinusoidal temperature
perturbation in both the collisional and collisionless limits
(where the wavelength is much longer/shorter than the
thermal mfp). However, the Fourier transforms involved
are inconvenient for complex SOL geometries and large
temperature and density variations.

The innovation by Dimits, Joseph and Umansky6 was
to enable direct calculation of the nonlocal parallel heat
flux in configuration space by approximating the closure
as a sum of Lorentzians

Q̃ ≈ Q̃B

1 + a|k|λ(B)
ei

≈
N∑
j=1

αjQ̃B

β2
j +

(
akλ

(B)
ei

)2 :=

N∑
j=1

q̃j , (11)

where Q̃B is the (parallel) Braginskii heat flow in recipro-
cal space, a parametrises the behaviour in the collisionless
limit, k is the wavenumber of the Fourier mode, N is the
number of Lorentzians chosen for the fit and αj , βj are
fit parameters.

Equating the contribution from each Lorentzian to
a dummy contribution qj , rearranging and taking the
inverse Fourier transform gives a set of N second-order
ODE’s that can be used to recover the nonlocal heat flow:(
β2
j +

(
akλ

(B)
ei

)2)
q̃j →

(
β2
j − a2λ

(B)2
ei ∇

2
)
qj = αjQB.

(12)
This approach also conveniently avoids the issue of defin-
ing the mean free path in reciprocal space.

C. Multigroup Diffusion (SNB)

The final model being investigated is the multigroup
diffusion or ‘SNB’ model named after the original authors
Schurtz, Nicoläı and Busquet8. It is widely used in iner-
tial fusion codes such as Lawrence Livermore National
Laboratory’s HYDRA1, CELIA laboratory’s CHIC40 and
the University of Rochester Laboratory for Laser Ener-
getics’ (LLE) DRACO12; and it is applicable in multiple
spatial dimensions.

The SNB model is best explained starting from the dif-
fusion approximation of the kinetic equations (see above),
along with neglecting time-derivatives for similar reasons
as the EIC model:

v

3
∇ · f1 −

eE

3mev2
· ∂v

2f1

∂v
= Cee0 [f0] , (13)

v∇f0 −
eE

me

∂f0

∂v
= −νei

ξ
f1, (14)

The isotropic part of the distribution function f0 is

then split into a Maxwellian part f
(mb)
0 and a deviation

δf0. The anisotropic part f1 is similarly split, but the

‘Maxwellian’ part f
(mb)
1 obtained from substituting f

(mb)
0
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into equation (14) is replaced by an alternative, g
(mb)
1 :

f
(mb)
1 = −λ∗ei

( mev
2

2kBTe
− 4
)
f

(mb)
0

∇Te

Te
,

→ g
(mb)
1 = −λ∗eif

(mb)
0

∇Te

Te
.

(15)

This modification achieves positive-definiteness without
affecting the integral used to calculate the heat flow, and
is argued to be compensated by other approximations of
the model8. Here we have defined λ∗ei = ξλei = ξv/νei.

Electric field terms in equation (13) are neglected and
instead incorporated phenomenologically by limiting the
mean free path:

1

λ
(E)
ei

=
1

λ∗ei

+

∣∣∣∣ eE
1/2mev2

∣∣∣∣ (16)

Substituting f1 = g
(mb)
1 + λ

(E)
ei ∇δf0 into equation (13)

obtains

Cee0 [δf0]

v
+∇ · λ

(E)
ei

3
∇δf0 =

∇ · g(mb)
1

3
, (17)

where δf0 = f0 − f (mb)
0 . This can be solved to compute

the deviation from the local heat flow

δQ =
2πme

3

∫ ∞
0

δf1v
5dv = −2πme

3

∫ ∞
0

v5λ
(E)
ei ∇δf0dv.

(18)
The main computational advantage of this approach

is through the use of efficient model collision operators.
The original authors suggested using a velocity-dependent
Krook (BGK) operator due to its simplicity, but Del
Sorbo et al.10 have also employed a more realistic operator
suggested by Albritton, Williams, Bernstein and Swartz
(AWBS)41:

CBGK
ee0 [ · ] = −r νei

Z
× · , CAWBS

ee0 =
νei

Z
v
∂

∂v
[ · ], (19)

where we have introduced the dimensionless number
r to account for variation in SNB model implemen-
tations/description across publications: The original
authors8 halved the geometrically averaged mean free
path λe =

√
Zλ∗eiλei (see equation (23) of Schurtz et al.8

and also section III C of Del Sorbo et al.10), which is
equivalent to setting r = 4 (except for the treatment of
electric field). However, in a later section of the original
paper8 (III F) as well as section II of a later publication9

this technicality is not restated when demonstrating a
link to the kinetic equations, from which a value of r = 1
could be interpreted.

