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Abstract

We report on the implementation of diverted magnetic equilibria in
GBS, a simulation code used to evolve plasma turbulence in the tokamak
periphery by solving the drift-reduced Braginskii’s equations. The model
equations are written in toroidal coordinates, abandoning flux coordinate
systems, that are not defined at the X-point, and a fourth order finite
difference scheme is used for the implementation of the spatial operators
on poloidally and toroidally staggered grids. The GBS numerical imple-
mentation is verified through the method of manufactured solutions. The
code convergence properties are tested.

1 Introduction

Plasma fueling, power exhaust, impurities and neutral dynamics are all
governed by the complex physics that takes place in the plasma periphery
of a tokamak device. Hence, understanding, predicting, and controlling
the plasma turbulence in this region is of crucial importance for the success
of fusion [1].

From a modelling point of view, multiple challenges arise when ap-
proaching the tokamak periphery. Phenomena occurring on a wide range
of length and time scales are present, from the electron gyro-radius to the
machine major radius; from the gyro-motion to the turbulence time scale.
The presence of large amplitude turbulent structures does not allow for
the decoupling between fluctuating and background quantities. In addi-
tion, a complex magnetic geometry characterises the tokamak periphery,
as it is composed of the edge, where the magnetic field lines lie on closed
flux surfaces, and the Scrape-Off Layer (SOL), where the magnetic field
lines intersect the vessel wall.

GBS is a three-dimensional first-principles simulation code that has
been developed in the past years in order to study the plasma turbulence
dynamics in the tokamak periphery. Similarly to other codes developed for
the same reason (BOUT++ [2], TOKAM3X [3], GBD [4], GRILLIX [5],
HESEL [6]), GBS evolves the drift-reduced Braginskii’s equations [7]-[8],
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a set of fluid equations valid in the high-collisionality regime of the toka-
mak periphery. In the past years GBS has contributed to progress our
understanding of the SOL physics in limited configurations, where the
SOL is defined by a toroidal or poloidal limiter. For example, GBS has
provided predictions of the SOL width [9] in this configuration.

In the present work we extend GBS to the treatment of diverted toka-
mak scenarios. In these configurations the magnetic field lines are diverted
towards the vessel by using external field coils and the separation between
the edge and the SOL is not defined by the limiter position, but rather by
a flux surface, called the separatrix, that intersects itself at one or mul-
tiples points denoted as X-points. From a modelling point of view, the
main additional challenge that diverted scenarios bring is the choice of a
proper coordinate system.

As charged particles move freely along the magnetic field line, whereas
their motion is constrained in the direction orthogonal to it, parallel and
perpendicular dynamics in a magnetised plasma occur on very different
length scales. In particular, most plasma properties are approximately
constant on flux surfaces and vary sharply across them. Therefore a coor-
dinate system where the basis vectors identify parallel and perpendicular
directions has the advantage of reducing the computational cost of the
simulations. In most code implementations, as well as in the limited ver-
sion of GBS [10], a coordinate whose contour lines correspond to the flux
surfaces is chosen as one of the two perpendicular coordinates. Such flux
coordinate can be identified with the magnetic poloidal flux ψ, the func-
tion that allows expressing the tokamak toroidally symmetric equilibrium
magnetic field as:

B = F (ψ)∇ϕ+∇ψ ×∇ϕ (1)

which ensures ∇ · B = 0 [11]. The first term on the right-hand side of
eq. (1) represents the toroidal component of the magnetic field, F (ψ) be-
ing a scalar function of ψ, and the second term identifies the poloidal
component, ϕ being the toroidal angle. For a toroidally symmetric mag-
netic field, the poloidal flux ψ does not depend on ϕ, ∇ϕ · ∇ψ = 0. From
eq. (1), it follows that B · ∇ψ = 0. This shows that ψ contour lines cor-
respond indeed to the flux surfaces on which the magnetic field lies and
that the contravariant basis vector ∇ψ always conveniently points in a
direction orthogonal to the magnetic field line and to the flux surface, as
desired.

In diverted equilibria, the use of a flux coordinate is complicated by
the presence of one or multiple X-points. At these locations, the magnetic
field is purely toroidal and has no component in the poloidal plane. Equa-
tion (1) implies ∇ψ ×∇ϕ = 0 and consequently ∇ψ = 0 at the X-point.
In fact, the X-point is defined as a saddle point of the magnetic flux ψ, i.e.

∇ψ
∣∣∣
Xpt

= 0. As a consequence, the Jacobian of a system that uses the flux

coordinate is singular at the X-point, J = (∇ψ · ∇α ×∇ϕ)−1 = ∞ (∇α
denoting a third basis vector, in addition to ∇ψ and ∇ϕ). Moreover, the
use of a flux coordinate is made problematic by the presence of the flux
expansion around the X-point. In fact, in the proximity of the X-point,
since ∇ψ is small, the spacing between the ψ contour lines becomes larger
than at the midplane. This makes it challenging from a numerical stand-
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point to attain a good physical resolution around the X-point. Indeed, a
uniform spacing in ψ does not correspond to a uniform spacing in physical
space, and an over-resolution at mid-plane is needed in order to attain a
good resolution around the X-point, increasing the computational cost of
a simulation.

Various approaches are being followed to tackle the singularity of the
flux coordinate in diverted equilibria. In BOUT++ [2] and TOKAM3X [3],
the use of the flux coordinate is retained also in diverted scenarios, but
the numerical grid points are generated to avoid falling on the X-point
position. This bypasses the problem of the singularity at the X-point
but does not solve the low resolution issue due to the flux expansion. In
GRILLIX [5], flux coordinates are abandoned in favour of Cartesian coor-
dinates in the poloidal plane. To compensate the lack of alignment of the
coordinates to the magnetic flux, an effort to accurately capture the par-
allel direction is put in place by carefully handling the parallel operator
with the Flux Coordinate Independent (FCI) method [12]-[13].

