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Abstract In magnetized plasmas of fusion devices the strong magnetic field leads to highly anisotropic
physics where solution scales along field lines are much larger than perpendicular to it. Hence, regarding
both accuracy and efficiency, a numerical method should allow to address parallel and perpendicular
resolutions independently. In this work, we consider the eigenvalue problem of a two-dimensional
anisotropic wave equation with variable coefficients which is a simplified model of linearized ideal
magnetohydrodynamics.
For this, we propose to use a mesh that is aligned with the magnetic field and choose to discretize the
problem with a discontinuous Galerkin method which naturally allows for non-conforming interfaces.
First, we analyze the eigenvalue spectrum of a constant coefficient anisotropic wave equation, and
demonstrate that this approach improves the accuracy by up to seven orders of magnitude, if compared
to a non-aligned method with the same number of degrees of freedom. In particular, the results improve
for eigenfunctions with high mode numbers.
We also apply the method to compute the eigenvalue spectrum of the associated anisotropic wave
equation with variable coefficients of flux surfaces of a Stellarator configuration. We benchmark the
results against a spectral code.

Keywords Discontinuous Galerkin, field-alignment, non-conforming, anisotropic wave, non-coercive,
eigenvalue problem, ideal MHD, plasma physics, Stellarator

1 Introduction

In magnetically confined fusion devices, hot plasma is confined by strong magnetic fields. Two main
torus-shaped designs are distinguished, the Tokamak with an axisymmetric field and the Stellarator
with a fully three-dimensional field. In general, the magnetic field geometry of a confined state can be
described by a so-called MHD equilibrium, a non trivial steady-state of the ideal MHD equations where
magnetic and pressure forces balance [12].
In the core of the plasma, the magnetic field lines lie on a set of nested toroidal surfaces of constant
pressure, so-called magnetic flux surfaces, as depicted in Figure 1. We introduce a radial coordinate
s ∈ [0, 1] that labels the flux surfaces from the magnetic axis to the largest flux surface. The flux surface
geometry is parametrized by two angles, the poloidal angle θ and toroidal angle ϕ. The magnetic field
is tangential to the flux surface, thus it is defined by the flux surface geometry and the contra-variant
components (Bθ, Bϕ). It is now possible to define straight-field line coordinates (SFL), or magnetic
coordinates, in which the magnetic field lines are straight [9]. Hence, the ratio of the contra-variant
components is a constant, called the rotational transform ι, and only depends on the flux surface label

ι(s) := Bθ(s, θ, ϕ)/Bϕ(s, θ, ϕ) . (1)
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Figure 1. Sketch of nested flux surfaces in a toroidal geometry. Magnetic field lines are shown on the
outermost surface.

The magnetic field geometry of an MHD equilibrium is the starting point for studying the physical
behavior of the plasma. For example, finding the associated eigenmode structure of the linearized MHD
equations will give insight into the stability of the equilibrium against disturbances and also about
resonance modes [12]. Due to the strong magnetic field, the plasma response is highly anisotropic, such
that gradients in magnetic field direction are typically much smaller than in the perpendicular direction.
Hence, regarding both accuracy and efficiency, a numerical method should allow to address parallel and
perpendicular resolutions independently.
One approach is to use finite difference methods and trace the solution along magnetic field lines to
approximate parallel derivatives. Amongst others, [13,20,14,22,17] study such finite difference approaches
for plasma turbulence. In this work, we want to mimic such a strategy with a mesh-based finite element
method. Therefore, the element edges of the mesh have to follow the magnetic field. Global alignment is
not possible as magnetic field lines do not necessarily close, so we propose to align elements only locally
between two consecutive poloidal planes. Therefore, non-conforming interfaces have to be introduced.
Even though mortar methods for finite elements exist [6], we choose to construct a high order discontinuous
Galerkin method which naturally incorporates the treatment of non-conforming interfaces [16].
We will show that the discontinuous Galerkin method on the aligned mesh is able to address the degrees
of freedom for resolving parallel and perpendicular direction individually. To the best of our knowledge,
this is the first time that a mesh-based finite element method with a locally aligned mesh is applied to a
highly anisotropic problem.
As a model problem, we study a simplified linear MHD model that keeps the anisotropy of the underlying
physics and describes the resonance behavior of the plasma on a single flux surface. It is a two-dimensional
anisotropic wave equation with variable coefficients that arise from the geometry of the magnetic flux
surface and was derived in [11]. For the specific case of constant coefficients, the eigenmodes can be
computed analytically, allowing us to show a distinct feature of the spectrum that cannot be seen in
simple resonant systems. Low frequencies are not directly linked to low mode numbers, but also high
mode numbers can have a low frequency, if the associated eigenfunction is aligned with the magnetic
field.
In Section 2, the equation and the analytic properties with constant coefficients are discussed. In
Section 3, we show how the aligned mesh is constructed and derive the discontinuous Galerkin method
for the anisotropic wave equation with variable coefficients. In Section 4, we investigate the properties
of the proposed method for the case of constant coefficients. Here, the errors to exact eigenvalues can
be evaluated, allowing to quantify the impact of the alignment, the impact of the resolution ratio
between parallel and perpendicular direction and also show the mesh convergence of the method. Finally,
in Section 5, we consider a three-dimensional magnetic field geometry of a Stellarator, with variable
coefficients for each flux surface. We demonstrate the convergence of the eigenvalues and benchmark the
result against a high resolution spectral code.