Furthermore, our attempts to replicate previous com-
parisons between SNB and VFP33 suggest that Maro-
cchino et al. used r = 16. If this value for r is used and
corrections to angular scattering from electron-electron
collisions are neglected (i.e. ξ is set to one) then good
agreement with VFP codes is obtained for Z = 1 by

coincidence. However, the agreement gets progressively
worse as Z increases. In this paper we show that using
the BGK collision operator with a different value (r = 2)
and ξ = (Z + 2.4)/(Z + 0.42) gives very good agreement
with VFP across a wide range of problems (and values of
Z).

Note that, despite the differential form of the AWBS
operator, its use does not actually require a significant
increase in computational time unless an attempt to par-
allelise over energy groups is being made. This is be-
cause the velocity-space first-order differential equation
is simply closed from above with the boundary condition
δf0(v =∞) = 0.

IV. DECAY OF A SMALL-AMPLITUDE, SINUSOIDAL
TEMPERATURE PERTURBATION

First we consider the damping of a small-amplitude
temperature perturbation Te = T0 + δT cos(kx) (often
referred to as the Epperlein-Short15 test). Due to non-
local effects as the wavelength is reduced, the thermal
conductivity κ decreases from that predicted in the local
limit, κB. In this section we first detail the methodology
used in setting up simulations of this problem and assess-
ing the respective conductivity reductions before briefly
commenting on the agreement between the EIC model
and VFP results. Analysis of the long-wavelength limit
will then be presented in section IV A so as to motivate a
suitable choice for the SNB model parameter r. Finally,
a new fit function for the conductivity reduction as a

function of kλ
(B)
ei is derived in section IV B by connecting

the collisional and collisionless regimes, and is used to
calculate fit coefficients for the NFLF model.

A sinusoidal perturbation with a relative amplitude
of δT/T0 = 10−3 was initialised for the KIPP simula-
tions, and a uniform spatial grid of 127 cells over a half-
wavelength with a non-uniform Cartesian velocity grid
extending to 7vT (with parameters mmax = 256, EPS =
1.01 as defined by Chankin et al.35) was used. Two meth-
ods were used to calculate the conductivity reduction
κ/κB: (1) directly from the peak heat flow divided by the
local temperature gradient and (2) inferred from the decay
rate of the temperature perturbation. The thermal con-
ductivity obtained by both these methods fluctuated in
time initially (due to initialising as a Maxwellian) and was
tracked until both methods approached (slightly different)
constant values, an average was then taken between the
two final conductivity reductions. In order to improve
accuracy without using unnecessary amounts of computa-
tional time with a tiny timestep (KIPP is only first-order
accurate in time), extrapolation to zero timestep was per-
formed by fitting a straight line of conductivity reduction
against timestep.Such complications were unnecessary
when using the inherently stationary models, instead of
evolving in time, the heat flow predicted for a single pro-
file with a lower relative amplitude of 10−5 was evaluated
for each wavelength.
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FIG. 1. Reduction of thermal conductivity due to nonlocality
over a range of collisionalities for a small-amplitude tempera-
ture sinusoid with Z = 1. The fit function given in equation
(22) is depicted in addition to results using the nonlocal models
and VFP codes.
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extending to lower collisionality for a small-amplitude tem-
perature sinusoid with Z = 1. Note that the conductivity is
reduced most at low collisionalities with the Legendre basis.

Results obtained for thermal conductivity reduction

κ/κB as a function of nonlocality parameter kλ
(B)
ei are

shown in figures 1 and 2 for an ionization of Z = 1, and
in Fig. 3 for an ionization of Z = 8. The choice of two
separate figures for the case of Z = 1 is to allow for clear
identification of features at both high and low collisionality
and to avoid an excessive number of comparisons on a
single figure. Kinetic results from the linearised VFP
code SPRING calculated by Epperlein37 and provided
numerically by Bychenkov et al.42 are also shown in Fig.
2 for comparison against the nonlocal models.

Both the Legendre-Laguerre3 and the Hermite-
Laguerre5 bases for the EIC model were investigated
using 40,40 moments to achieve convergence to within 1%

for kλ
(B)
ei < 1. Figure 1 shows that both bases agree well
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FIG. 3. Reduction of thermal conductivity due to nonlocality
over a range of collisionalities for a temperature sinusoid with
Z = 8.

with KIPP (within 5 and 10% respectively) in this limit.