In GBS we choose to step away from the use of flux coordinates and,
instead, use the toroidal coordinates (r, θ, ϕ) , which are defined as:

x = R cosϕ = (R0 − r cos θ) cosϕ

y = R sinϕ = (R0 − r cos θ) sinϕ (2)

z = Z0 + r sin θ

being R the distance from the symmetry axis of the torus, θ the poloidal
angle, and r the distance in the poloidal plane from the point located at
R = R0 and vertical position Z0.

This allows us to easily enclose the edge and SOL of a diverted plasma
in a domain that corresponds to a rectangular box in the (r, θ, ϕ) coordi-
nates, unlike in the case of flux coordinates or Cartesian coordinates. In
addition, the coordinate system and numerical method we propose have
the advantage of being flexible, allowing the straightforward implementa-
tion of double-null [14] or snowflakes [15] configurations. To compensate
for the loss of alignment of the coordinate system to the magnetic field,
we increase the order of accuracy of the numerical scheme (from second
to fourth order finite differences) and use grid staggering.

The present paper is organised as follows. Section 2 describes the
physical model we consider to study the tokamak periphery. Section 3 fo-
cuses on the numerical implementation of diverted configurations in GBS.
Special attention is given to the implementation of the boundary condi-
tions. In section 4 the implementation of the numerical algorithm in GBS
is verified by using the method of manufactured solutions. Results on
code convergence are reported in section 5. The conclusions follow.

2 Physical model

The present section details the model used by GBS to evolve plasma
turbulence in the tokamak periphery. The differential operators present in
the model are specified for the toroidal coordinates we use (their thorough
analytical derivation is carried out in the Appendix). The boundary and
initial conditions are described in detail.
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2.1 Drift-reduced Braginskii’s equations

Since the plasma at the periphery of a tokamak device is sufficiently col-
lisional that deviations from a Maxwellian distribution are small, a fluid
description, such as the one derived by Braginskii [7], is generally used. In
addition, turbulence occurs on a time scale considerably longer than the
gyro-motion (∂t � Ωci = eB/(mic)) and on a length scale larger than the
ion sonic gyro-radius, ρs = cs/Ωci, with cs =

√
Te/mi. The drift approxi-

mation of the particle orbits can therefore be used to simplify Braginskii’s
equations, as shown by Zeiler [8].
We note that the drift-reduced Braginskii’s equations were first imple-
mented in the GBS code in limited configuration in the electrostatic,
cold-ion limit, assuming no interaction of the plasma with the neutrals,
as described in Ref. [16]. In the following years, the hot ion physics was
introduced by Mosetto et al. [17], electromagnetic effects by Halpern [18]
and coupling with the neutral dynamics by Wersal et al. [19]. The most
complete model used for limited simulations is summarised in the paper by
Halpern et al. [20]. The version of the drift-reduced Braginskii’s equations
considered in the present paper does not include coupling with neutrals,
nor electromagnetic effects, but does include hot ions. The Boussinesq ap-
proximation in the evaluation of the divergence of the polarisation current
is used to reduce the cost. Finally, we assume ∇ · b ' 0 when computing
the parallel advection terms. The model equations we consider are there-
fore the following:
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∂n

∂t
= −ρ

−1
?

B
[φ, n] +

2

B
[C(pe)− nC(φ)]−∇‖(nv‖e) + Sn +Dn∇2

⊥n(3)

∂v‖e
∂t

= −ρ
−1
?

B
[φ, v‖e]− v‖e∇‖v‖e (4)

+
mi

me

(
νj‖ +∇‖φ−

1

n
∇‖pe − 0.71∇‖Te

)
− 2

3n

mi

me
∇‖Ge +Dv‖e∇

2
⊥v‖e

∂v‖i
∂t

= −ρ
−1
?

B
[φ, v‖i]− v‖i∇‖v‖i −

1

n
∇‖(pe + τpi) (5)

− 2

3n
∇‖Gi +Dv‖i∇

2
⊥v‖i

∂Te
∂t

= −ρ
−1
?

B
[φ, Te]− v‖e∇‖Te +

4

3

Te
B

[
1

n
C(pe) +

5

2
C(Te)− C(φ)

]
(6)

+
2

3
Te

[
0.71∇‖v‖i − 1.71∇‖v‖e + 0.71(v‖i − v‖e)

∇‖n
n

]
+STe + χ⊥,e∇2

⊥Te + χ‖,e∇2
‖Te

∂Ti
∂t

= −ρ
−1
?

B
[φ, Ti]− v‖i∇‖Ti +

4

3

Ti
B

[
C(Te) +

Te
n
C(n)− C(φ)

]
(7)

+
2

3
Ti
(
v‖i − v‖e

) ∇‖n
n
− 2

3
Ti∇‖v‖e −

10

3
τ
Ti
B
C(Ti) + STi

∂ω

∂t
= −ρ

−1
?

