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Abstract:
This  paper  generalizes  a  Perfectly  Matched  Layer  (PML) technique  for  emulating

radiation  at  infinity  in  finite  difference  or  finite  element  simulations  of  time-harmonic
electromagnetic wave propagation in complex media. Extending a previous work in Cartesian
coordinates  [Jacquot2013],  we  formulate  a  PML  as  an  artificial  inhomogeneous  lossy
medium,  following  the  stretching  into  the  complex  plane  of  a  general  system  of  three
orthogonal curvilinear coordinates. The particular cases of cylindrical and toroidal geometries
illustrate the general method. As a test problem to assess the new formulation in gyrotropic
media,  we  analytically  quantify  the  reflection  of  cylindrical  waves  by  a  radial  PML  in
cylindrical geometry. The obtained reflection coefficient involves wave, PML and geometric
parameters at the PML location. The new coefficient generalizes the one obtained earlier with
Cartesian  coordinates,  and  becomes  equivalent  when  the  effects  of  the  local  cylindrical
curvature  at  the  PML (stretched)  location  can  be  neglected.  These  curvature  effects  are
outlined and the limitations they impose on the properties of the PML are quantified as a
function of the relevant parameters. Finite element calculations of the test problem in two-
dimensional cylindrical geometry are exploited to verify these properties numerically.
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I. Introduction
This  paper  deals  with  the  numerical  simulation  of  time-harmonic  electromagnetic

(EM) wave propagation.  In  such problems the time-harmonic  Maxwell’s  equations  in the
medium are complemented with suitable boundary conditions. In finite difference or finite
element  calculations  of  EM wave  propagation,  Perfectly  Matched  Layers  (PMLs)  aim at
emulating radiation at infinity inside a bounded simulation domain. In complex media such as
cold magnetized plasmas, featuring a gyrotropic dielectric tensor, gyrotropy introduces two
different wave propagation eigenmodes, referred to as Fast and Slow waves in the context of
plasma  physics  [Swanson2003].  In  the  literature  PMLs  were  already  devised  for  the
propagation  of  one  eigenmode  of  gyrotropic  media,  generally  in  two  dimensions  (2D)
transverse  to  the  direction  of  anisotropy,  and  described  by  a  scalar  Helmholtz  equation
[Velasco2009]. This result was recently extended in 3D for the two eigenmodes, described by
a  vectorial  time-harmonic  wave  equation  [Gondarenko2004] [Jacquot2013].  Reference
[Bécache2017] explored the transient EM pulse propagation in uniaxial media using the Finite
Difference Time Domain (FDTD) method and PMLs adapted for each eigenmode. Reference
[Jacquot2013] implemented  PMLs  adapted  for  cold  magnetized  plasmas  at  the  edge  of
(flattened)  toric  magnetic  fusion  devices  in  the  Radio-Frequency  (RF)  module  of  the
COMSOL finite  element  solver  [COMSOL].  In  this  latter  paper,  PMLs  were  defined  as
artificial inhomogeneous lossy dielectric and magnetic media, where the standard equations of
electrodynamics could be applied. This was achieved by stretching the conventional Cartesian
coordinates of a flattened tokamak along prescribed trajectories in the complex plane.

For many realistic applications however, using Cartesian coordinates appears to be a
limitation.  Flattening a  toric  tokamak is  an approximation,  historically  intended to enable
using spectral methods of EM wave simulation. The limits of this approxipation have been
explored both by modelling [Louche2011] [Jacquot2015] [Milanesio2017] and experiments in
several  frequency ranges  [Bilato2004],  [Ekedahl2015].  Cartesian PMLs can sometimes be
kept in a curved geometry if the plasma-PML boundary remains flat.  This is however not
always  possible,  and  in  practice  it  might  be  inefficient:  in  uniaxial  media  for  example,
reference [Bécache2017] showed it necessary to stretch space along directions either parallel
or perpendicular to the anisotropy. Otherwise propagative forward and backward waves might
coexist, one of which cannot be damped by the PML. In view of simulating cylindrical RF
plasma  discharges  (e.g. Capacively  coupled  discharges  [Faudot2015],  helicon  discharges
[Crombé2015],  [Furno2017], ion  cyclotron-heated  ones [Crombé2015],  [Gekelman2016]),
toroidal devices (tokamaks [Jacquot2015]) or even more complex geometries (stellarators) in
a  more  realistic  way,  it  is  therefore  tempting  to  stretch  the  spatial  coordinates  along the
principal  directions  defined  by  the  device  geometry.  However,  over  such  change,  the
differential operators rot(.) and div(.) appearing in Maxwell’s equations modify their forms,
due to  the local  curvature  of  the new coordinate  systems  [Angot1972].  This  calls  for re-
formulating the PML.

One  can  also  anticipate  that  curvature  effects  might  modify  the  wave-reflection
properties of the PML. A standard assessment of these PML properties in Cartesian geometry
is to quantify the reflection of propagative or evanescent plane waves in homogeneous media
as  a  function  of  the  relevant  simulation  parameters.  This  was  done  extensively  in
[Jacquot2013]  for  plane  waves  in  gyrotropic  media.  Criteria  of  low  reflection  could  be
established for tuning the PML parameters. Limitations were also outlined when propagative
forward and backward waves coexist in the PMLs. While plane waves are well suited for
PML benchmark in Cartesian geometry, they are generally not adapted in curved coordinates,
and alternative test-problems should be looked for. Literature on these subjects is scarce, even
for simple isotropic media.
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The  present  paper  proposes  to  generalize  in  curved  coordinates  the  methodology
applied  in  [Jacquot2013] for  Cartesian  coordinates.  Firstly  a  PML  is  formulated  as  an
artificial medium, following the stretching of a general system of three orthogonal curvilinear
coordinates. Cylindrical and toroidal coordinates illustrate the general method. Secondly, in
the  particular  case  of  cylindrical  geometry,  we further  try  to  assess  the  PML properties:
analytical criteria are defined for low reflection of waves by radial PMLs. We use for this
purpose cylindrical waves that play in cylindrical geometry an equivalent role as plane waves
in  Cartesian  coordinates.  Cylindrical  waves  of  gyrotropic  media  are  recalled  when  the
direction of anisotropy is along the axis of the cylinder. The PML reflection criteria involve
wave, PML and geometric parameters at the PML location. The new results generalize those
obtained earlier, and become equivalent when the effects of the local cylindrical curvature at
the  PML  (stretched)  location  can  be  neglected.  Curvature  effects  are  outlined  and  the
limitations  they impose on the properties  of the PML are quantified  as a  function  of  the
relevant parameters. Finally, finite element calculations of the test problem in 2D cylindrical
geometry are exploited to quantify these properties numerically.