For higher kλ
(B)
ei (see Fig. 2), the SPRING VFP results

begin to deviate from both the EIC and KIPP results for a
number of reasons: Firstly, the onset of electron inertia ef-

fects at high kλ
(B)
ei , ignored by the EIC model, introduces

a phase shift between the heat flow and temperature per-
turbation in frequency space (i.e. the perturbation goes
from being critically damped to possessing an oscillatory
component) making evaluation of the decay rate difficult
with KIPP (the linearised formulation of the SPRING
code makes this easier, and likely more accurate; note that
it is the modulus of the complex thermal conductivity
that has been provided in this case).

Additionally, while the Hermite-Laguerre basis only
requires two Laguerre modes in the collisionless limit
due to the parallel-perpendicular decoupling, we found
that even 160 Hermite modes were insufficent to achieve
convergence to within 10% for kλ

(B)
ei > 2. The Legendre-

Laguerre basis, however, manages to converge to within

1% for kλ
(B)
ei < 50 using 20,20 modes. The collisionless

limit predicted by Chang and Callen43 is approached as
the total number of Legendre-Laguerre modes is increased
(see below and also Fig. 2 and 3 of Ji et al.3 whose results
we have successfully replicated).

Results for an ionisation of Z = 8 are shown in Fig.
3. Here 50,50 moments in the Legendre-Laguerre basis

were required to achieve convergence at high kλ
(B)
ei with

the EIC. The diffusion approximation made by IMPACT

is shown to break down around kλ
(B)
ei ≈ 0.3. Note that

the thermal conductivity reduction at which the SNB
begins to deviate from kinetic results is about the same
(κ/κB ≈ 0.2) for both Z = 1 and 8; the lower nonlocality

parameter kλ
(B)
ei at which this occurs is due to the re-

duced importance of electron-electron collisions at higher
ionisations.
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TABLE I. Values for the parameter b, as appearing in equation (20), characterising lowest-order deviation from hydrodynamic
limit for various values of Z obtained with the EIC model. At least 4,40 moments were used in the Legendre-Laguerre basis.

Z 1 2 3 4 6 8 10 12 14 20 30 500 ∞
b 43.5 73.6 96.0 113 139 157 170 180 189 206 222 261 264

A. Hydrodynamic Limit (kλ(B)
ei � 1)

Bychenkov et al.42 have shown that for long wavelength
perturbations (i.e. in the hydrodynamic limit)

Q̃ ∼ Q̃B

(
1− bZk2λ

(B)2
ei

)
(20)

to second-order in kλ
(B)
ei , where b ≈ 264 in the Lorentz

limit (Z = ∞). As the assumptions of the EIC model
are valid in this linear and collisional limit (except for
neglection of electron inertia which would only introduce
a time-dependent component into the heat flow), and
convergence of the Legendre-Laguerre basis is relatively
rapid (only 2 Legendre modes are theoretically needed)
we have used it to calculate the value of b for various Z
(while the KIPP prediction for Z = 1 was within 4% of the
EIC, this was considered less accurate due to insufficient
extension/resolution of the velocity grid). This was done
by fitting a straight line on a graph of heat flow against

Zk2λ
(B)2
ei for kλ

(B)
ei < 0.001/

√
Z.

Results using the EIC model are summarised in Table
I and Fig. 4, which also includes numerical results14 and
rational approximations15,44 for the low-Z conductivity
correction κ(Z)/κ(∞). We find that the approximation
b(Z)/b(∞) = Z/(Z+11/2) fits numerical results to within
7%, whereas simply using ξ overestimates b by as much
as 43% at Z = 1. However, the implications of this for
the validity of using ξ in IMPACT and the SNB model
are not as serious as they seem because b only quantifies
the initial deviation from the local limit, and the total
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FIG. 4. Comparison of the Z-dependence of the local thermal
conductivity κB and the parameter b in equation (20), which
characterizes the nonlocal deviation from the local limit.

heat flux is not very sensitive to marginal errors in b in
the hydrodynamic limit.