2 Anisotropic wave equation

The two-dimensional anisotropic wave equation with variable coefficients was derived in [11] from
the linearized ideal MHD equations, with drift approximation [21] and by neglecting pressure and
compressional Alfvén waves.
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The associated two-dimensional eigenvalue problem reads as

−∇ · (B (B · ∇φ)) = ω2αφ , (2)

within the periodic domain x ∈ Ω = [0, 2π)2 and the magnetic field

B = β(x)b = β(x)
(
b1
b2

)
. (3)

As stated in the introduction, using straight field line coordinates (x, y) = (θ, ϕ) allows to express the
magnetic field by a real valued constant vector (b1, b2) = (ι, 1) and a scalar-valued periodic function
β (x) > 0. The right hand side is allowed to include a scalar-valued periodic variation α (x) > 0. Both
scalar fields α, β arise from the MHD equilibrium and the metric terms of the magnetic flux surface
geometry, details are given in [11]. The special case of a flux surface in a periodic cylinder geometry can
be described by α, β ≡ 1.

2.1 Analytical properties for constant coefficients

To investigate properties of solutions of (2), we consider analytic eigenfunctions associated to eigenvalues
of (2) for constant coefficients α, β ≡ 1. Defining the norm

‖v‖2
L2(Ω) :=

∫
Ω

vv̄ dV (4)

we can state the following theorem.
Theorem 2.1 For equation (2) with α, β ≡ 1, the functions

φm,n(x, y) = exp (i (mx+ ny)) , m, n ∈ Z, x, y ∈ Ω (5)

are analytic eigenfunctions corresponding to the eigenvalue ω2
m,n = (b1m+ b2n)2. The parallel gradient

of each eigenfunction fulfills
‖b · ∇φm,n(x, y)‖2

L2
2(Ω) 6 4π2ω2

m,n. (6)

Proof:
The gradient of φm,n is given by

∇φm,n(x, y) =
(

im exp (i (mx+ ny))
in exp (i (mx+ ny))

)
= iφm,n(x, y)

(
m
n

)
. (7)

Inserting the gradient in (2) yields

−∇ · (b (b · ∇φm,n(x, y))) = −i2(b1m+ b2n)2φm,n = (b1m+ b2n)2φm,n . (8)

Using the representation of the gradient (7) we can consider

‖b · ∇φm,n(x, y)‖2
L2(Ω) = ‖φm,n(x, y)i(b1m+ b2n)‖2

L2(Ω) = (9)

= ‖φm,n(x, y)‖2
L2(Ω) |b1m+ b2n|2 6 4π2 |b1m+ b2n|2 = 4π2ω2

m,n (10)

which concludes the proof.
�

Theorem 2.1 shows that the norm of the parallel gradient depends on the size of the eigenvalue. In
Figure 2, we show for a choice of b = (1.1659398, 1)> the density plot of the real part of φ4,−5, with an
eigenvalue of ω4,−5 = 0.11305798. We observe that the function is almost constant in b-direction which
is plotted as the black dashed line.

Hence, we conclude that we can use less resolution in parallel direction than in perpendicular direction
for resolving eigenfunctions associated to small eigenvalues (low frequencies).
We remark that the Fourier modes φm,n with frequency ratio m/n close to −b2/b1 are those producing
small eigenvalues, as

ω2
m,n = (b1m+ b2n)2 = n2(b1

m

n
+ b2)2 . (11)

This demonstrates that also high mode numbers can be associated with low frequencies if their eigen-
function has small variation in field direction.
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Figure 2. Real part of eigenmode φ4,−5 in Ω = [0, 2π)2 with associated eigenvalue ω4,−5 = 0.11305798
for b = (1.1659398, 1)> (black dashed line).