II. PML formulation in curved coordinates as an artificial lossy dielectric
medium

Throughout this  paper we consider time-harmonic EM fields oscillating in time as
exp(+i0t) at pulsation 0. In the 3-dimensional (3D) Euclidian space, the EM fields E and H
evolve according to Maxwell’s equations in the frequency domain

{
rotE=−iω0B

rotH=+iω0D+ jant
divD=ρant

divB=0 (II.1)

In equations (II.1) the oscillating current jant imposed on the antenna structures, as well
as the oscillating antenna space charge ant, were isolated from the self-consistent response of
the medium to (E,H), incorporated in the linear local constitutive relations 

D=E ; B=H. (II.2)

Tensors   and  can  take  very  general  forms.  In  references  [Sachs1995],
[Gedney1996], [Texeira1998],  stretching the usual Cartesian coordinates  into the complex
plane was found beneficial to emulate radiating boundary conditions in a  PML for problem
(II.1).  Besides, a  formal  analogy  was  outlined  between  the  obtained  PMLs  matched  to
isotropic media and an artificial medium with modified dielectric and magnetic properties. In
[Gondarenko2004], [Jacquot2013] the analogy was extended to more complex media with full
dielectric permittivity  and/or magnetic permeability  tensors, e.g. cold magnetized plasmas
[Swanson2003]. In this section we would like to extend the technique to formulate PMLs by
stretching  the  three  principal  directions  defined  by a  system of  three  curved  coordinates
[Angot1972].  So  far  the  generalization  appears  tractable  only  for  orthogonal  sets  and
stretching procedures that preserve this orthogonality. 

A. Solving Maxwell’s equations in stretched orthogonal curvilinear coordinates

In  the  3D  Euclidian  space,  we  consider  an  orthogonal  set  of  three  curvilinear
coordinates  (u,v,w)  such  that  u.v=v.w=w.u=0  everywhere.  The  system  is
characterized locally by the elementary distance ds defined as:
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ds2
=hu

2 (u , v ,w ) du2
+hv

2 (u ,v ,w ) dv2
+hw

2 (u ,v ,w ) dw2
(II.3)

In this system we envisage a vector field V(u,v,w), whose components along the three
orthogonal principal directions are  Vu(u,v,w),  Vv(u,v,w) Vw(u,v,w). The differential operators
div(.) and rot(.) appearing  in Maxwell’s equations (II.1) are then defined as [Angot1972]

div (V )=
1

hu hvhw
[∂u (hvhwV u)+∂ v (hw huV v )+∂w (huhvV w )]

(II.4)

rot (V )=[
[∂v (hwV w )−∂w (hvV v )]/hvhw

[∂w (huV u )−∂u (hwV w) ]/hw hu

[∂u (hvV v )−∂v (hwV w) ]/huhv
] ¿ u

¿ v

¿w

(II.5)

In the PML the spatial coordinates (u,v,w) are artificially stretched according to the

rules  
u→ tu (u )=u0+∫u0

u
Su (t )dt

,  
v→ t v (v )=v0+∫v0

v
Sv ( t )dt

,

w→tw (w )=w0+∫w0

w
Sw ( t ) dt

. The  triplet  (u0,  v0,  w0)  as  well  as  the  stretching  functions
(Su(u), Sv(v), Sw(w)) are arbitrary and can be chosen conveniently for the required application.
In particular, the stretching can be extended to the complex plane. The main difference with
Cartesian geometry is the directions along which space is stretched. As for Cartesian frames it
is  essential  that  Su(u)  depends only on  u,  Sv(v)  on  v and  Sw(w)  on  w.  Each coordinate  is
stretched  “perpendicular  to  the  other  ones”:  the  stretched  coordinate  system  remains
orthogonal and a relation similar to  (II.3) applies, with  du=dtu(u)/Su(u) and metric elements
evaluated at stretched location, such as hu(tu(u),tv(v),tw(w))=htu(u,v,w). If the stretching extends
to the complex plane,  htu,  htv and  htw might become complex, whereas they should be real
positive  before  the  stretching.  Stretching functions  are  equal  to  1 in  the  main  simulation
domain,  where  the  properties  of  the  original  medium are  preserved.  In  the  PML,  on  the
contrary,  we request that the new local  EM fields (EPML,  HPML) at  location (u,v,w) be the
solutions (E, H) of the original wave problem (II.1) evaluated at stretched location (tu(u), tv(v),
tw(w)). To this end, problem (II.1) is replaced with a modified one

{
rots ( EPML (u , v ,w ) )=−iω0μHPML (u , v ,w )

rot s (HPML )=iω0εEPML+ jant
divs [ εEPML ]=ρant

divs [μHPML ]=0 (II.6)

where rots(.) and divs(.) denote the differential operators (II.4) and (II.5) with respect
to the stretched curved coordinates. The modified differential operators rots(.) and divs(.) are
obtained from formulae (II.4) and (II.5) upon the substitution

∂u .→
1
Su (u )

∂u . ; ∂v .→
1
Sv (v )

∂v . ; ∂w .→
1
Sw (w )

∂w .

hu (u , v ,w )→htu (u , v ,w ) ; hv→htv ; hw→htw (II.7)

Let us now introduce matrices (u,v,w) and (u,v,w) as

L. COLAS et al. Submitted to Journal of Computational Physics 4/22



PMLs for time-harmonic EM wave propagation in curved gyrotropic media

Σ (u ,v ,w )≡[
Su htu /hu 0 0
0 Svhtv /hv 0

0 0 Swhtw /hw
]
¿ u

¿ v

¿ w

=[
Σu 0 0
0 Σv 0

0 0 Σw
]
¿ u

¿ v

¿w

(II.8)

Λ (u ,v ,w )≡[
Σv Σw 0 0
0 Σw Σu 0

0 0 Σu Σ v
]
¿ u

¿ v

¿w

(II.9)

Since Su depends only on u, and similarly for Sv and Sw, the operator rots(.) (evaluated
at point (tu(u), tv(v), tw(w))) is related to operator rot(.) (evaluated at point (u,v,w)) by

rots.=rot(.) (II.10)

And similarly

det()divs(.)=div(.) (II.11)

Using (II.10) and (II.11) one can reformulate the modified EM problem (II.6) as

{
rot (ΣEPML )=−iω0 (ΛμΣ−1 )(ΣHPML (u , v ,w ))

rot (ΣHPML)=+ iω0 (ΛεΣ−1) (ΣEPML )+Λjant

div [ (ΛεΣ−1) (ΣEPML )]=det ( Σ ) ρant

div [ (ΛμΣ−1 )(ΣHPML) ]=0
(II.12)

Relations  (II.12) can  be  interpreted  as  follows.  They  appear  as  the  original
electromagnetic  problem  (II.1),  with  the  original  differential  operators  rot(.)  and  div(.).
However the original EM fields  E(u,v,w) and H(u,v,w)  were replaced respectively with the
artificial EM fields (EPML)(u,v,w) and (HPML)(u,v,w). The original and artificial EM fields
coincide  inside  the  main  simulation  domain,  where  =1  (the  identity  tensor) and (EPML,
HPML)=(E,  H).  Similarly  the  source  terms  ant and  jant were  replaced  respectively  with
det()ant and jant. The original tensors  and  were replaced respectively with the tensors
PML(-1)  and  PML(-1)  adapted to  the stretched coordinates.  Original  and adapted
tensors coincide in the main simulation domain,  where  =1  and  =1.  Also if  tensor   is
diagonal then the three matrices , and -1 commute. For the general dielectric tensor  one
obtains.