B
[φ, ω]− v‖i∇‖ω +

B2

n
∇‖j‖ +

2B

n
C(pe + τpi) (8)

+
B

3n
C(Gi) +Dω∇2

⊥ω

∇2
⊥φ = ω − τ∇2

⊥Ti (9)

In eqs. (3)-(9) all variables are dimensionless (in the following, we use a
tilde to denote physical variables, unless specified otherwise). We define
the plasma density n = ñ/n0, the electron temperature Te = T̃e/Te0,
the ion temperature Ti = T̃i/Ti0, the electro-static potential φ = eφ̃/Te0,
the electron parallel velocity v‖e = ṽ‖e/cs0, the ion parallel velocity v‖i =

ṽ‖i/cs0 and the vorticity ω = ω̃ eρ2
s0/Te0 with n0, Te0, Ti0, cs0 =

√
Te0/mi

and ρs0 = cs0/Ωci reference density, temperatures, sound velocity and ion
sonic Larmor radius expressed in physical units. The electron and ion
pressures are denoted as pe = nTe and pi = nTi. The dimensionless cur-
rent is j‖ = n(v‖i− v‖e). Time is defined as t = t̃ cs0/R0, where R0 is the
major radius at magnetic axis, in physical units. The dimensionless pa-
rameters appearing in the model equations are: ρ∗ = ρs0/R0 (normalised
ion sonic Larmor radius), ν = ene0R0/(mics0σi) (normalised Spitzer re-
sistivity), τ = Ti0/Te0 (ion to electron temperature ratio). In the density
and temperature equations Sn and STe,i denote source terms that mimic
the outflow of plasma and heat from the core. The gyroviscous terms Ge,i
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are defined as:

Ge = −η0,e

(
2∇‖v‖e −

C(pe)

Bn
+
C(φ)

B

)
(10)

Gi = −η0,i

(
2∇‖v‖i + τ

C(pi)

Bn
+
C(φ)

B

)
(11)

with η0,e,i constant coefficients. Small numerical diffusion terms of the
type Df∇2

⊥f are added for numerical stability.

2.2 Differential operators in toroidal coordinates

The dimensionless spatial operators present in eqs. (3)-(9) are the parallel
gradient, ∇‖, the parallel diffusion operator ∇2

‖, the Poisson brackets
[φ, f ], the curvature operator C, and the perpendicular diffusion operator
∇2
⊥:

∇‖ = R0b · ∇̃ (12)

∇2
‖ = R2

0b · ∇̃(b · ∇̃) (13)

[φ, f ] = ρ2
s0b · (∇̃φ× ∇̃f) (14)

C = R0ρs0
B̃

2
(∇̃ × b

B̃
) · ∇̃ (15)

∇2
⊥ = ρ2

s0∇̃ · ((b× ∇̃)× b) (16)

They depend on the norm and on the versor of the magnetic field, B̃ and
b = B̃/B̃.
As shown in detail in Appendix A, these spatial operators can be ex-
panded in terms of the parameters ε = a/R0, σ = lp/R0, and δ = ρs0/R0,
where a is the tokamak minor radius and lp is the gradient length scale
in the poloidal direction for the plasma fluctuating quantities, in physical
units. Herein, we neglect all terms that are first order or higher in these
parameters. Neglecting order ε terms corresponds to considering the large
aspect ratio approximation, while neglecting order σ and δ terms is justi-
fied because lp and ρs0 are much smaller than the machine major radius
R0, that also identifies the typical gradient scale length in the toroidal
direction.
In these limits and assuming that the toroidal magnetic field is inversely
proportional to the major radius, i.e. F (ψ) = B0R0 and B̃tor = B0R0∇ϕ
(see eq. (1)), the operators in eqs. (3)-(9) take the following form in the
(r, θ, ϕ) toroidal coordinates:

∇‖f =
B0

|B0|
∂f

∂ϕ
+ ∂rψ

1

r

∂f

∂θ
− 1

r
∂θψ

∂f

∂r
(17)

∇2
‖f = ∇‖(∇‖f) (18)

[φ, f ] =
1

r

B0

|B0|

(
∂φ

∂r

∂f

∂θ
− ∂φ

∂θ

∂f

∂r

)
(19)

C(f) =
B0

|B0|

(
sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ

)
(20)

∇2
⊥f =

∂2f

∂r2
+

1

r2

∂2f

∂θ2
(21)
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Figure 1: Sketch of the computational domain of GBS with a contour plot of
the poloidal flux ψ in the edge (thin lines) and in the SOL (thick lines).

where r = r̃/ρs0. Here we are using the dimensionless poloidal flux
ψ = ψ̃/(ρ2

s0|B0|). We note that the perpendicular operators in eqs (19)-
(21) contains only derivatives in the poloidal plane, considerably simpli-
fying their numerical implementation. Finally, we would like to stress the
flexibility resulting from the use of toroidal coordinates. All expressions
of the geometrical operators are reduced to combinations of derivatives
in (r, θ, ϕ) multiplied by coefficients that depend only on the equilibrium
magnetic field. These coefficients are computed only once at the begin-
ning of the simulation. The resulting scheme is very flexible, since by
prescribing these values as input parameter, any axisymmetric magnetic
equilibrium can be investigated: single null, double null or snowflake.

2.3 Radial boundary conditions

The domain where eqs. (3)-(9) are solved is a toroidal ring, rmin ≤ r ≤
rmax, 0 ≤ θ < 2π, 0 ≤ ϕ < 2π. The ring is centered at the tokamak
magnetic axis and contains a closed flux surface region, the separatrix,
the X-point, and divertor legs (see fig. 1).

The magnetic field lines cross the boundary towards the core, r = rmin,
and the boundary at the vessel wall, r = rmax, since these are generally
not aligned to the flux surfaces. At r = rmax, the plasma interaction with
the solid wall is described by the magnetic pre-sheath boundary conditions
developed by Loizu et al. [21] in the cold ion limit and then extended by
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Mosetto et al. [17] to include hot ion effects:

v‖,i = ±
√
TeFT

v‖,e = ±
√
Temax{exp(Λ− φ

Te
), exp(Λ)}

∂rφ = ∓
√
Te
FT

∂rv‖,i

∂rn = ∓ n√
TeFT

∂rv‖,i (22)

ω = − 1

F 2
T

(∂rv‖,i)
2 ∓
√
Te
FT

∂2
rrv‖,i

∂rTe = 0

∂rTi = 0

with FT =
√

1 + τTi/Te. The plus/minus indicates whether the magnetic
field points towards (top sign) or out from the wall (bottom sign). Note
that, for simplicity, the boundary conditions in eqs. (22) neglect the terms
containing derivatives along the wall, included in ref. [21].