(a) cartesian, conforming,
commonly used for fully
periodic domain

b

(b) fully aligned, internally
conform, periodically non-
conforming

(c) locally aligned, non-
conforming, uniform Nx =
Ny

(d) locally aligned, non-
conforming, general-
ized Nx 6= Ny, here:
Nx = 3, Ny = 6

Figure 3. Different conforming and non-conforming choices for discretizing the domain Ω.

3 Discretization

In Section 3.1, we design a suited mesh that is aligned with b. In Section 3.2, we formulate the discontinuous
Galerkin method based on a variational mixed formulation of (2) and derive the discrete eigenvalue
problem. Remarks on the function spaces for discretization of the test and trial functions are given in
Section 3.3.

3.1 Choice of mesh

Section 2.1 shows that a suited method should distribute its degrees of freedom and emphasize on the
resolution in perpendicular direction. When discretizing the two-dimensional fully periodic domain Ω,
we want to design a mesh which aims at uniformly treating all cells and allows us to assign the resolution
separately.
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The most intuitive choice is to fully align one dimension of the mesh with b. This yields non-conforming
interfaces at the periodic boundary whenever

b2

b1
Ny /∈ Z (12)

where Nx, Ny is the number of cells in x,y-direction respectively. (12) particularly holds for all irrational
fractions b2/b1. To generate a more regular distribution of non-conforming interfaces, we choose to align
all mesh cells locally instead of globally which introduces non-conforming interfaces for each cell whenever

b2

b1

Ny
Nx

/∈ Z. (13)

Now both, interior and boundary interfaces, are treated equally. Once an aligned mesh is used, we can
adapt the resolution in parallel and perpendicular direction by changing Nx and Ny respectively.
Figure 3 shows aligned upper and lower cell interfaces. In the case of |b1| � |b2|, an alignment of left
and right cell interfaces would be chosen instead.

3.2 Mixed form and derivation of the DG method

As carried out in [10, Sections 1.3, 4.2.1], the bilinear form for solving the eigenvalue problem should be
consistent, continuous, coercive and symmetric. As the differential operator of (2) is not coercive, this
property cannot be transferred to the associated bilinear form. For preserving symmetry, we propose the
mixed form {

B · ∇φ = u

−∇ · (Bu) = ω2αφ .
(14)

Note that the symmetric splitting leads to a scalar-valued equation for the parallel gradient represented
by u. The associated weak form for test and trial functions v, u ∈ VU , ψ, φ ∈ VΦ and a mesh with cells
K ∈ K writes 

∑
K∈K

(∫
K

B · ∇φv dV
)

=
∑
K∈K

(∫
K

uv dV
)

∀v ∈ VU

∑
K∈K

(∫
K

−∇ · (Bu)ψ dV
)

= ω2
∑
K∈K

(∫
K

αφψ dV
)

∀ψ ∈ VΦ .
(15)

Using locally defined test and trial functions vK , uK ∈ VK,U , ψK , φK ∈ VK,Φ in the locally defined
function spaces VK,U , VK,Φ for a cell K, (15) writes

∫
K

B · ∇φKvK dV =
∫
K

uKvK dV ∀vK ∈ VK,U∫
K

−∇ ·
(
BuK

)
ψK dV = ω2

∫
K

αφKψK dV ∀ψK ∈ VK,Φ .
(16)

In the following, we omit the spaces for test functions and the superscripts K whenever there is no need
for differentiating the cells of definition. Integration by parts of (16) leads to

−
∫
K

φ∇ · (Bv) dV +
∑
F∈∂K

(∫
F

φ̂vB · n dS
)

=
∫
K

uv dV∫
K

uB · ∇ψ dV −
∑
F∈∂K

(∫
F

ûψB · n dS
)

= ω2
∫
K

αφψ dV
(17)

with numerical fluxes û and φ̂ that still need to be defined and unit outer normal n on K. To recover
the symmetry of the volume integrals, the first equation is integrated by parts again using the inner cell
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boundary value φ, yielding
−
∫
K

uv dV+
∫
K

B · ∇ (φ) v dV +
∑
F∈∂K

(∫
F

(
φ̂− φ

)
vB · n dS

)
= 0∫

K

uB · ∇ψ dV −
∑
F∈∂K

(∫
F

ûψB · n dS
)

= ω2
∫
K

αφψ dV .