εPML≡ΛεΣ
−1=[

εuu Σv Σw /Σu εuv Σw εuwΣ v

ε vuΣw ε vv Σw Σu/Σv ε vwΣu

εwu Σ v εwvΣu εww Σu Σv/Σw
]
¿ u

¿ v

¿ w

(II.13)

and  similarly  for  PML.  Result  (II.13) is  formally  analogous  to  that  in  Cartesian
coordinates  (x,  y,  z) [Texeira1998],  where the stretching function  Sx(x)  was replaced with
u(u,v,w), and similarly with the other matrix components.

B. Implementation in particular geometries.

Implementation of the PML is formally similar in Cartesian and curved geometries.
However the number of sub-cases is more important. For example in the case of isotropic
media,  one  type  of  PML needs  to  be  defined  in  Cartesian  geometry,  independent  of  the
direction where waves need to be attenuated. In general 3 types of PMLs need to be defined in
each direction. For anisotropic media the properties of the PML depend on both the type of
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coordinates and on the orientation of the direction of anisotropy. Some of these cases are
investigated below. Equation (II.13) also shows that, in curved geometry, the implementation
of a PML depends on its spatial location (u,v,w) via the stretched coordinates tu(u), tv(v) and
tw(w) appearing explicitly in PML. This reflects curvature effects in the new geometry.

We  now  treat  more  explicitly  four  concrete  examples  of  coordinate  systems.  For
reference we recall the standard Cartesian set (x,y,z). One of the simplest systems exhibiting
curvature is the cylindrical geometry. It is therefore useful for numerical tests, but also for
simulating cylindrical plasma devices. The cylindrical coordinates (R, , Z) are defined as

{
x=R cosϕ
y=R sin ϕ

z=Z (II.14)

For  more realistic  applications  in  tokamaks,  we introduce a  system of coordinates
(r,)  associated  to  nested  toric  magnetic  flux  surfaces  with  concentric  circular  cross-
sections.

{
x=[R0+r cosθ ] cosϕ
y=[R0+r cosθ ]sin ϕ

z=r sin θ (II.15)

Finally we consider axisymmetric tokamak magnetic equilibria with more arbitrarily
shaped nested magnetic surfaces. For simplicity, we assume that we know some conformal
transformation  R+iZ=F() in the cross-section  =constant,  such that the magnetic surfaces
correspond to the images by F of circles ||=r in the complex plane. Properties of conformal
transforms  are  presented  e.g. in  [Angot1972].  The  existence  of  F()  is  demonstrated.  In
magnetic  fusion,  conformal  maps  were  constructed  to  assess  numerically  the
magnetohydrodynamic stability of shaped toric plasmas [Goedbloed1981] [Goedbloed1982].
The coordinates (r,) form a convenient system to locate the points in the tokamak, using

R+iZ=F[r exp(i)] (II.16)

The conformal nature of  F ensures that the original orthogonal coordinate system is
transformed into another orthogonal system. The squared elementary distance reads

ds2=|
dF [rexp ( iθ ) ]

dξ
|

2

(dr 2+r2dθ2 )+Re (F [r exp ( iθ ) ] )
2
dϕ2

(II.17)

The nested circular  flux surfaces correspond to the translation  F()=+R0.  Table 1
summarizes the metric elements of the four coordinate systems. In the non-trivial cases, some
of  these  elements  can  go  to  zero,  leading  to  well-known  singularities  in  the  coordinate
systems. Even when they lie outside the physical simulation domain, these singular points can
be reached over the stretching process and therefore deserve special attention.

Name u v w hu(u,v,w) hv(u,v,w) hw(u,v,w)
Cartesian x y z 1 1 1

Cylindrical R  Z 1 R 1
Toroidal r   1 R0+rcos r

Conformal r   |dF/d| Re(F) r|dF/d|

Table 1: metric elements for four coordinate systems.
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III. Test problem to assess PML behaviour in cylindrical geometry.
Artificially  stretching  the  Cartesian  coordinates  into  the  complex  plane  transforms

propagative  plane  waves  into  evanescent  ones  in  the  PML  [Sachs1995],  [Gedney1996],
[Texeira1998].  It  therefore  introduces  artificial  damping  in  this  region,  thus  emulating
radiation at infinity inside a finite simulation domain. In  part II we stretched other sets of
coordinates, assuming that this property might be preserved in curved geometries. However
this remains to be assessed. Cylindrical geometry is a well suited test case.

A standard assessment of the PML formulation in Cartesian geometry is to quantify
the reflection  of  propagative  or  evanescent  plane  waves  in  homogeneous  media  (see  e.g.
[Jacquot2013]).  In  cylindrical  coordinates  some equivalents  of  propagating  or  evanescent
plane waves exist in terms of Bessel functions. In the context of plasma-filled waveguides,
these cylindrical waves were derived in details for gyrotropic media in  [Bers1963]. These
results are briefly summarized in  section III.A in the case of longitudinal anisotropy. Using
these tools we then propose a test problem to analytically quantify the reflection of cylindrical
waves by radial  PMLs in cylindrical  geometry,  in presence of a homogeneous gyrotropic
medium. We investigate in particular how the radial curvature of the cylinder affects the PML
properties compared to the Cartesian case.

A. Cylindrical waves in gyrotropic medium with longitudinal anisotropy.

From now on we seek particular solutions of the wave equations (II.1), without source
term in volume, featuring a separable form in the cylindrical coordinates (R,  ,  Z). The EM
quantities  are  requested  to  oscillate  as  F(R)exp(+i0t-ikzZ-im),  with  kz a  longitudinal
wavevector, m (integer) an azimuthal mode number, and F(R) a radial structure function to be
determined. For gyrotropic media these cylindrical waves can only be well defined when the
direction of anisotropy is along Z or  [Bers1963]. For convenience we summarize here Bers’
treatment  in  the  homogeneous  medium  with  longitudinal  anisotropy  (see  also
[Swanson2003]). This geometry is well suited for magnetized cylindrical plasma devices, in
conditions when longitudinal invariance can be assumed.  In this configuration  (0)=01 in
formula (II.2) while the dielectric tensor (0) takes the form [Swanson2003]

ε (ω0)

ε0
=[

ε¿ (ω0 ) +iε¿(ω0) 0

−iε¿ (ω0 ) ε ¿(ω0) 0

0 0 ε// (ω0 ) ]
¿ R

¿ ϕ

¿ Z

  (III.1)