At the core boundary, r = rmin, we use an ad hoc set of boundary
conditions, i.e. ∂rf = 0 for all fields f except for ω and φ, for which we
impose ω = 0 and φ = ΛTe. GBS mimics the outflow of plasma from the
core through a source of plasma density and temperature (Sn, STe,i terms
in eqs. (3),(6) and (7)), radially localised in the closed flux region. The
region that extends from the inner radial boundary to the source location
is a buffer volume, which is not subject of physics investigations. The
boundary conditions are periodic in the poloidal and toroidal directions.

2.4 Initial conditions

The long term evolution of the system is statistically independent of the
initial conditions. For this reason the initial conditions are not physically
interesting, and they are just chosen compatible with the boundary con-
ditions. We impose φ(r, θ, ϕ) = ΛTe, with Te being an initial constant
electron temperature. Similarly, ω, n and Ti are set to a constant value
on the entire domain. Additionally, we impose v‖e = v‖i, with the v‖e, v‖i
functions satisfying v‖e,i|rmax = ±

√
Te and ∂rv‖e,i|rmax = 0, such that the

right-hand side of the boundary conditions for n, φ, ω is zero at the wall
(see eqs. (22)), according to uniform initial profiles of these quantities. Fi-
nally, for all fields, the initial conditions present no toroidal dependence,
except for a three-dimensional random noise that is added to seed plasma
turbulence.

3 Numerical implementation

The new numerical implementation of the model described in section 2.1
is largely similar to the GBS code for limited plasma simulations [20],
which is based on a fourth order Runge-Kutta time stepping and second
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order centered finite differences for the spatial discretisation of the oper-
ators. With respect to the limited version, we implement the differential
operators in toroidal rather than flux coordinates and at fourth order fi-
nite differences rather than second. Additionally, the magnetic pre-sheath
boundary conditions are now applied all around the outer radial bound-
ary rather than at the limiter. In the following we describe the main
features of the numerical implementation of diverted geometries in GBS,
highlighting the differences with respect to the limited version.

3.1 Spatial discretisation

We discretise our domain by using a uniform numerical grid of Nr, Nθ,
and Nϕ points along the radial, poloidal and toroidal directions respec-
tively. We stagger the grid that discretises the n, φ, ω, Te and Ti fields
(n-grid) with respect to the grid where we evaluate v‖e and v‖i (v-grid)
in the toroidal and poloidal directions. Staggered-grids were first used by
Harlow and Welch in 1965 [22] to provide a remedy to the checkerboard
patterns that can appear when treating an advection problem with cen-
tered finite difference, as shown in [23]. The idea behind grid staggering
can be shown by considering a minimal system, contained in the drift-
reduced Braginskii’s equations (3) and (4), that describes the evolution of
density and electron parallel velocity, i.e.:

∂tN +∇‖v‖e = 0

∂tv‖e + Te∇‖N = 0

where we indicate N = log(n) and we consider Te constant for simplicity.
If a second order centered finite difference scheme is used to discretise
the parallel derivative of N and v‖e on the same uniform grid of spacing
∆x, together with an explicit Euler time discretisation with step ∆t, we
obtain:

Nm+1
j = Nm

j − ∆t

2∆x

(
vm‖e,j+1 − vm‖e,j−1

)
(23)

vm‖e,j = vm−1
‖e,j −

∆t

2∆x
Te
(
Nm−1
j+1 −N

m−1
j−1

)
(24)

Here j and m indicate the spatial and temporal grid index, i.e. Nm
j =

N(xj , tm). Combining equations (23) and (24) we derive:

1

∆t2
(
Nm+1
j − 2Nm

j +Nm−1
j

)
=

1

4∆x2
Te
(
Nm−1
j−2 − 2Nm−1

j +Nm−1
j+2

)
(25)

We note that in eq. (25) Nm+1
j only depends on values of N at the j − 2,

j and j + 2 points. The values of N on even and odd grid points are
therefore decoupled. This decoupling allows checkerboard patterns, i.e. a
solution with a, b such that Nj = a for even j, and Nj = b for odd j,
with a 6= b. Shifting the position of the grid point at which v is evaluated
by ∆x/2 midway between two n-grid points, i.e. “staggering” the n and
v-grids, avoids the formation of a checkerboard pattern.

Jolliet et al. [24] carried out an initial investigation of possible numer-
ical implementations for the parallel gradient operator in GBS, showing
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the good properties of fourth order centered finite difference in limited
scenarios. Leveraging the results of this work, we proceed with the imple-
mentation of fourth order finite difference operators in GBS. We describe
the discretisation of derivatives in one-dimension, since all GBS operators,
except for the Poisson brackets, are computed as a linear combination of
derivatives in r, θ, and ϕ. More precisely, the differential operators can
be written in terms of the discretised first derivatives Dx, D

n2v
x , Dv2n

x ,
the discretised second derivative Dxx, and of the interpolation between
staggered grids, In2v

x , Iv2n
x , which are defined as:

Dxfj =
1

∆x

[
1

12
fj−2 −

2

3
fj−1 +

2

3
fj+1 −

1

12
fj+2

]
(26)

Dn2v
x fj =

1

∆x

[
1

24
fj−2 −

9

8
fj−1 +

9

8
fj − 1

24
fj+1

]
(27)