(18)

To guarantee real eigenvalues, system matrices have to be symmetric which is ensured whenever the
associated bilinear form is symmetric. The numerical fluxes are a slightly modified version of the local
discontinuous Galerkin (LDG) fluxes proposed in [8] and summarized in [3, Table 3.1] and given by

û = {{u}} − ηS
hF

b · [[φ]], φ̂ = {{φ}} (19)

with the average {{.}} and jump [[.]] on an interface F defined as

{{f}} = 1
2
(
fK + fNF (K)) , [[f ]] = fKnK + fNF (K)nNF (K) (20)

where nK is the unit outer normal of cell K and nNF (K) is the unit outer normal of its neighbour NF (K)
sharing interface F . It holds nK = −nNF (K). We denote hF as the length of the respective cell edge at
the interface. Further, fK , fNF (K) are the evaluations on F from K and from its neighbour respectively.
We note that average and jump are well-defined as they are identical when viewed from each of the
neighbouring cells of the interface. We further note that there are many possible choices for the fluxes.
Setting ηS = 0 would lead to the Bassi-Rebay 1 scheme [5], and decomposing u into local and lifted
gradients as done in the Bassi-Rebay 2 scheme [4] would result in a system where only direct neighbours
are coupled.
Here, we choose the LDG fluxes (19) and insertion into (18) yields ∀K ∈ K



−
∫
K

uKvK dV +
∫
K

B · ∇φKvK dV

−
∑
F∈∂K

(∫
F

1
2B ·

(
φKnK + φNF (K)nNF (K)) vK dS

)
= 0 ∀vK ∈ VK,U

−
∑
F∈∂K

(∫
F

1
2
(
uK + uNF (K))ψKB · nK dS

)
+
∑
F∈∂K

(∫
F

ηS
hF
B ·
(
φKnK + φNF (K)nNF (K))ψKB · nK dS

)
+
∫
K

uKB · ∇ψK dV = ω2
∫
K

αφKψK dV ∀ψK ∈ VK,Φ

(21)

To retrieve the global variational formulation, we sum (21) over all over all elements K. For this we
establish the following Lemmata by defining F as the space of all interfaces.

Lemma 3.1. Let φ̂ be an arbitrary flux, ψK ∈ VK,Φ locally defined in K and v ∈ C2 a not necessarily
constant vector. Then

∑
K∈K

∑
F∈∂K

(∫
F

φ̂ψKv · nK dS
)

=
∑
F∈F

(∫
F

φ̂v · [[ψ]] dS
)
. (22)

Proof:
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When summing over all cells, each interface F is considered twice in total, once for a cell K and once for
its unique neighbour NF (K). Hence, we obtain∑

K∈K

∑
F∈∂K

(∫
F

φ̂ψKv · nK dS
)

=
∑
F∈F

(∫
F

φ̂ψKv · nK dS +
∫
F

φ̂ψNF (K)v · nNF (K) dS
)

=
∑
F∈F

(∫
F

φ̂
(
ψKv · nK + ψNF (K)v · nNF (K)) dS

)
=
∑
F∈F

(∫
F

φ̂v · [[ψ]] dS
)
.

(23)

�

Lemma 3.2. Let φ̂ = {{φ}}, ψK ∈ VK,Φ locally defined in K and v ∈ C2 a not necessarily constant
vector. Then

−
∑
K∈K

∑
F∈∂K

(∫
F

(
φ̂− φK

)
ψKv · nK dS

)
=
∑
F∈F

(∫
F

v · [[φ]]{{ψ}} dS
)
. (24)

Proof:
When summing over all cells, each interface F is considered twice in total, once for a cell K and once for
its unique neighbour NF (K). Hence, we obtain

−
∑
K∈K

∑
F∈∂K

(∫
F

(
φ̂− φK

)
ψKv · nK dS

)
= −

∑
K∈K

∑
F∈∂K

(∫
F

1
2v · n

K
(
−φK + φNF (K))ψK dS

)
=
∑
K∈K

∑
F∈∂K

(∫
F

v ·
(
φKnK − φNF (K)nK

) 1
2ψ

K dS
)

=
∑
K∈K

∑
F∈∂K

(∫
F

v ·
(
φKnK + φNF (K)nNF (K)) 1

2ψ
K dS

)
=
∑
K∈K

∑
F∈∂K

(∫
F

v · [[φ]] 12ψ
K dS

)
=
∑
F∈F

(∫
F

v · [[φ]] 12ψ
K dS +

∫
F

v · [[φ]] 12ψ
NF (K) dS

)
=
∑
F∈F

(∫
F

v · [[φ]] 12
(
ψK + ψNF (K)) dS

)
=
∑
F∈F

(∫
F

v · [[φ]]{{ψ}} dS
)
.

(25)

�

Using Lemma 3.2 on the surface term of the first equation of (21) and summing over all cells K ∈ K, we
obtain ∑

K∈K

(
−
∫
K

uKvK dV +
∫
K

B · ∇φKvK dV
)
−
∑
F∈F

∫
F

B · [[φ]]{{v}} dS = 0 (26)

whereas the second equation of (21) using Lemma 3.1 yields

−
∑
F∈F

(∫
F

{{u}}B · [[ψ]] dS
)

+
∑
F∈F

(∫
F

ηS
hF
B · [[φ]]B · [[ψ]] dS

)
+
∑
K∈K

(∫
K

uKB · ∇ψK dV
)

= ω2
∑
K∈K

∫
K

αφKψK dV .