In this configuration all the EM field components ET(R) and HT(R) transverse to Z can
be expressed as a function of the longitudinal EM field components  EZ(R) and  HZ(R) using
Maxwell-Ampère and Maxwell-Faraday equations ([Bers1963], eq. 9.21)

[ ET ( R )

HT ( R )]=
k 0

−1

(ε❑−nZ
2 )
2
−ε×

2
×⋯

[−inZ (ε❑−nz
2 ) Z0 ε× nZ ε×

−Z0
−1nZ

2 ε× −inZ (ε❑−nz
2
) −i Z0

−1
(ε❑

2
−ε×

2
−nz

2 ε×)

+i Z0 (ε❑−nz
2 )

nZ ε× ] [
❑T EZ

❑T H Z

eZ ×T EZ

eZ×T HZ
]

 (III.2)

In the above expression we have introduced c=[00]-1/2 the speed of light in vacuum,
k00/c the wave-vector in vacuum, nZkZ/k0 the longitudinal refractive index and Z0=(0/0)1/2
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the impedance of vacuum. In our cylindrical geometry the relevant 2D transverse operator is

∇T .=[ ∂R .

−ℑ/R]¿ R

¿ ϕ
 so  that  

ez×∇T .=[ℑ/R
∂R . ]

¿R

¿ ϕ
.  Substituting  (III.2) into  Maxwell’s

equations, the two scalar fields EZ(R) and HZ(R) are then related to each other by two coupled
second-order partial differential equations ([Bers1963], eq. 9.157 and 9.158)

ΔT [
EZ

H Z
]+k0

2K [
EZ

H Z
]=0

(III.3)

In this expression . is the Laplace operator transverse to anisotropy while matrix K
takes the form

 K ≡[
ε
¿/ ¿ (1−nZ

2
/ ε❑)¿

−i Z0nZ ε×¿ ε❑

i nZε×ε¿/ ¿¿ Z0 ε❑¿ε❑−ε×
2
/ε❑−nZ

2 ] (III.4)

Eigenmodes of the gyrotropic medium are the eigenvectors of matrix  K,  associated
with eigenvalues  n2, a squared refractive index transverse to  Z. The dispersion relation for
cylindrical waves writes

det (K−n¿
21 )=n¿

4− tr ( K ) n¿
2+detK=0 (III.5)

Two separate roots n2 generally fulfil equation (III.5). Below we will investigate only
media without losses in volume, for which the three dielectric constants in (III.1) are real, but
without restriction of sign. In these conditions the eigenvalues  n2 are also real. When  nz×/
=0 matrix  K is diagonal and the EM fields can be explicitly split into transverse-electric
(TE) and transverse-magnetic (TM) eigenmodes with respect to direction Z

{
n

¿ TM

2
=K11=ε // (1−nZ

2
¿ ε¿)

n
¿TE

2
=K22=ε¿−ε¿

2
¿ ε¿−nZ

2

(III.6)

In our numerical tests we will also investigate EM waves for magneto-plasmas in the
Ion Cyclotron Range of Frequencies (ICRF) [Swanson2003]. Such waves satisfy the ordering
|//|>>||, |×|,  nZ

2. A scale separation generally applies, allowing a perturbative resolution of
(III.5). To leading order in the ordering the refractive indices are

{n¿FW
2

≈det (K ) /tr (K )=[( ε¿−nZ
2 )
2
−ε ¿

2] /(ε¿−nZ
2 )

n¿SW
2

≈ tr (K )=ε// (1−nZ
2
/ε¿) (III.7)

Scale separation fails close to nz
2=. Within the above ordering, the polarization of the

first mode (Fast Wave or FW in ICRF) is quasi-TE. 

EZ ,FW

HZ , FW

=
−K12

K 11−nF
2 ≈ i Z0

nZ ε×

ε
¿/ ¿ (ε❑−nZ

2 )
¿

(III.8)

The polarization of the alternative eigenmode (Slow Wave or SW) is to leading order

HZ , FW

EZ ,FW

=
−K21

K 22−nS
2 ≈ i

nZ ε×

Z0 (ε❑−nZ
2 )

(III.9)

For eigenmodes the two equations (III.3) simplify into two scalar Helmholtz equations
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ΔT H Z ( R )+k ¿

2H Z ( R )=0 ; k¿

2
=k0

2 n¿

2
(III.10)

and similarly for EZ(R). In our cylindrical coordinates, =R-1RRR.-m2/R2 and (III.10)
is a Bessel equation. When n2 is real positive, solutions of (III.10) with radiation conditions
at infinity are found as Hankel functions  Hm

(1)(kR) and  Hm
(2)(kR)  [Abramowitz]. For |kR|

>>1, Hm
(1)(kR)~[2/(kR)]1/2exp(+ikR-i/4-im/2),  i.e. taking k real  positive  this  wave

behaves asymptotically as a plane wave propagating radially inwards. Similarly Hm
(2)(kR)~[2/

(kR)]1/2exp(-ikR-i/4-im/2) propagates in the outward direction. Evanescent waves with
real negative  n2 can be treated similarly by replacing Hm

(1) and Hm
(2) with respectively the

modified Bessel functions Im and Km of argument |k|R [Abramowitz].
Once EZ(R) and HZ(R) are determined for each eigenmode, the transverse parts of their

EM field polarizations are deduced from  (III.2). Finally, the full solution of the initial EM
problem (II.1) is a linear combination of the two eigenmodes determined by the source terms
and boundary conditions. If a cylindrical Perfect Electric Conductor (PEC) is present at R=R1,
the  two  EM field  components  EZ(R1)  and  E(R1)  tangent  to  this  boundary  should  vanish
simultaneously. In the general case treated in  [Bers1963], a mix of the two eigenmodes is
needed  to  fulfil  the  PEC  boundary  conditions,  leading  to  mode  conversion  upon  wave
reflection. However in the case of pure TE or TM modes, solutions exist involving only one
of the two eigenmodes. This is also approximately the case for the FW at leading order in the
above ordering.  For our test problem we will stick to these simple cases.

B. Reflection of propagative cylindrical TE Waves in a Radial PML.

Figure 1: sketch of TE wave reflection problem to
assess the radial PML.