Dv2n
x fj =

1

∆x

[
1

24
fj−1 −

9

8
fj +

9

8
fj+1 −

1

24
fj+2

]
(28)

Dxxfj =
1

∆x2

[
− 1

12
fj−2 +

4

3
fj−1 −

5

2
fj +

4

3
fj+1 −

1

12
fj+2

]
(29)

In2v
x fj =

[
− 1

16
fj−2 −

9

16
fj−1 +

9

16
fj − 1

16
fj+1

]
(30)

Iv2n
x fj =

[
− 1

16
fj−1 −

9

16
fj +

9

16
fj+1 −

1

16
fj+2

]
(31)

where x stands for one of the three coordinates r, θ, or ϕ, and the apex n2v
(v2n) indicates that the input field is defined on the n-grid (v-grid) and
the output on a v-grid (n-grid) (see fig. 2). For example, the advection
term in the density equation (3), evaluated on the n-grid point (rj , θk, ϕl),
is computed as:(
n∇‖v‖e

)
j,k,l

= n

(
c1
∂v‖e
∂ϕ

+ c2
∂v‖e
∂θ

+ c3
∂v‖e
∂r

)
' ni,j,k

(
c1I

v2n
θ Dv2n

ϕ v‖e + c2I
v2n
ϕ Dv2n

θ v‖e + c3I
v2n
θ Iv2n

ϕ Drv‖e
)
j,k,l

where c1 = B0/|B0|, c2 = ∂r̄ψa/ρs0, c3 = −∂θψa/ρs0, from eq. (17). Note
that the interpolation is performed only along the θ and ϕ directions, since
there is no staggering in r. We also note that all the above operators re-
quire a 5-point stencil [j − 2, j + 2] and that n2v and v2n operators use
the same coefficients.
Two additional operators, Dn2v

xx and Dv2n
xx , are needed for the curvature-

related contribution to the gyroviscous terms, in eqs. (10)-(11), i.e. C(∇‖(f)),
∇‖(C(f)) and C(C(f)). Since a fourth order implementation of these op-
erators requires a 7-points stencil, which impacts the number of ghost
points in the treatment of the MPI subdomain boundaries (see Sec. 3.3),
Dn2v
xx and Dv2n

xx are implemented at second order:

Dn2v
xx fj =

1

∆x2

[
1

2
fj−2 −

1

2
fj−1 −

1

2
fj +

1

2
fj+1

]
(32)

Dv2n
xx fj =

1

∆x2

[
1

2
fj−1 −

1

2
fj − 1

2
fj+1 +

1

2
fj+2

]
(33)
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∆x

v-grid j−2 j−1 j j+1 j+2

n-grid j−2 j−1 j j+1 j+2
x

Figure 2: Sketch of the grid staggering performed in the θ and ϕ. Here x is either
one of these directions. The velocities v‖e and v‖i are evaluated on v-grid points,
indicated with crosses, while n, ω, φ, Te and Ti are evaluated on n-grid points,
indicated with circles. The labeling of the grid points is useful to interprete the
expressions of the discretised derivatives and discrete interpolation in eq. (26)-
(31), that allow operating between the two grids.

In the limited version of GBS, the Poisson brackets are discretised
by using the Arakawa scheme at second order [25]. We keep the use of
Arakawa scheme in the diverted version but we implement it at fourth
order [26].
Finally, to compute the electric potential according to eq. (9), one needs
to invert the perpendicular diffusion operator ∇2

⊥ = ∂2
rr + 1/r2∂2

θθ, see
eq. (21). This is done by using a LU factorisation of the matrix resulting
from the fourth order discretisation of this operator, computed once for
all at the beginning of the simulation.

3.2 Boundary conditions

Two ghosts points are added on each side of the radial domain, i.e.
r = rmin and r = rmax, to impose Dirichelet and Neumann boundary
conditions. By indicating the grid points inside the domain with indices
i = 1, ..., Nr, the four ghosts points have indices i = −1, 0 at the boundary
r = rmin and i = Nr + 1, Nr + 2 at the vessel wall. We impose that the
boundary conditions are satisfied midway between the i = 0 and i = 1
points and between the i = Nr and i = Nr+1 points, for core and wall
boundaries respectively. In practice, to implement the Dirichelet bound-
ary condition f(rmin) = fb for ω and φ, we impose (f0 + f1)/2 = fb
and, at the same time, (f−1 + f2)/2 = fb. The same scheme is applied
to ω to impose the Dirichelet boundary conditions at the wall r = rmax.
On the other hand, to impose the Dirichelet conditions at r = rmax for
v‖e and v‖i we impose fNr+2 = fNr+1 = fb. To implement Neumann
boundary condition ∂rn|rmin = fb (and similarly for Te, Ti, v‖e, v‖i), we
set (f1 − f0)/∆r = fb and (f0 − f−1)/∆r = fb. The same holds at
r = rmax for n, Te, Ti, and φ. These schemes are preferred to a fourth-
order algorithm for numerical stability.
A discontinuity arises in the velocities boundary condition at the locations
where the magnetic field is tangent to the wall, see eq. (22). At these lo-
cations, the boundary condition for parallel ion velocity presents a jump
from −

√
Te to +

√
Te, and a similar discontinuity arises for v‖e. This issue

is solved by applying a smoothing function from +
√
Te to −

√
Te so the

v‖i boundary condition varies continuously at the wall. The discontinuity
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present in the v‖e boundary condition is treated similarly. The disconti-
nuity in n and φ boundary is only apparent, as the term ∓∂rv‖i remains
generally negative across the points where B is tangent to the wall. We
remark that this ad hoc smoothing function is required since a rigorous
derivation of the magnetic pre-sheath boundary conditions for B tangent
to the wall has not yet been developed, despite recent significant work on
the subject [27]-[28].