(27)
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The method is consistent as for a continuous solution
(
φ0, u0, ω

2
0
)
it holds {{φ0}} = φ0, {{u0}} = u0 and

[[φ0]] = 0. Insertion in (26) and (27) and one integration by parts in (27) allows us to retrieve (15).
For building the system matrices and to prove its symmetry, we now associate the matrix components as
follows

MUV ↔
∑
K∈K

∫
K

uKvK dV (28)

AΦV ↔
∑
K∈K

∫
K

B · ∇φKvK dV (29)

BΦV ↔
∑
F∈F

∫
F

B · [[φ]]{{v}} dS (30)

BUΨ ↔
∑
F∈F

∫
F

{{u}}B · [[ψ]] dS (31)

BΦΨ ↔
∑
F∈F

∫
F

ηS
hF
B · [[φ]]B · [[ψ]] dS (32)

AUΨ ↔
∑
K∈K

∫
K

uKB · ∇ψK dV (33)

MΦΨ ↔
∑
K∈K

∫
K

αφKψK dV (34)

The system then writes(
−MUV AΦV −BΦV

AUΨ −BUΨ BΦΨ

)(
U
Φ

)
= ω2

(
0 0
0 MΦΨ

)(
U
Φ

)
. (35)

Choosing the same basis for test and trial functions, it is obvious that the mass matrices MUV and MΦΨ

and the penalization matrix BΦΨ are symmetric. Furthermore, it holds AΦV = A>UΨ and BΦV = B>UΨ as
φ, ψ and u, v are interchangeable between (29) and (33) as well as (30) and (31).
(35) is reduced to the generalized eigenvalue problem

A :=
(
(AUΨ −BUΨ )M−1

UV

(
A>UΨ −B>UΨ

)
+BΦΨ

)
AΦ = ω2MΦΨΦ.

(36)

We note that the matrix A is symmetric and the mass matrix MUV only has element-local contributions
and hence is an easily invertible block diagonal matrix. Also note that (36) can be written as a standard
symmetric eigenvalue problem using the root of the mass matrix MΦΨ

M
− 1

2
ΦΨ AM

− 1
2

ΦΨ

(
M

1
2
ΦΨΦ

)
= ω2

(
M

1
2
ΦΨΦ

)
. (37)

The eigenvalue problem is solved with the FEAST library [19] which allows to solve for a specific region of
the spectrum. We also use the MUMPS library [1,2] for performing matrix multiplications and factorizations
as well as the solution of linear systems needed by the FEAST eigenvalue solver.

3.3 Remark on function spaces

The basis functions are defined on a reference element (ξ, η) ∈ [−1, 1]2 as a tensor product of two
polynomials with degrees pξ, pη. We choose to align ξ with b and η with y as depicted in Figure 4. This
allows us to separate resolutions, using the parameters

– resolution of the mesh Nx, Ny
– degree of the basis pξ, pη

with respective parallel and perpendicular resolution

DoF‖ := (pξ + 1)Nx, DoF⊥ := (pη + 1)Ny . (38)
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K
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(1, 1)(−1, 1)

Figure 4. Reference coordinate system (ξ, η) for an aligned cell K in (x, y).

4 Numerical results for constant coefficients

As analytic solutions are available for α, β ≡ 1, we compare the results of the proposed locally field-aligned
discontinuous Galerkin method (ADG) with the exact eigenvalues deduced in Section 2.1. Therefore, the
discrete eigenfunctions need to be associated to the exact eigenfunctions in a postprocessing step which
is described in Section 4.1. For the assessment of ADG, we first define a reference case for one specific
choice of constant B in Section 4.2. We then examine the impact of the local alignment of mesh and
basis in Section 4.3. In Section 4.4, we investigate different choices for the distribution of parallel and
perpendicular resolution. We investigate the convergence rate of ADG in Section 4.5.
The total number of degrees of freedom is given by

DoF = DoF‖DoF⊥ = (pξ + 1)Nx(pη + 1)Ny. (39)

Throughout this chapter, we present relative errors whenever we speak of errors. If the exact eigenvalue
of a mode is zero, we use absolute errors instead. This is particularly the case for the constant mode.
Usually the biggest error occurs for eigenvalues which are associated to eigenmodes of the highest
considered mode number. As we will see, this is not always the case for ADG. Due to the separation of
parallel and perpendicular resolution and the analysis of Section 2.1, we expect the error of eigenvalues
to scale with the size of the eigenvalue and the mode number of the associated eigenfunction.