To  assess  the  behaviour  of  radial
PMLs in cylindrical geometry, we study the
artificial  damping  of  an  incoming
propagative  cylindrical  TE  wave  in  the
central  part  of  a  homogeneous  gyrotropic
medium with longitudinal aniosotropy. This
situation mimics the complete absorption of
a TE wave launched from the periphery of a
cylindrical  magnetized  plasma device.  The
geometry of our test problem is summarized
on figure 1. An incident cylindrical TE wave
is  launched from  R+∞ towards  R=0.  To
attenuate  artificially  this  incoming  wave
near the centre of the cylinder, a radial PML
is placed in a cylindrical shell between R=R1

and R=R0=R1+R. Inside the PML the radial
coordinate  R is  stretched  into  tR(R).
Although this  choice  is  non-restrictive,  we
will discuss below the particular case of 

polynomial  stretching  functions,  for  easier  comparison  with  earlier  work  in  Cartesian
coordinates [Jacquot2013]. Specifically

SR(R)=1-(S’+iS’’)[|R-R0|/R]p, R<R0 (III.11)

From this one can define tR(R) explicitly as

R→ tR (R )=R+
S '

+ i S' '

p+1 (
R0−R

δR )
p+1

δR
(III.12)
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The  other  two  cylindrical  coordinates  (,  Z)  are  not  stretched.  From  the  above
calculations, and assuming here kTE

2>0, the radial structure of the incoming longitudinal EM
magnetic field in the PML takes the form

HZiPML(R)=HZi0Hm
(1)[kTEtR(R)] (III.13)

where the  (complex)  stretched radial  coordinate  tR(R)  was substituted  to  the (real)
radius  R. The coordinate stretch preserves the TE polarization for the artificial EM electric
field EPML. A PEC is placed in  R=R1<R0. Other boundary conditions are possible there (e.g.
Perfect Magnetic Conductor would be convenient for TM modes). At this radius the total
tangential  EM electric  field should vanish.  In the case of the TE modes  EZPML=0 and one
should  cancel  only  the  azimuthal  component  EPML(R1).  This  can  be  fulfilled  with  only
incident and reflected TE waves sharing the same (kz, m), so that the alternative eigenmode is
absent from the problem. The reflected TE wave adopts a radial structure function of the form

HZrPML(R)=HZr0Hm
(2)[kTEtR(R)] (III.14)

From equation (III.2), EPML(R1)=0 means 

H Zr 0

H Zi0

=η theo=−
−mε¿ Hm

(1 )
[k¿ tR (R1 )]+(ε¿−nZ

2 ) k¿ tR (R1 )H m
¿

[k ¿ tR ( R1) ]
−mε¿ Hm

(2 ) [k¿ t R (R1 )]+(ε¿−nZ
2 ) k¿ tR (R1 )H m

¿ [k¿ tR ( R1) ] (III.15)

In  this  expression  the  primes  denote  the  derivative  of  the  Hankel  functions  with
respect  to  their  arguments,  and  subscript  TE  was  dropped.  Equation  (III.15)  defines  an
amplitude reflection coefficient  theo for the TE modes, whose magnitude can be used as a
figure of merit for assessing the PML. In the absence of coordinate stretching (tR(R)=R) the
PML is replaced with an equivalent layer of gyrotropic material and |theo|=1. The coordinate
stretching in the PML aims at reducing |theo| as much as possible. 

theo depends on the wave characteristics (k,nz, m), the dielectric tensor elements, the
PML characteristics (S’,  S’’,  R,  p) as well as the PEC radial location  R1. The situation is
therefore more complex than in Cartesian geometry. However only three independent non-
dimensional  parameters  appear  in  formula  (III.15):  the  complex  argument  ktR(R1)  in  the
Hankel  functions, the  ratio m×/(-nZ

2)  and  the  azimuthal  mode  number  m.  Coordinate
stretching only influences  the  first  parameter.  To shed light  into  the PML properties,  we
therefore  investigate  below the  quantities  |1|=|Hm

(1)[ktR(R1)]/Hm
(2)[ktR(R1)]|  and  |2|=|Hm

‘(1)

[ktR(R1)]/Hm
‘(2)[ktR(R1)]|. They correspond to |theo| for  respectively very large or very small

values  of  m×/(-nZ
2).  For  increasing  m, figures  2 plot  |1| and  |2| versus  the two non-

dimensional real parameters (XPML, YPML) appearing in the Hankel functions:

{
XPML≡Re [k¿ tR ( R1) ]=k¿ [R1+δR S'

/ (p+1 ) ]
Y PML≡Im [k¿ tR (R1 )]=k¿δR S ' '

/ ( p+1 )
(III.16)

Parameter YPML is similar to the one characterizing the efficiency of the Cartesian PML
for propagating plane waves [Jacquot2013], where in this context subscript  means normal to
the plasma/PML interface.

|theo|=1 for  YPML=0 and XPML>0.  Since  Hm
(1)[XPML-iYPML]=Hm

(2)[XPML+iYPML]* (where  *

denotes complex conjugate),  theo is transformed into 1/theo
* when  YPML-YPML. Concretely

this means that the PML cannot be tuned to attenuate simultaneously EM waves with real
positive and real negative  k.  As discussed in  [Jacquot2013] [Bécache2017] this  might be
problematic in some anisotropic media where propagative forward and backward waves can
coexist. Figures 2 plot only the half-plane YPML>0.
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Taking YPML>0 generally  reduces  |theo|,  but  not  always:  contrary  to  the  equivalent
Cartesian PML |theo| can exceed 1 and reach very high values for positive YPML. This arises
when EPML(R1)=0 for the reflected wave. |1| reaches very high values near the complex zeros
of Hm

(2), and similarly for |2| near the complex zeros of H’m
(2). For m=0 these zeros all lie in

the half-plane XPML<0. As m increases some zeros are progressively displaced towards XPML>0.
It is therefore important to tune S’ so that this zone of the complex space is avoided.
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Figure 2: 2D Contour plots of |1| (left panels) and |2| (right panels) in logarithmic scale versus XPML and YPML,
from formula (III.16), for increasing azimuthal mode number m. One contour line every 2.5dB. First solid

contour line corresponds to ||=1.

Unlike  the  Cartesian  case,  the  PML  properties  for  propagative  cylindrical  waves
depend on  XPML.  This  parameter  can be seen  as  a  normalized  radial  position  of  the  PEC
boundary in the stretched coordinates. XPML can change either by moving physically the PEC
radius R1 or by acting on the stretching parameters RS’/(p+1). The second method amounts
to artificially displacing the PEC radial position towards a region of different radius (even
possibly negative!).  The dependence  of  theo on  XPML can be interpreted  in  terms of local
curvature effects at the stretched PML location.

In the limit of large |XPML+iYPML| with positive XPML one finds [Abramowitz]

|Hm
(1)[XPML+iYPML]/Hm

(2)[XPML+iYPML]|~

|Hm
’(1)[XPML+iYPML]/Hm

’(2)[XPML+iYPML]|~exp(-2YPML)|Cart| (III.17)

i.e.|1|,  and  |2|,  and  therefore  |theo| as  well,  converge  to  the  same  value  |Cart|,
independent of (XPML, m) and characteristic of Cartesian PMLs [Jacquot2013]. However the
minimal  YPML to reach this asymptotic regime depends on (XPML, m): the higher  m and the
lower XPML, the higher YPML should be. 