Table II outlines the values of b predicted by the SNB
model depending on the model collision operator and
choice of source term. This has been derived in the low-
amplitude and continuum-velocity limit as detailed in
Appendix A. Using the AWBS operator and the kinetic

source term ∇ · f (mb)
1 on the right-hand side of equation

(16) gives a priori the closest value of b = 316.9ξ to within
20% of that predicted analytically in the Lorentz limit
(Table 1)

The ability of the AWBS collision operator to predict
the deviation in the hydrodynamic limit fairly accurately
might suggest that it provides an improvement to the orig-
inal SNB model, however we find that coupling it with
the original source term leads to negative values of the

thermal conductivities at kλ
(B)
ei > 0.124/

√
ξZ due to it

not being positive-definite (see Appendix B). This should
never occur in the linearised problem considered here (i.e.
decay of a small-amplitude temperature perturbation) as
it would result in instabilities at these wavelengths. How-
ever, this issue does not necessarily imply that the AWBS
operator is an inappropriate choice for other nonlocal
models. For example, the M1 model presented by Del
Sorbo et al.10,11 does not appear to exhibit this issue of
positive-definitiveness; we leave a detailed analysis of this
model for future work.

Setting r = 2 exactly in the original implementation of

the SNB model (with the source term ∇ · g(mb)
1 ) remark-

ably gives the same value of b = 316.9ξ and in fact the
entire distribution function in this limit (see Appendix
A). However, to match the kinetic results for b, a value
of r = 2.4 is required in the Lorentz limit and r = 3 for
Z = 1. We suggest that matching coefficients to such
accuracy is not necessary, and that using r = 2 achieves
much better agreement for problems involving large tem-
perature variations (see below). Results using both r = 2
and r = 3 for Z = 1 have been provided in figures to
enable the reader to compare.

Faithfulness to kinetic results for b can be guaranteed
with the NFLF model by modifying the analytical Fourier
closure and constraining the fit coefficients appropriately
as described in the next section.

TABLE II. Predictions for b by the SNB model, depending on
choice of collision operator (columns) and source term (rows)

RHS CBGK
ee0 CAWBS

ee0

∇ · f (mb)
1 3169ξ/r 316.9ξ

∇ · g(mb)
1 633.8ξ/r 63.38ξ
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B. Collisionless Limit (kλ(B)
ei � 1)

With decreasing wavelength, the heat flow is predicted
to slowly approach a constant value. By fitting to the
results of both the EIC and SPRING models. (KIPP
results were not obtained at low enough collisionalities)
we find that

Q̃ ∼ 3

2

√
2χ1Q̃fs

(
1− c∞

kε

) δT
T0
, (21)

where Q̃fs is antiparallel to the wave-vector and χ1, c∞
and ε are dimensionless fit parameters, is a reasonable
description for the asymptotic behaviour in this limit for
low-Z plasmas (i.e. a graph of Q̃ against log(k) resembles
a straight line). The form of this fit function was taken
from work by Bychenkov et al.42 The extra factor 3/2
compared to the formalism of Hammett and Perkins,31

which inspired previous implementations of the NFLF
model,6,7 was found to be necessary due to the isotropic
definition of the electron temperature used here.37,42

Again, the Legendre basis was used, this time due to
the nonconvergence of the Hermite basis explained above,
however at least 40,40 moments were needed to achieve

convergence above kλ
(B)
ei ≈ 1. As found by the original

developers of the model3, the value of χ1 = 1.2/
√
π agreed

with the value predicted by Chang and Callen43; this is
exactly 40% less than the value predicted by Hammett
and Perkins31 because of the quasi-stationary assumption.
We have also calculated that an alternative value of χ1 =
1.225 can be obtained by numerically solving for zeroes
of the response function.

Calculated values of ε and c∞, as well as the c1 referred
to below, are summarised in Table III for Z = 1, 2, 4, 6, 8.
Simulations with EIC at higher Z require a prohibitive

number of moments for convergence at high kλ
(B)
ei . Both

the index ε and the coefficient c∞ vary weakly with Z
and have similar orders of magnitude to those predicted
by Bychenkov et al42. The values obtained here should
be slightly closer to reality as Bychenkov et al. assume
complete stationarity (all time derivatives neglected) in
their calculations, but there are large uncertainties in our
numerical fit (approximately 10% for the EIC data). The
limited numerical results available from the assumingly
exact SPRING code37,42 infer a value for ε at Z = 1
within 0.5% of the EIC prediction, but the value for c∞
(=1.36) is larger by a factor of 2.2.

TABLE III. Values for parameters appearing in equations
(21) and (22) obtained with EIC model, at least 40,40 mo-
ments were used in the Legendre-Laguerre basis, and available
SPRING data (in brackets), the latter is presumed to be more
accurate.