4.1 Eigenvector postprocessing

For each eigenvalue ωj , a discrete eigenvector
{
Φjk
}DoF
k=1 is found. Each degree of freedom is associated to

a discontinuous Galerkin basis function φk.
We compute the projection of each basis function onto the set of Fourier modes |m| 6 mmax, |n| 6 nmax

φ̃km,n =
∫
Ω

φkφm,n dV . (40)

We then associate the eigenvalue ωj to the mode number with the maximal amplitude given by

argmax
|m|6mmax,|n|6nmax

∣∣∣∣∣
DoF∑
k=1

Φ
j
kφ̃

k
m,n

∣∣∣∣∣ . (41)
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4.2 Reference case

For the purpose of evaluating the properties of ADG, we define a reference test case by b = (ι, 1)> =
(1.1659398, 1)>. This value for b is chosen to avoid a low rational number for ι such that all considered
eigenvalues differ from zero except for the constant mode. Further, it yields a locally aligned mesh with
low shear and non-conforming interfaces of different lengths.
In the reference case, we consider mode numbers up tommax = nmax = 20. Figure 5 shows the distribution
of eigenvalues on a logarithmic scale for the given selection of modes. We observe that small eigenvalues
gather perpendicularly to b.

-20-16-12 -8 -4 0 4 8 12 16 20
-20

-16

-12

-8

-4

0

4

8

12

16

20

mode number m

m
od
e
nu
m
be
r
n

eigenvalue ω2

10-1

100

101

102

103

Figure 5. Contour plot of the size of the exact eigenvalues for the reference case with associated modes
with maximal frequency mmax = nmax = 20. The black crosses indicate the discrete mode numbers with
eigenvalues smaller than ω2

max = 0.2.

As modes with small parallel gradient are of interest, we aim to resolve all modes with associated
eigenvalue ω2

m,n 6 0.2, see Theorem 2.1. The stabilization parameter ηS in (19) is chosen as 6.
We remark that system matrices are stored as lower triangular sparse matrices. nnzA is the percentage
of non-zeroes entries of the system matrix A.

4.3 Impact of the local alignment

In this section, we compare a non-aligned DG method operating on a cartesian mesh with the locally
field-aligned mesh of ADG for the same number of degrees of freedom. We choose the polynomial degrees
pξ = 7 = pη and the mesh resolution Nx = 8 = Ny.
In Figure 6, we first show the eigenvalue errors for all Fourier modes |m| , |n| 6 20 as contour line
plots. For the cartesian mesh used in Figure 6(a), we observe that the error increases for higher mode
numbers. Similar behaviour is found in Figure 6(b) as well, but additionally a correlation of the error to
the magnitude of the eigenvalue is introduced. The well resolved region is tilted towards the direction
perpendicular to b, which is the region where small eigenvalues reside as indicated by the white dashed
line in Figure 5.
In Figure 7, we take a closer look at the band of modes with eigenvalues ω2 6 ω2

max. We observe that
the errors of eigenvalues with large mode numbers modes are smaller by 1.5 to 2 orders of magnitude for
ADG (round markers) in comparison to a non-aligned discontinuous Galerkin method (square makers).
Thus, we conclude that aligning the mesh yields a significant accuracy improvement within the selected
mode band.
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Figure 6. Errors of a non-aligned cartesian mesh DG method and the locally aligned mesh of ADG, in
the reference case with DoF = 212. In between the white dashed lines resides the band of modes with
eigenvalues ω2 6 ω2

max = 0.2.
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Figure 7. Comparison of errors of a non-aligned cartesian case with ADG in the reference case with
DoF = 212 for different distributions of resolution.

4.4 Distribution of resolution

When comparing the band of modes for ω2 6 ω2
max in Figure 6 and the distribution of exact eigenvalues

in Figure 5, we observe that many eigenvalues of mode numbers outside this band are overresolved. As
eigenfunctions with small eigenvalues have a small parallel gradient according to Theorem 2.1, we aim to
distribute the resolution DoF‖ and DoF⊥ of the method such that DoF⊥ > DoF‖. First, we keep the
total number of cells constant and change the cell distribution by refining Ny and coarsening Nx. The
effects are shown in Figure 8(a). Comparing these results to to Figure 6(b), we observe that the region
of well-resolved eigenvalues with errors smaller than 10−4 extends into regions of larger mode numbers
and gathers narrower around the interesting band of modes.
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Figure 8. Errors of ADG for high and low degree pξ but same parallel resolution DoF‖ with DoF = 212,
in the reference case. In between the white dashed lines resides the band of modes with eigenvalues
ω2 6 ω2

max = 0.2.