The  parametric  region  around  XPML+iYPML=0  appears  unfavourable  for  low  wave
reflection by the PML. Low values of XPML and YPML are reached for low (kR), i.e. for waves
propagating  nearly  parallel  to  the  plasma/PML  interface,  similar  to  the  Cartesian  case
[Jacquot2013]. The size  of  the  unfavourable  region gets  larger  as  m increases:  for  given
(XPML,YPML), a critical value of m always exists above which the PML loses efficiency. Figures
3 map as a function of (XPML,YPML) the lowest value of m for which the amplitude ratio exceeds
0.1. In figures 3 this value is m=0 for YPML<1.2. The critical m value increases with both XPML

and  YPML.  It  can  therefore  be  made  arbitrarily  high  by  proper  PML  tuning. In  practical
applications, only a finite number of azimuthal harmonics need to be resolved. The PML can
always be tuned so that it remains efficient up to this maximum m. In particular stretching the
real part of  R can be beneficial if it moves artificially the PEC location towards regions of
lower curvature.  Larger coordinate  stretching however produces larger radial  variations of
PML(R) and therefore imposes a finer discretization of the PML region.
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a) b)

Figure 3: lowest value of azimuthal mode number m for which the amplitude ratios exceeds 0.1, versus
(XPML,YPML). a) |1|>0.1, b) |2|>0.1.

C. Reflection of evanescent cylindrical waves in a radial PML.

When k2 is real negative for the TE mode, a similar analysis as before can be made
for waves that are evanescent inwards, i.e. waves growing radially as exp(+|kR) for large R.
In formula  (III.15) functions Hm

(1) and Hm
(2) should be respectively replaced with Im and Km

[Abramowitz]. In the absence of coordinate stretching, the equivalent of  1 writes Km(X1)/
Im(X1),  where  X1=|kR1  is  a  real  normalized  radius  at  PEC location.  After  the  stretching,
argument X1 should be transformed into X1+XPML+iYPML where 

{δX PML≡|k¿|δR S'
/ ( p+1 )

δY PML≡|k¿|δR S' '
/ ( p+1 )

(III.18)

Figures  4  therefore plot  the  ratio  |3|=|Km(X1+XPML+iYPML)/Im(X1+XPML+iYPML)|
*Im(X1)/Km(X1)  versus (XPML,YPML).  Only  positive  YPML are  shown since  negative  YPML

produce a similar result.  |3|  is  1 for (XPML,YPML)=(0,0) and should be ideally  as low as
possible.  For given  YPML,  XPML>0 is always beneficial  for attenuating the reflected wave
compared to XPML=0, while  XPML<0 might be very detrimental, especially close to XPML=-
X1. For positive XPML, adding YPML is generally beneficial but not always. For large positive
X, |Km(X+iY)/Im(X+iY)|~exp(-2X)/2|X+iY| and one recovers a result similar to the Cartesian
case.

L. COLAS et al. Submitted to Journal of Computational Physics 14/22



PMLs for time-harmonic EM wave propagation in curved gyrotropic media

Figure 4: 2D contour plots of amplitude ratio |3| (in logarithmic scale) versus (XPML,YPML) from (III.18) for
X1=2.0 and for the first four values of azimuthal mode number m. One contour line every 2.5dB. First solid

contour line corresponds to ||=1.

IV.Numerical tests of radial PML with gyrotropic media using 2D finite 
elements.

The  test  problem  for  propagative  cylindrical  TE  waves  proposed  in  part  III was
implemented  with  finite  elements  in  two  dimensions  (2D),  and  the  wave  reflection  was
quantified from the simulation output. This allows assessing numerically the analytical figure
of merit theo from (III-15). Simulations also illustrate specific features and limitations of the
PML in cylindrical geometry and outline practical tips for PML tuning.

A. Simulation and post-processing protocols

Using the COMSOL finite element solver [COMSOL], the test problem was simulated
numerically in the 2D (radial, azimuthal) geometry (R,) sketched on figure 1, with EM fields
assumed to vary as exp(-ikzZ) in the out-of-plane longitudinal direction Z. COMSOL includes
a  built-in  module  to  simulate  the  standard  EM  problem  (II.1) with  standard  boundary
conditions and any user-defined material of type (II.2), possibly inhomogeneous in space. All
over the main simulation domain, the homogeneous gyrotropic dielectric tensor  (III.1) was
applied.  A PML was implemented  in  the inner  part  of the  simulation  domain.  When not
precised, the artificial inhomogeneous tensors PML(R) and PML(R) from (II.13) were applied
there,  where   is  still  from  (III.1) and the radial  coordinate  R was stretched according to
formula (III.12). From table 1, matrix (R) in formula (II.8) takes the form
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(R)=[
SR (R) 0 0
0 tR (R ) /R 0
0 0 1 ]

R

φ

Z

(IV.1)

It differs from a Cartesian-like PML formulation by a non-trivial term (R)=tR(R)/R
in the azimuthal  direction.  The PML medium features complex dielectric tensor elements,
introducing artificial losses in PML volume. Besides, the three diagonal elements of PML(R)
are different from each other and PML(R) becomes non-trivial. A PEC was implemented at
the  inner  radial  boundary  of  the  simulation  domain.  From  equation  (II.12) this  boundary
condition applies to the EM field EPML computed in the PML. Since matrix (R) is diagonal
in (IV.1), this amounts to cancelling both EPML and EZPML all over the inner radial boundary.

Several  simulation  series,  summarized  in  table  2,  scanned  the  plasma  and  PML
parameters identified as important in section III.

# f0 [MHz] kz [m-1] m  × S’ S” p R1 [m] R [m]

1 50 0 0 40.0 0.0 -2.0
-1.0
+7.0

2 0.5 0.5

2 50 0 0 40.0 0.0 +2.0 3.0 2 0.5
0.05
1.2

3 50 0 0
10.0
810

0.0 +2.0 1.5 2 0.5 0.5

4
25.0
225.0

0 0 40.0 0.0 -4.0 1.5 2 0.5 0.5

5 50 0
0
19

40.0 0.0 +2.0 1.0 2 0.5 0.5

6 50 0 6 40.0 0.0
-4.0
+2.0

1.12 2 0.5 0.5

7 100
0.0
12.0

7 40.0 0.0 3.0 2.0 2 0.5 0.5

8 100 0.0 4 40.0 0.0 0.0 0.55 2
0.05
1.5

0.5

9 100 0.0 4 40.0 0.0
-6.39
+6.1

2
0.55 2 0.23 0.5

10 50 0.0 0 40.0 0.0 2.0 2.0
0
5

0.5 0.5

11 50 0.0 0
750.

0
-735

0
2.0 1.5 2 0.5 0.5

12 50 30.0 0 1500
-672

0
2.0 1.5 2 0.5 0.5

13 50 0.0 3
750.

0
-740
+740

2.0 1.5 2 0.5 0.5

14 50 30.0 4 1500
-680
+680

2.0 1.5 2 0.5 0.5

Table 2: overview of parametric space explored over the simulations. Scanned parameters are highlighted in
green. In series 1-11, //=-105 was used but should not play any role. In simulation series #12 and #14

highlighted in grey the TE polarization is only approximate. Series 12 was performed using //=-106 and //=-
107. Series 13 and 14 were performed with //=-106 and //=-108.