3.3 Parallelisation

The use of the fourth order Runge-Kutta explicit time stepping method
allows GBS to be easily parallelised. Domain decomposition is performed
in all three coordinates (r, θ, ϕ) and ghost cell passing is carried out by
using standard MPI calls. We note that the use of 5-points stencils for
the numerical operators (see section 3.1) requires two ghosts points to be
passed in each direction.
For the computation of the electric potential φ, eq. (9), a direct solver
based on the MUMPS library [29]-[30] is used. An iterative multigrid
method is also implemented in GBS to allow for a massive parallelisation
of the solution of the Laplace operator in the poloidal plane [20], but it is
only available for the second order finite difference scheme in the limited
scenario at the moment (an ongoing effort is targeted to port the multi-
grid solver to fourth order).
Scalability tests of the new version of the GBS code are performed using
the CPU partition of the Piz Daint supercomputer (hybrid Cray XC40)
at the Swiss National Supercomputing Center in Lugano, Switzerland.
Figure 3 shows the results of a strong scaling test (left), where the grid
size is kept constant while the number of cores is increased, and of a weak
scaling test (right), where the grid size and the number of cores in ϕ are
increased simultaneously keeping their ratio constant. For both scalings
the inverse normalised elapsed times, tNcores/tN0 , i.e. the speedup for the
strong scaling and the efficiency for the weak scaling, are plotted as a
function of the number of cores (Ncores). Good scaling properties are
observed up to 4608 cores for a grid of Nr ×Nθ ×Nϕ = 512× 1024× 256,
which corresponds to that of a simulation of a medium size tokamak.
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Figure 3: Results of strong (left) and weak (right) scaling tests on Piz Daint. In
the strong scaling the grid size is fixed to Nr×Nθ×Nϕ = 512× 1024× 256 and
the number of cores is increased. The speedup, i.e. the inverse of the normalised
elapsed time, is expected to scale linearly with the number of cores in the ideal
case. In the weak scaling, the ratio of grid size to number of cores stays constant
as the number of cores increases (Nr × Nθ × Nϕ = 512 × 1024 × Nϕ). In this
case the efficiency, i.e. the normalised elapsed time, is expected to be constant.

4 Verification of GBS with the method
of manufactured solution

We verify the new version of the GBS code using the method of manufac-
tured solutions (MMS), a technique widely adopted by the computational
fluid dynamics community [31] and first applied to fully verify a plasma
turbulent code by Riva et al. [32] for GBS in limited magnetic configu-
ration. We remark that the objective of the MMS is to verify that the
discretised model equations have been implemented correctly in the code,
not to validate the choice of the physical model. Herein we briefly present
the basic idea behind the MMS and refer to Ref. [32] for a more detailed
description of this methodology.
Given a model M with s its analytical solution (i.e. M(s) = 0), we aim
at testing the implementation of a numerical discretisation of M , denoted
as Mh, with h the discretisation parameter, through estimate of the error
eh = ‖s−sh‖, where sh is the numerical solution of Mh (i.e. Mh(sh) = 0).
Since s is unknown, eh cannot be evaluated. However, one can choose an
arbitrary function u, referred to as the manufactured solution, compute
the source term S = M(u) analytically, solve Mh(uh)−S = 0 numerically,
and study ẽh = ‖u−uh‖. Since the source term S is exact, the error ẽh is
due to the discretisation of M and in our case it is expected to decrease as
h4 when as h→ 0 since we use fourth order discretisation schemes (both
in space and time). In practice, one needs to compute

p =
ln(ẽrh/ẽh)

ln(r)
(34)

where rh indicates the coarsening of the temporal and spatial mesh by a
factor r, and show that p→ 4 for h→ 0.
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In order to carry out the GBS code verification, we consider the diverted
flux function plotted in fig. 4:

ψ(r̄, θ) = k(2u3 − 2u2 − (3/2 + cos θ)u+ 1) (35)

where u = (r − a/ρs0)/(rmax − rmin) and k controls the relative inten-
sity of poloidal to toroidal magnetic field. In the present work we use
a = 127ρs0, k = 0.06, rmax−rmin = 90 and R0 = 500ρs0. We remark that,
while ψ is not a solution of the Grad-Shafranov equation, it provides an
analytical expression to compute the source term, M(u) = S.

R
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Figure 4: Contour lines of the flux function in eq (35) used for GBS code
verification and convergence tests.

The manufactured solution for the evolved quantities f = n, Te,i, v‖e,i, φ, ω
are chosen to have the form

u(r, θ, ϕ; t) = Af [Bf + sin(Cfϕ) sin(Dfθ) sin(Ef t+ Ffr)]

where Af , Bf , Cf , Df , Ef and Ff are arbitrary constants that may be
different for each field f and are tuned to excite all the terms in the model
equations.
The source term S = M(u) is computed by using Mathematica software
package [33], and it is added to the GBS model equation. The results
of the GBS verification confirms that p → 4 for h → 0 for both the L∞
(fig. 5, left) and L2 (fig. 5, right) norm. These results do not include the
curvature parts of gyroviscous terms, as they are implemented at second
order and have been verified independently. The boundary conditions are
not considered in this study.
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Figure 5: GBS code verification by the method of manufactured solution. The
error of the numerical solution to the analytical manufactured one is shown as
a function of the grid size h, both in L∞ (top left) and L2 norm (top right).
The order of convergence p tends to 4 as h decreases for both norms (bottom
left and right), consistent with the 4th order finite difference numerical scheme
used.
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5 Convergence study

Figure 6: Typical snapshot in the poloidal plane of plasma pressure (p = n(Te+
τTi), normalised to n0T0), electric potential, parallel electron and ion velocities
for the analytical in flux function shown fig. 4. The plasma is mainly confined
inside closed field line region, turbulent eddies are sheared at the separatrix
(white dashed line) and form blob structures that move radially outwards and
are eventually lost at the wall. The simulation with fine grid is considered.