The errors of the mode band are also plotted in Figure 7. We observe that changing the cell distribution
yields an increase in accuracy of 4 to 5 orders of magnitude for mode numbers larger than 4 when
comparing round markers with triangle markers. The comparison with a cartesian mesh (square markers)
yields 5.5 to 7 orders of magnitude in total by aligning the mesh and distribute its resolution such that
DoF⊥ /DoF‖ = 4 for the same total resolution DoF = 212.
We can also adapt the ratio DoF⊥ /DoF‖ by modifying the degree of the basis functions. Figure 8(b)
shows a configuration with pξ = 3 and DoF⊥ /DoF‖ = 4. We observe that the well resolved region
is thinner whereas the errors related to the mode number are of the same magnitude in comparison
to Figure 8(a). The accuracy of results within the interesting band of modes is marginally affected
as confirmed by Figure 7 when comparing pξ = 7 and pξ = 3 (triangle markers and diamond-shaped
markers) with DoF⊥ /DoF‖ = 4. However, a lower degree pξ increases the sparsity of system matrices
from 3.30% to 2.66%, so we trade some accuracy for higher sparsity.

4.5 Numerically observed convergence

For examining the convergence behaviour of ADG, we trace the maximal error inside the band of modes
ω2 6 ω2

max with mode numbers up to 20. We consider a parallel degree of pξ = 3 and perpendicular
degree of pη = 3, 7 and refine the mesh in Nx, Ny simultaneously by doubling the number of cells in each
direction. We consider this for configurations with DoF⊥ /DoF‖ = 4, 8.
Figure 9 shows the convergence of these configurations. For the same resolution, DoF⊥ /DoF‖ = 8
yields an improvement of 2.5 to 3 orders of magnitude compared to DoF⊥ /DoF‖ = 4. The numerically
observed rate of convergence of the maximal error in the reference configuration is of the order of the
perpendicular degree pη and approximately given by

O
(
DoF−pη

)
. (42)

As we consider the convergence of multiple eigenvalues at once, we leave the convergence rates as a bare
observation rather than stating it as a general property of ADG.

5 Numerical results for a three-dimensional MHD equilibrium

In this section, we explore the numerical results of ADG for B where metric terms from flux surfaces of
MHD equilibria are included in the functions α (x) and β (x). As a test case, we use the VMEC-equilibrium
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Figure 9. Convergence of the maximal error among all considered eigenmodes in the reference case. Dif-
ferent mesh configurations and refinement strategies are considered. The numerically observed convergence
rate is plotted as dashed lines.

of the W7-X high-mirror case [18, Table IV], with units normalized in Tesla and meter.
We propose mapping the mesh to flux surfaces such that the interfaces are toroidally non-conforming
which is shown in Figure 10. We use pξ = 3 and pη = 7. The flux surfaces are parameterized by a
normalized flux surface coordinate s ∈ [0, 1] with 0 being the magnetic axis and 1 being the outermost
flux surface. On each flux surface with a fixed s, the two-dimensional eigenvalue problem is solved. In
this setup, b = (ι(s), 1)> varies between ι(s) ∈ [0.86, 1).

Ny

Nx

θ

ϕ

(a) logical domain discretization

ϕ

θ

(b) physical domain visualization (dark grey: one field period)

Figure 10. Locally field-aligned mesh with Nx = 8, Ny = 16 in a single field period yielding toroidally
non-conforming interfaces on a flux surface for the example of a W7-X-like MHD equilibrium.

The number of field periods for the considered W7-X-like equilibrium is 5. We compare results by the
mesh resolution (Nx, Ny) of a single field period. The total number of cells for a discretization is then
(5Nx, Ny).
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We first consider the convergence of ADG for MHD equilibria in Section 5.1. In Section 5.2, we examine
the impact of the local alignment of mesh and basis. We then compare the results of ADG to an existing
Fourier method in Section 5.3.

5.1 Numerically observed convergence

As no analytic results are available, we consider the discrete results of the method and their behaviour
when increasing the mesh resolution. Figure 11 shows the results of ADG for a selection of modes fulfilling
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Figure 11. Convergence results of ADG with pξ = 3, pη = 7 on flux surfaces of a W7-X-like MHD
equilibrium. Toroidally non-conforming meshes of increasing resolution satisfying DoF⊥ /DoF‖ = 4
within a field period are used. Modes are distinguished by shape, and resolution by colour.