Z 1 2 4 6 8
ε 0.32 (0.32) 0.28 0.23 0.22 0.20 (0.19)
c∞ 0.6 (1.4) 0.7 0.7 0.75 0.75 (1.5)
c1 1.9 (1.5) 2.2 2.7 3.1 3.4 (3.0)

Due to the combination of stationarity and diffusion
approximations, the SNB model without the phenomeno-
logical mfp limitation to include electric fields predicts
the collisionless heat flow to decrease as ∼1/k to zero
as the wavelength decreases8 (the thermal conductivity
correspondingly decreases as 1/k2). Incorporating the
mfp limitation resolves the issue of insufficiently damp-
ing temperature perturbations of finite amplitude. This
improves numerical stability, but introduces an amplitude-
dependence of χ1 that is not observed in VFP simulations.

While the NFLF will also always predict a ∼1/k de-

cay of the heat flow for high enough kλ
(B)
ei , increasing

the number of Lorentzians used to improve the fit can
progressively extend the validity into lower collisionality
regimes. The fitting function we used interpolates be-
haviour in both the hydrodynamic and collisionless limits
with a similar but slightly more robust method than used
by Bychenkov et al.42:

κ

κB
=

(
1 +

(
1

bZk2λ
(B)2
ei

+
3/2
√

2χ1/κB

kλ
(B)
ei (1 + c1/kε)

)−1)−1

,

(22)

where c1 differs from c∞ by optimising the fit for kλ
(B)
ei 6

1. Using the parameters as defined in Table III for Z = 1
the above fits the KIPP and SPRING results to within
6 and 10% respectively for kλei 6 1 and up to 26/20%
above this; altering the value of c1 to 1.5 reduces the
maximum discrepancy with SPRING results to 11%.

This new fit is depicted in Fig. 1 with the simpler fit

1/(1 +akλ
(B)
ei ) obtained by Hammett and Perkins31 previ-

ously used in the NFLF model6, (a can be related to χ1 by

a = 2κB/3
√

2χ1), which overestimates the thermal con-

ductivity at moderate collisionalities around kλ
(B)
ei ≈ 1/2

by over 25%. Note that we have observed a recent closure
in configuration space (thus convenient for convolution
models) suggested by Ji and Held45 to closer fit the EIC
results with one more fitting parameter (if the α used by
Ji and Held is not considered a free parameter)—tuning of
these parameters could probably also achieve an improved
fit to the VFP results. We would also like to highlight a
recent paper by Joseph and Dimits who have performed
detailed analysis of closures for the response function that
connects the collisionless and collisional regime46.

Three Lorentzians can approximate our new fit to

within 2.5% up to kλ
(B)
ei ≈ 1.6; using six Lorentzians al-

lows this to be extended up to kλ
(B)
ei ≈ 30. The coefficients

TABLE IV. NFLF fit parameters for 3 Lorentzians (Z = 1)

α 2.176×10−3 0.06316 1.6823
β 0.1020 0.3513 2.4554

TABLE V. NFLF fit parameters for 6 Lorentzians (Z = 1)

α 1.575×10−4 0.01206 0.07960 0.5086 3.5041 49.3331
β 0.06195 0.17684 0.5064 1.7432 7.0442 44.4953
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FIG. 5. Initial temperature profile (shaded) and heat flow
as ratio of free-streaming limit Qfs = nekBTevT (for 1 keV
electrons) after 2.7 collision times. NFLF used 6 Lorentzians,
and EIC used 16,4 moments in the Hermite basis.

used are given in Tables IV and V, and were obtained
using the variable projection method47, constrained such

that the hydrodynamic limit Q̃ = Q̃B

(
1− bZk2λ

(B)2
ei

)
is

preserved to second-order in kλ
(B)
ei .

V. COMPARISON FOR LARGE TEMPERATURE
VARIATIONS

A. Homogeneous density and ionisation

We now investigate the accuracy of the EIC, NFLF
and SNB models in calculating the heat flow in the case
where we have a large relative temperature variation. We
consider the case of an initial temperature profile consist-
ing of a ramp connecting two large hot and cold regions
(‘baths’). This has the advantages of allowing simple
reflective boundary conditions (benchmarking of sheath
boundary conditions is to be done at a later date) and
not requiring any external heating/cooling mechanisms
that would also need to be carefully calibrated between
codes.