L. COLAS et al. Submitted to Journal of Computational Physics 16/22



PMLs for time-harmonic EM wave propagation in curved gyrotropic media

Only cases with propagative cylindrical waves were envisaged. The cases considered
also feature  ×=0 or highly negative  //,  so that  the EM problem  (II.12) involves only (or
mainly)  the  TE  mode.  TE  wave  polarization  is  exact  for  all  series  except  #12  and  #14
highlighted in grey, where it is approximate since kz× 0. Consistent with this assumption the
longitudinal EM electric field  EZ was imposed null at the outer boundary of the simulation
domain, except on series #12 and #14, where the approximate formula (III.8) was used for the
FW  polarization.  The  prescribed  azimuthal  EM  electric  field  at  this  location  was
E(R,)=E0exp(-im) to select the proper azimuthal mode number. The outer boundary of the
simulation domain was always located 1 m outside the PML outer radius.  For the sake of
comparison, series #1 of  table 2 was also repeated using a Cartesian-like PML formulation,
where  (R)=1  was  imposed  in  (IV.1), i.e. the  effect  of  the  cylindrical  curvature  was
artificially suppressed. Both the main simulation domain and the PML were discretized using
an unstructured mesh of quadratic triangular finite elements,  with typical size 1cm. Up to
843474 elements were necessary to mesh the largest simulation domains, corresponding to
5908342 degrees of freedom. Calculations relied on the direct solver MUMPS. 

In order to numerically assess the reflection of propagating cylindrical waves by the
PML, the azimuthal average of HZ(R,)exp(im) was extracted from the 2D simulation output
in the main simulation domain. Using a least-square procedure, the radial variation of this
quantity was fitted with a linear combination of Hm

(1)(kR) and Hm
(2)(kR),  with respective

complex weights  HZi0_sim  and  HZr0_sim.  In  the argument  of  the  Hankel  functions,  dispersion
relations  (III.6)  or  (III.7)  were used to determine  k from the input parameters. Finally the
magnitude of the simulated amplitude ratio sim=HZr0_sim/HZi0_sim  served as a figure of merit to
quantify the PML reflection in the numerical tests. The fitting procedure implicitly assumes
that only the TE mode with correct m is present in the simulation. In practice numerical noise
is always superimposed to the ideal results, as well as the other eigenmode of the gyrotropic
medium,  especially  in  the  cases  where  the  TE  polarization  is  only  an  approached  input.
Besides, dispersion relation (III.7) is only approximate. All this introduces uncertainties in the
numerical determination of sim.

B. Comparison with analytical figure of merit.

Over the simulation database,  Figures 5 compare the numerical reflection coefficient
sim  with theoretical expectation  theo from  formula (III.15). An important restriction to the
allowed parametric space will be discussed on Figure 6 and is excluded here. |sim| values well
above 1 could be reached, indicating that the reflected wave can be amplified by the PML
instead of being attenuated. This situation is met when the imaginary part S” of the stretching
is negative, like in the Cartesian case. For positive  S”, this might also be the case for some
values of  XPML in formula  (III.16),  a specificity  of the cylindrical  geometry producing the
peaks  on  figures  2.  sim  agrees  well  with  theo over  eight  orders  of  magnitude  down  to
reflection levels of 10-5, when the precision of the simulation gets limited by either the mesh
size or the fitting procedure. The relative difference between sim and theo roughly scales as 1/
min(|theo|theo. This relative difference is significantly enhanced in simulation series #12
and  #14  with  kz× 0.  We  speculate  this  is  not  due  to  the  PML  but  because  we  used
approximated boundary conditions for the quasi-TE polarization: while the simulation points
with //=-107 or //=-108 appear in the ballpark of the other series on figure 5.b, the runs with //

=-106 are well above.
Figures 5 also show a repeat of series #1 in table 2, using a Cartesian-like formulation

of the PML. In this series |sim|=1 for S”=0, as it should for energetic reasons. For some values
of  S”,  the  Cartesian-like  PML behaves  better  than  the  cylindrical  one.  This  is  however
observed over a limited window in parametric space, and it is hardly predictable in advance.
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For large S”, the simulated amplitude reflection coefficient reaches an asymptotic value above
10-2, while the cylindrical PML achieves |sim|<10-5. This illustrates the merits of the new PML
formulation in curved coordinates.

Figure 5.a): numerical amplitude reflection coefficient
|sim| versus theoretical value |theo| expected from

formula (III.15), over simulation series #1-#14 from
table 2. Last series: same as series #1, using a

Cartesian PML-like PML formulation, with (R)=1
artificially imposed in formula (IV.1)

Figure 5.b): Same database as figure 5.a, relative
difference |1-sim/theo|, vs |theo| from formula (III.15).

Tilted curves: y=10-6/x and y=10-6x

C. Peculiarities of the cylindrical PML

Figures 6 to 8 illustrate specific properties of the cylindrical geometry that have hardly
any equivalent with Cartesian coordinates.

Figure 6: Simulated amplitude reflection coefficient |
sim| vs Re(tR(R1)). Numerical scan of R1 with S’=0, scan

of S’ with R1=0.23m and predictions |theo| from
formula (III.15). Horizontal dashed line: amplitude

reflection coefficient|Cart| from formula (III.17).
Simulation series #8 and #9 from table 2.

Figure 6 shows a scan of the radial position
R1 for  the  inner  PEC  boundary  of  the
simulation  domain,  with  S’=0.  Unlike
expression  |Cart|  from  (III.17),  the
cylindrical  reflection coefficient  |theo|  from
(III.15) depends on R1. For given simulation
parameters,  a  minimum value  of  R1 exists
below which the PML becomes inefficient.
The  variation  of  |sim|  with  R1 is  non-
monotonic. This corresponds to the crossing
of peaks in the 2D diagrams on  Figures 2.
The  maximal  value  of  the  reflection
coefficient  can  exceed  1.  For  large  R1 the
cylindrical  curvature decreases at  the PML
location  and  |sim|  reaches  an  asymptotic
value corresponding to |Cart|.

Figure  6  also  shows  that  an  effect
similar to the change of R1 is obtained by 

stretching the real part  of  R,  through a scan of  S’  at  fixed  R1.  From  formula (III.16) the
relevant parameter  to plot the results  is Re(tR(R1))=R1+S’R/(p+1). Negative values of this
parameter can be reached, while  R1 remains positive. However Figure 6 shows that in these
cases the PML fails to attenuate the incoming cylindrical wave, even when formula (III.15)
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predicts low |theo|. This behavior may be linked with the crossing of a singular point of the
coordinate system inside the PML. One should therefore avoid this parametric domain. The
related simulation points were deliberately excluded from Figures 5.