DoF⊥ /DoF‖ = 4 within a field period. This selection is chosen to make the convergence process visible.
We observe that the spectra coincide for (2,−1) (round markers) for all resolutions. For (12,−11), the
spectra of Nx = 8, Ny = 16 and Nx = 16, Ny = 32 coincide (square markers). Therefore, we deduce that
further refining the mesh yields the same results. For Nx = 4, Ny = 8, the eigenvalues of (12,−11) are
not converged yet (light gray square markers).
An explanation of the jumps in the spectrum is given in Section 5.3.

5.2 Impact of the local alignment

Having established the convergence of ADG, we can now compare the converged result with the non-
aligned cartesian mesh.
Figure 12 shows these results for the same selection of modes as in Figure 11. The results for the low
mode (2,−1) coincide up to one datapoint, whereas the results for the high mode (12,−11) differ by a
huge margin. For the same field period resolution of DoF = 212, the cartesian case is not converged yet
for the high mode number.

5.3 Comparison with a spectral code

This section compares results of ADG to the spectral code CONTI [15] which operates on a single field
period. The results of CONTI were kindly provided by Axel Könies. The setup of CONTI uses poloidal
mode numbers with mmax = 58 and toroidal mode numbers

n ∈ {−45,−40,−35,−30, . . . , 30, 35, 40, 45} − σ (43)
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Figure 12. Results of ADG with pξ = 3, pη = 7, Nx = 8, Ny = 16 using toroidally non-conforming
interfaces in comparison to a non-aligned cartesian case with pξ = 7, pη = 7, Nx = 8, Ny = 8 on flux
surfaces of a W7-X-like MHD equilibrium. Both setups fulfill DoF = 212 within a field period. Modes are
distinguished by shape and color, meshes are indicated by fillings.

where σ ∈ {0, 1, . . . , 4} is a phase factor shift to account for different families of toroidal mode numbers.
For evaluating metric terms, a resolution of 240× 80 points in poloidal, toroidal direction was used. We
setup ADG using a toroidally non-conforming mesh with the resolution on a single field period being
Nx = 8, Ny = 32 and basis degrees pξ = 3, pη = 7 which yields DoF⊥ /DoF‖ = 8. Figure 13 shows results
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Figure 13. Comparison of ADG using a mesh with toroidally non-conforming meshes and pξ = 3, pη =
7, Nx = 8, Ny = 32 such that DoF⊥ /DoF‖ = 8 with CONTI on flux surfaces of a W7-X-like MHD
equilibrium. Modes are indicated by shape and color whereas the choice of method is indicated by fillings.

for a larger selection of modes for ADG and CONTI. We use filled markers for ADG and empty markers
for CONTI. We observe that the results of the methods overall coincide with some larger deviations for
s > 0.9 at the boundary of the equilibrium where strong metric terms reside.
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Figure 13 allows to explain the jumps in the spectrum when tracing the eigenvalues of a single mode. As
the exact eigenfunctions of the anisotropic wave equations on flux surfaces of a three-dimensional MHD
equilibrium are a combination of different Fourier modes, the mode association of Section 4.1 might
shift when traversing from one flux surface to another, as a different Fourier mode might become the
dominating part of the eigenfunction. For example, at s ≈ 0.57 associations of (12,−11) and (13,−11)
switch. The same holds for (6,−6) and (13,−11) at s ≈ 0.66 or (8,−6) and (6,−6) at s ≈ 0.29. The
jumps in the spectrum are physically meaningful and are related to plasma instabilities [7].

6 Conclusion

We constructed and analyzed a discontinuous Galerkin method relying on a variational mixed form of an
anisotropic wave equation and operating on a non-conforming locally field-aligned mesh.
The numerical results of Sections 4 and 5 confirm that the local alignment of mesh and basis decouples
the resolution in parallel and perpendicular direction. This allows to resolve eigenfunctions with high
mode numbers while providing the possibility to coarsely discretize close to constant parts. Furthermore,
the size of eigenvalue errors now correlates to both the size of the mode numbers of the associated Fourier
eigenmode and the size of the eigenvalue itself.
We examine the impact of the local alignment of mesh and basis on the spectrum. For constant coefficients,
ADG yields an improvement of up to 7 orders of magnitude in accuracy compared to a non-aligned
cartesian case with the same number of degrees of freedom. A large gain in accuracy is particularly found
for high mode numbers.
For the anisotropic wave equation with variable coefficients, modeling the flux surfaces of a three-
dimensional MHD equilibrium, we again assert that the aligned meshes yield superior results when
compared to a non-aligned cartesian mesh with the same total resolution. Furthermore, we show the
convergence of ADG. Finally, the converged result of ADG for the eigenvalue spectrum shows excellent
agreement with a highly resolved spectral code.
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