16



φ

0 5

θ
a
/ρ

s

0

200

400

600

800
n

0.2

0.25

0.3

0.35

0.4

0.45

0.5

φ

0 5

θ
a
/ρ

s

0

200

400

600

800
Te

0.4

0.45

0.5

0.55

0.6

φ

0 5

θ
a
/ρ

s

0

200

400

600

800
Ti

0.4

0.45

0.5

0.55

0.6

Figure 7: Typical snapshot of density and electron and ion temperatures at the
r = 20 plane inside the separatrix. Turbulence structures follow the magnetic
field lines, traced by white dashed lines. The same simulation and time frame
of fig. 6 is considered.

The GBS convergence with respect to the grid refinement is tested with
the flux function in eq. (35). Three simulations with increasing spatial grid
resolution are compared: a coarse simulation with grid Nr ×Nθ ×Nϕ =
39×122×16, a medium simulation with grid Nr×Nθ×Nϕ = 78×244×32,
and a fine simulation with grid Nr × Nθ × Nϕ = 156 × 488 × 64. The
time step is chosen to grant stability. Typical snapshots from the fine
simulation are reported in fig. 6 and 7 showing turbulence structures that
are field aligned. We perform the convergence analysis focusing on time
averaged profiles, obtained after the system has reached a quasi steady
state. This sets in when the inflow of density and temperature due to the
sources is balanced by parallel and radial losses at the wall, resulting in
fluctuations around an approximately constant value.
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Figure 8: Time trace of Te, Ti, v‖i, v‖e, n and φ averaged over the 3D domain
for simulation of increasing grid resolution at quasi-steady state: coarse grid
(Nr ×Nθ ×Nϕ = 39× 122× 16), medium grid (Nr ×Nθ ×Nϕ = 78× 244× 32)
and fine grid (Nr ×Nθ ×Nϕ = 156 × 488 × 64).

Fig. 8 shows the averaged values of Te, Ti, v‖e, v‖i, φ and n over the
entire domain during quasi-steady state. The plot shows qualitatively the
convergence of the code results with the grid resolution, inasmuch as the
profiles of fine and medium are close to each other, while the coarse grid
traces are slightly off. Convergence is evident for n, Ti, v‖e and v‖i. For
φ the three average values are close to each other, being in overall agree-
ment. Finally, for the electron temperature Te the trend displayed by the
fine and medium simulations is similar, although the average values differ
slightly, and the coarse Te profile oscillates somewhere in between.
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Figure 9: Toroidal and temporal average of radial profiles at the LFS (solid
lines) and HFS (dashed lines) for n, Te, Ti, φ resulting from GBS simulations
carried out for the three different resolutions in fig. 8. The vertical lines at
r − rmin ∼ 30 show the radial position of the separatrix, while the shaded area
is the buffer zone between the inner radial boundary and the plasma source
position.

The toroidal and time averaged radial profiles of n, Te, Ti and φ, which
are often used to predict SOL width (see e.g. [9]), are shown in fig. 9 on
the equatorial midplane at the low field side (LFS) and high field side
(HFS), with a solid and dashed line, respectively. The vertical dashed
line at r− rmin ∼ 30 indicates the separatrix location. The shaded region
that extends from the inner radial boundary to the source location is a
buffer volume, which is not subject of physics investigations. The three
simulations show qualitative agreement for all fields with clear convergence
pattern for n, Te, Ti.
To study the convergence of the v‖e and v‖i fields we analyse their time and
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toroidally averaged profiles along the separatrix. Since we are not using
flux coordinates, the values on the separatrix are obtained by performing a
linear interpolation between the grid points. In fig. 10 the averaged values
of v‖e and v‖i are plotted against s, a coordinate that maps the separatrix
and it is normalised to ρs0. We impose s = 0 at the divertor plate at
the HFS, the coordinate s increases moving along the inner divertor leg.
The value of s at the X-point is indicated by the first vertical line. Larger
values of s parametrise the loop around the separatrix from the HFS to
the LFS until the X-point position (indicated by the second vertical line).
Finally, s tracks the outer leg up to the wall. The results of the three
simulations are again in good agreement and show convergence with the
refinement of the grid, in particular for v‖i.
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Figure 10: Toroidal and time average of the velocities profiles as a function of s,
a coordinate that maps the separatrix from the HFS to the LFS, for the three
different resolutions in fig. 8

To conclude the convergence analysis with a quantitative evaluation,
we consider the time and toroidally averaged profiles of all fields in the
(r, θ) poloidal plane. We use as index of convergence the distance, in the
sense of the L2 norm on the poloidal (r, θ) plane, between the coarse and
the fine simulations and between the medium and the fine ones. This
is represented in fig. 11, where h/h0 indicates the ratio of the coarser
grids to the refined grid spacing. The distance to the refined simulation
is smaller for the medium grid than for the coarse grid for all fields, with
an indicative order of convergence, evaluated from the slope of the lines
in fig. 11 ranging from approximately 2 for ω and φ, to approximately 5
for n.
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Figure 11: Quantitative estimate of code convergence. The toroidal and tempo-
ral average of φ, n, ω, v‖e, v‖i, Te, Ti for the coarse and medium grid is compared
to the fine grid, by computing the L2 norm in (r, θ) of their difference. The
parameter h0 denotes the grid spacing of the fine grid and h the grid spacing
of the coarser grids, so that h/h0 = 4 and h/h0 = 2 for the coarse and medium
grid, respectively.