Figure 7: reflection coefficient over a scan of ×, vs
normal wavevector k,FW from equation (III.8). Data
points with positive and negative × are plotted with
different symbols. Also shown are expressions |theo|

from formula (III.15) and |Cart| from formula (III.17).
Series #14 from table 2 with //=-108

Figure  7 plots  the  simulated
reflection  coefficients  versus wavevector
kFW from  dispersion relation (III.8), over a
scan of × with m0 (series #14 of Table 2).
As for plane waves in Cartesian coordinates,
low  levels  of  reflection  are  observed  for
large  kFW while  the  PML loses  efficiency
for  cylindrical  waves  propagating  nearly
parallel  to  the  plasma/PML  interface.
However when  m0 cylindrical waves with
positive  and negative  × exhibit  different  |
sim|  despite  equal  kFW.  |sim|  values  can
differ  by  a  factor  of  more  than  two.  This
specificity  of the cylindrical  geometry was
anticipated from formula (III.15), where two
terms  appear  in  the  numerator  and
denominator, one of which is proportional to
m×. Largest ratios are obtained for medium

Figure 8: Numerical reflection coefficient sim, and
prediction theo from formula (III-15) vs azimuthal mode

number m. Simulation series #5 from table 2.

values of kFW. For low kFW, |sim| becomes 1
whatsoever.  For  large  kFW the  reflection
coefficients converge to |Cart| from formula
(III.17) that does not depend on the sign of
×.  In  all  cases  |theo|  is  larger  than  |Cart|.
Figure  8  shows  a  scan  of  the  azimuthal
mode number m. Good agreement of |sim| is
found with |theo| from formula (III.15). The
variation of |sim| with  m is non-monotonic.
This corresponds to the crossing of peaks in
the 2D diagrams on Figures 2. The maximal
value of the reflection coefficient can exceed
1. For large  m, |sim| reaches an asymptotic
value  of  1.  A  critical  value  of  m is
evidenced, above which the PML becomes
inefficient. 

V. Conclusions and prospects.

This  paper  formulated  Perfectly  Matched  Layers  (PMLs)  for  time-harmonic
electromagnetic  (EM)  wave  propagation  in  curved  geometry.  PMLs  were  obtained  by
artificially  stretching a  general  set  of  three  coordinates  along complex trajectories.  Major
simplifications occurred since the original coordinate system was assumed orthogonal and we
requested that the applied stretching preserve this orthogonality. Generalisation to coordinate
systems with off-diagonal metric elements and/or non-orthogonal stretching presently appears
more delicate.  PMLs were defined as artificial  lossy inhomogeneous materials  that can be
implemented in standard full-wave solvers for Maxwell’s equations in the frequency-domain.
In the adapted dielectric tensors and in the PML properties, not only the stretching functions
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but also the stretched coordinates appear, accounting for the local curvature of the coordinate
system. Specific formulae were given in cylindrical and toroidal geometries. Other sets of
orthogonal coordinates could be treated similarly in the future, e.g. spherical coordinates for
geophysical and astrophysical plasmas. Extension to transient EM pulse propagation would
also be beneficial.

Stretching any system of coordinates does not necessarily ensure good PML properties
in all cases. In cylindrical geometry the new formulation was assessed in a gyrotropic medium
without losses, using an analytic reflection coefficient  theo for propagative and evanescent
cylindrical  waves  that  play a  role  similar  to  the plane  waves  of  Cartesian  geometry.  For
simplicity this quantification was restricted here to radial PMLs and longitudinal anisotropy,
in situations when only Transverse Electric modes of the medium play a role. PMLs in the
longitudinal direction of our test problem behave like in Cartesian geometry. The exercise
remains to be extended to PMLs in the azimuthal direction, azimuthal anisotropy, and/or more
complex EM field polarizations, where incident and reflected waves from the two eigenmodes
of the medium are coupled by the boundary conditions. The PML is expected to behave well
if  all  the  relevant  eigenmodes  are  sufficiently  attenuated  before  reaching  the  innermost
boundary of the simulation domain. Indeed the boundary conditions only play a minor role in
this situation. Analytical quantification of cylindrical TE wave reflection was complemented
by  finite-element  simulations,  showing  better  behaviour  for  the  new  PML  formulation
compared a Cartesian-like one artificially applied in cylindrical geometry.

In cylindrical  geometry,  like in Cartesian one,  the proposed radial  PML cannot be
tuned to simultaneously attenuate forward and backward waves, a limitation inherent to our
formulation. Reference [Bécache2017] explored ways to overcome this limitation, in uniaxial
media and with Cartesian PMLs. As far as possible the radial extent R of the PML should be
large,  at  the  expense  of  larger  simulation  domains.  The  PML  behaves  better  for  large
wavevectors k normal to the PML and exhibits limitations for cylindrical waves propagating
nearly  parallel  to  the  plasma/PML  interface.  Combining  the  results  for  propagative  and
evanescent waves one can see that for given kR, large positive values for S’ and S’’ provide
a better  behaviour  for  the radial  PML. The counterpart  is  a larger  radial  variation  of  the
dielectric properties of the adapted material. The PML region therefore requires finer radial
discretization. Similar results were obtained in Cartesian geometry for  S’’ with propagative
waves and for S’ with evanescent waves [Jacquot2013].

Contrary to Cartesian PMLs, the real part of the radial coordinate stretch affects the
reflection  of  propagative  waves.  This  was interpreted  as  an  artificial  displacement  of  the
radial location  R1 for  the innermost PEC boundary towards regions of different cylindrical
curvature.  In practical applications, the geometry of the simulation domain often constrains
the value of  R1. Stretching  R1 using  S’ can therefore be used to attenuate potential adverse
effects of the local curvature, at the expense of refined mesh inside the PML. This method is
also  beneficial  to  better  attenuate  the  evanescent  waves,  like  in  the  Cartesian  case.  In
numerical simulations, the PML loses efficiency when the real part of the stretched radius
becomes negative. This behaviour was not predicted by the analytical figure of merit  theo.
This may be related with the crossing of a singular point of the coordinate system inside the
PML domain.

For given plasma and fixed settings of the PML, a critical azimuthal mode number m
always  exists  above  which  the  PML loses  efficiency.  The  critical  m value  can  be  made
arbitrarily high by increasing the real or imaginary stretching, so that all m values relevant for
a realistic  simulation  behave correctly.  The associated  numerical  cost  in  terms  of  refined
radial discretization depends on the requirements about the azimuthal resolution.

In reference [Jacquot2015] the new PML formulation was applied for the first time in
realistic  full-wave simulations  of  ion cyclotron  wave propagation  in  the  cold  magnetized
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plasma at the periphery of a tokamak. The geometry was a 2D radial-toroidal cut into the
toroidal  machine,  in  presence  of  toroidal  curvature.  It  was  described  by  cylindrical
coordinates with azimuthal anisotropy of the plasma. The simulation domain was restricted to
the vicinity of the wave launcher. Radial and azimuthal PMLs were applied at both the inner
radial boundary and the two toroidal extremities of this domain.
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