The hot and cold baths had temperatures of 1 keV and
150 eV; these were connected by a cubic ramp given by

Te/eV =


1000 n′c ∈ [−154,−75]

575− 8.5

3
n′c

(
3−

(
n′c
75

)2)
n′c ∈ [−75, 75]

150 n′c ∈ [75, 100],
(23)

where n′c is the cell number counting from the centre
of the temperature ramp. Cell size in mfp’s was varied
between simulations to scan a range of collisionalities.
The initial temperature profile is illustrated in Fig. 5
for the smallest cell-size used. For these simulations the
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FIG. 6. Ratio of peak heat flow to that predicted classically
for each snapshot against minimum inverse scalelength λei/LT

for the nonlinear temperature ramp using different initial
gradients.

electron density, Coulomb logarithm and ionisation (Z =
1) were all kept constant and uniform.

KIPP simulations showed an evolution of the heat flow
from the local (due to initialising as a Maxwellian) to the
nonlocal, with a reduced peak, over an initial transient
phase (over which the temperature ramp flattened some-
what). The transient phase was considered over when the
ratio of the KIPP heat flow to the expected local heat
flow stopped decreasing. After the transient phase this
ratio begins to slowly increase as the thermal conduc-
tion flattens the temperature ramp and the ratio of the
scalelength to mean free path increases (i.e. the thermal
transport slowly becomes more local). We then took the
temperature profile from KIPP and used our implementa-
tion of the various nonlocal models to calculate the heat
flow they would predict given this profile.

Figure 5 shows that the EIC and NFLF models agree
well with each other (to within 10% almost everywhere
for the snapshot shown). However, agreement with KIPP
is not nearly as good; the models overestimate the peak
heat flux by 30 − 35% and do not predict the observed
preheat into the cold region. The SNB model is shown to
perform much better here, predicting the peak heat flux
to within 6% as well as the existence of preheat (although
this is overestimated).

The wide range of heat flow profiles predicted with
different flux-limiters between 0.05 and 0.7 are also shown
in Fig. 5. These were obtained using the formula 1/Qfl =
1/QB + 1/fQfs). We find that a flux-limiter of ∼0.25 best
matches the peak kinetic heat flow, but in this case the
peak is shifted towards the hot rather than the cold bath
(the latter is observed in the KIPP simulation). Similar
results are observed at all temperature ramp scalelengths
investigated as illustrated in Fig. 6, which depicts the
reduction in the peak heat flow compared to the local
Braginskii prediction.
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20 ns simulated laser heating with HYDRA (circles). Curves
show interpolated profiles used in IMPACT, as well as the
temperature profile after a further 5 ps.

B. Spatially-varying density and ionisation

While comparisons between the SNB model and VFP
codes have previously been performed8,33, none have in-
cluded spatially-inhomogeneous ionisation. As inertial
fusion experiments involve steep ionisation and density
gradients (for example, at the interface between the he-
lium gas-fill and the ablated gold plasma), it is critical
that the SNB model be tested in such an environment.
Variations in ionisation may also be important in the
‘detached’ divertor scenario where a moderate-Z gas is
injected in front of the divertor to radiate excess heat;
an investigation of this scenario is left as further work.
For evaluating this, the IMPACT34 VFP code was used
due to its ability to simulate inhomogeneous ionisation
profiles.

We extracted electron temperature (Te), density (ne)
and ionisation (Z) profiles (shown in Fig. 7) from a
HYDRA1 simulation of a surrogate gadolinium hohlraum
containing a typical helium gas-fill after 20 nanoseconds
of laser heating and used them as the initial conditions
(along with the assumption that the electron distribu-
tion function is initially Maxwellian everywhere) for the
IMPACT simulation. At this point very steep gradi-
ents in all three variables were set up with a change
from Te = 2.5 keV, ne = 5×1020 cm−3, Z = 2 to
Te = 0.3 keV, ne = 5×1021 cm−3, Z = 39 across ap-
proximately 100 µm at the helium-gadolinium interface.

Spline interpolation was used to increase the spatial
resolution near the steep interface for the IMPACT simu-
lations, helping both numerical stability and runtime
due to needing a reduced number of nonlinear itera-
tions. The Coulomb logairithm was treated as a constant
ln Λ = 2.1484 for simplicity. Reflective boundary condi-
tions were used here as in the previous section. Hydrody-
namics was not included in this simulation and therefore
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FIG. 8. Comparison of heat flow predictions with the SNB
model using geometrically averaged or separated mfp’s based
on temperature profile after 5 ps IMPACT simulation.

the density and ionisation profiles remained fixed in time.

As with the KIPP simulations in the previous section,
there is an initial transient phase where the IMPACT
heat flux gradually reduces from the Braginskii prediction
as the distribution function rapidly moves away from
Maxwellian. Once again this transient phase is considered
to be over when the ratio of the peak heat flow to the
Braginskii prediction stops reducing. This ratio is not
observed to change by more than 5% after the first 5 ps
of our 15.7 ps simulation. Therefore, we conclude that
it safe to assume the transient phase is over after 5 ps,
at which point the temperature front has advanced by
approximately 8 µm leading to a maximum temperature
change of 41% as shown in Fig. 7.

In comparing the IMPACT and SNB heat flow profiles
we encountered an important subtlety concerning the im-
plementation of the model.While more recent publications
concerning the SNB model9,10 use a formulation similar
to that used here in section II C with separate electron-
ion and electron-electron mfp’s or collision frequencies,
the original paper8 used a geometrically averaged mfp
λe =

√
Zλ∗eiλei. However, this averaging process is only

valid for the case of homogeneous ionisation, and Fig. 8
shows the large effect this has on the heat flow when the
ionisation varies. While using separated mfp’s provides
a very good prediction of the preheat into the hohlraum,
the peak heat flow to within 16% and an improved esti-
mate of the thermal conduction in the gas-fill region, the
latter is still too large by a factor of ∼2. This discrepancy
could potentially lead to an overestimate of hohlraum
temperatures and thus cause issues similar to those aris-
ing with using an overly restrictive flux limiter1. However,
it is important to note that the collision fix ξ employed
by IMPACT is phenomenological and may also not be
appropriate for the case of inhomogeneous ionisation.
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VI. DISCUSSION AND FURTHER WORK

The capability of the NFLF to closely match the re-
sults of EIC for the case of homogeneous density and
ionisation is fairly impressive, considering that only 3
Lorentzians were needed for convergence compared to
EIC’s 64 moments (16,4 in the Hermite basis, chosen
instead of Legendre-Laguerre as convergence is faster for
this problem). This implies that the NFLF is about 5
times faster (assuming the NFLF’s second-order ODE’s
take approximately twice the time to solve as EIC’s first-
order). However, this result should not be too surprising
as both models are based on some kind of linearisation
procedure, causing them to fail in almost exactly the
same way for a nonlinear problem. For example, the lack
of preheat or spatial shift in peak location predicted by
the models are both features observed in the linear prob-
lem studied in section IV. The SNB model requires 25
groups for convergence resulting in an only slightly faster
computation time than the EIC model.

Improving performance of the models for large temper-
ature variations would require approaches that did not
affect the desirable agreement in the linearised limit. For
EIC, a simple method is nonlinear iteration; i.e., updating
the right-hand side of equation (10) by adding on nonlin-

ear terms such as
eE‖

me

∂δf

∂v‖
−
∑
n

An
∂ψn
∂s‖

from the initial

calculation and repeating until convergence. However,
the computational time to apply the differential operators
and separate into eigenvector components would increase
the computational time by an undesirably large factor on
the order of the number of moments used.

Conversely, a correct approach for improving the NFLF
model is not immediately apparent, and probably requires
deeper analysis of the link between the model and the
VFP equation. However, it is conceivable that this could
be done without additional computational expense; for
example, replacing the a2λ2

ei∇2 term in equation (12) with
a2(λei∇) · (λei∇) would affect only nonlinear behaviour.

It is important to investigate sensitivity of divertor
temperature to the errors in these models to confirm
whether an accurate treatment of nonlocal transport can
reconcile simulation and experiment. Furthermore, the
discrepancies observed with the SNB model when ioni-
sation gradients are steep could potentially have critical
knock-on effects for integrated ICF modeling; it needs to
be determined whether further improvements to the SNB
model are necessary to avoid this.

Following on from these basic test problems and sensitiv-
ity tests, there are still important questions on predictive
modeling of fusion plasma heat flows that could be an-
swered using VFP codes. For example, the modification
of the distribution function by inverse brehmstrahlung
due to laser heating in inertial fusion could significantly
alter the transport processes48. Furthermore, kinetic ef-
fects can still affect perpendicular transport (both heat
flow and magnetic field advection rates) for moderate
magnetisations49,50, this could be relevant to recent inter-

est in magnetised hohlraums51,52 or magnetic islands in
tokamaks53; and while a few reduced models have been
suggested to capture some of these aspects9,11 they still
need to be properly validated with kinetic codes.

VII. CONCLUSIONS

In conclusion, we have compared three nonlocal models
from ICF and MCF. We have demonstrated their opti-
mal implementations, revealing potential subtleties in the
description of the models. We have demonstrated that
the SNB model performs better than NFLF and EIC for
the problems investigated with large temperature varia-
tions using the same correction factor r = 2 derived from
analysis of small-amplitude temperature sinusoids along

with the modified source term ∇ · g(mb)
1 appearing on

the right-hand side of equation (17). Ensuring that the
electron-electron and electron-ion collisionalities appear
separately in this equation further improves agreement
with VFP for a problem with spatially-varying ionisation.
However, the problems studied with large temperature
variation only reach a nonlocality parameter of ∼15%,
suggesting that SNB is most likely suitable for modeling
hohlraum energetics problems (with the current exception
of gas-fill heat flow, which is overestimated by a factor of
∼2) and mean SOL profiles but could break down at the
even shorter scalelengths relevant to transient events.

The NFLF and EIC models have been found to perform
favourably against KIPP when predicting the rate of decay
of a small-amplitude temperature pertubation over a wider
range of collisionalities than the SNB. However, these
models overestimate the peak heat flux by up to 35% in the
case of a large temperature variation as well as failing to
predict preheat. Additionally, a new analytic fit to kinetic
results for temperature sinusoids has been presented in
equation (22) that could be useful in traditional Landau-
fluid implementations.
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Appendix A: SNB in the hydrodynamic limit

For long wavelength perturbations the diffusion term
in equation 17 can be ignored and thus the distribution
function and nonlocal heat flow easily computed in this

limit. An outline of the derivation is given here, note

that using the BGK collision operator and g
(mb)
1 in the

source term gives the same δf0 as when using the AWBS

operator with f
(mb)
1 in the source term if r = 2. Note that

integration by parts is employed for the AWBS calculation
and a change of variables to u = v/

√
2vT is used. The

numerical results of these calculations are summarised in
Table II.

BGK AWBS

δf0 = − iZkλei

r

{
g

(mb)
1 ,f

(mb)
1

}
3

δf0 =

∫ v

∞
dv

iZkλei

v

{
g

(mb)
1 ,f

(mb)
1

}
3

=⇒ δQ = −2πme

3

∫ ∞
0

dv
ξZk2λ2

ei

r

v5
{
g

(mb)
1 ,f

(mb)
1

}
3

=⇒ δQ = −2πme

3

∫ ∞
0

dv
ξZk2λ2

ei

10

v5
{
g

(mb)
1 ,f

(mb)
1

}
3

= − 32

9π

∫ ∞
0

du
u17{1, u2 − 4}e−u2

36

ξZk2λ
(B)2
ei

r
QB. = − 32

9π

∫ ∞
0

du
u17{1, u2 − 4}e−u2

360
ξZk2λ

(B)2
ei QB.

Appendix B: Linearised SNB for arbitrary collisionality.

A similar analyis can be performed with slightly greater
difficulty at arbitrary collisionality. Integration by parts

must be used again for the AWBS derivation, along with
some mathematical identities. Recall that the electric
field correction made by the SNB model is a nonlinear
correction and does not come into play if the amplitude
of the perturbation is infinitesimal:

BGK AWBS

δf0 = − iZkλei

3r

{
g

(mb)
1 ,f

(mb)
1

}
1 + ξZk2λ2

ei/3r
δf0 = e

ξZk2λ2ei
24

∫ v

∞
dve−

ξZk2λ2ei
24

iZkλei

v

{
g

(mb)
1 ,f

(mb)
1

}
3

=⇒ Q =
2πme

3

∫ ∞
0

dv
v5
{
g

(mb)
1 ,f

(mb)
1

}
1 + ξZk2λ2

ei/3r
=⇒ δQ = −2πme

3

∫ ∞
0

dv
γ
(

5
4 ,
−ξZk2λ2

ei

24

)
e−

ξZk2λ2ei
24 v5

{
g

(mb)
1 ,f

(mb)
1

}
(−ξZk2λ2

ei/24)1/4

=⇒ 12Q

QB
=

∫ ∞
0

du
u9{1, u2 − 4}e−u2

1 + 32ξZk2λ
(B)2
ei u8/27πr

. =⇒ Q

QB
=

∫ ∞
0

du

γ

(
1
4 ,
−4ξZk2λ

(B)2
ei u8

27π

)
e−

4ξZk2λ
(B)2
ei

u8

27π u9{1, u2 − 4}e−u2

12(−4ξZk2λ
(B)2
ei u8/27π)1/4

,

where γ is the incomplete gamma function. Computing
the definite integral numerically with Mathematica shows

that the AWBS heat flow can become negative for kλ
(B)
ei >

0.124/
√
ξZ.
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