6 Conclusion

In the present paper, a new version of GBS for the treatment of diverted
equilibria is presented and successfully tested. With respect to the limited
version of GBS, we use toroidal coordinates to express the differential
operators present in the drift-reduced Braginskii’s equations. Under the
assumption that gradient length scales are of the same order of the major
radius in the toroidal direction, and smaller than the minor radius in the
poloidal plane, as well as by neglecting terms that are order one or higher
in the inverse aspect-ratio, we can simplify the differential operators that
act on the planal perpendicular to the magnetic field, discarding toroidal
derivatives.

The coordinates are discretised by using a uniform grid. To compen-
sate the lack of alignment between toroidal coordinates and magnetic field,
the spatial accuracy of the numerical operators is increased from second
to fourth order, and additional grid staggering is added in the poloidal
direction.

The GBS code implementation is successfully verified through the
MMS. Good convergence behaviour with the refining of the grid reso-
lution is obtained for an analytical flux function describing a diverted
configuration. By remaining relatively simple, the numerical scheme we
present allows for an easy and efficient parallelisation of GBS. In addition
it is flexible since equilibria with multiple X-points or snowflakes can be
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easily implemented.
Two aspects of the implementation are, for the time being, somewhat

arbitrary and require further work. These are the boundary conditions
at the inner radial boundary, which describes the interaction between the
core and the edge of the tokamak, and the plasma behaviour at the outer
radial boundary, at the locations where the magnetic field lines are tangent
to the wall and the magnetic pre-sheath boundary model implemented in
GBS fails.

Finally, most magnetic equilibria used in experiments present a ver-
tically elongated shape. As a consequence, the use of a circular ring as
a computational domain results into an inefficient use of resources. In
these cases the use of toroidal coordinates with a vertical elongation, such
that constant r surfaces map ellipses instead of circles, is a relatively
straightforward possible future implementation to exploit more efficiently
the computational domain.
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A Spatial differential operators in toroidal
coordinates

Hereafter we detail the derivation procedure to obtain the simplified ex-
pressions of the five differential operators ∇‖, ∇2

‖, C, [φ, ], ∇2
⊥, appearing

in the drift-reduced Braginskii’s equations (3)-(9), in toroidal coordinates.
The toroidal coordinates in physical units (r̃, θ, ϕ) read:

x = R̃ cosϕ = (R0 − r̃ cos θ) cosϕ

y = R̃ sinϕ = (R0 − r̃ cos θ) sinϕ (36)

z = Z0 + r̃ sin θ

and have an associated covariant coordinates basis [34],

er̃ = − cos θ cosϕex − cos θ sinϕey + sin θez

eθ = r̃(sin θ cosϕex + sin θ sinϕey + cos θez) (37)

eϕ = R̃(− sinϕex + cosϕey)
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The contravariant basis [34] (er̃, eθ, eϕ) = (∇r̃,∇θ,∇ϕ) is defined such
that:

∇r̃ =
er̃
||er̃||2

, ∇θ =
eθ
||eθ||2

, ∇ϕ =
eϕ
||eϕ||2

. (38)

Finally the Jacobian of the transformation from (x, y, z) to (r̃, θ, ϕ) is
J̃ = (∇r̃ · ∇θ ×∇ϕ)−1 = r̃R̃.

We now express the axisymmetric tokamak magnetic field in the form:

B̃ = F (ψ̃)∇ϕ+∇ϕ×∇ψ̃(r̃, θ)

where, for simplicity, we assume F = R0B0. Therefore, the expression of
the magnetic field in covariant components, B̃ = B̃ie

i, reads as

B̃ = B0R0 ∇ϕ−
1

r̃R̃
∂θψ̃ ∇r̃ +

r̃

R̃
∂r̃ψ̃ ∇θ (39)

and in controvariant components, B = B̃iei,

B̃ =
B0R0

R̃2
eϕ −

1

r̃R̃
∂θψ̃ er̃ +

1

r̃R̃
∂r̃ψ̃ eθ (40)

Eqs. (36)-(47) provide all the elements to evaluate the expressions of
the differential operators in toroidal coordinates. In physical units these
are (note the use of Einstein notation)

∇̃‖f =
B̃

B̃
·
(
∇r̃ ∂f

∂r̃
+∇θ ∂f

∂θ
+∇ϕ∂f

∂ϕ

)
=

1

B̃

(
B̃r̃

∂f

∂r̃
+ B̃θ

∂f

∂θ
+ B̃ϕ

∂f

∂ϕ

)
(41)

˜[φ, f ] =
B̃

B̃
·
[(

∂φ

∂r̃
∇r̃ +

∂φ

∂θ
∇θ +

∂φ

∂ϕ
∇ϕ
)
×
(
∂f

∂r̃
∇r̃ +

∂f

∂θ
∇θ +

∂f

∂ϕ
∇ϕ
)]

=
1

B̃J̃
(B̃ϕ[φ, f ]r̃,θ + B̃r̃[φ, f ]θ,ϕ + B̃θ[φ, f ]ϕ,r̃) (42)

C̃(f) =
1

2J̃B̃

[
− B̃ϕ

B̃2
∂θB̃

2 ∂f

∂r̃
+
B̃ϕ

B̃2
∂r̃B̃

2 ∂f

∂θ

+

(
∂r̃B̃θ − ∂θB̃r̃ −

B̃θ

B̃2
∂r̃B̃

2 +
B̃r̃

B̃2
∂θB̃

2

)
∂f

∂ϕ

]
(43)

∇̃2
⊥f = ∇̃ · ∇̃⊥f =

1

J̃

∂

∂uk

(
J̃(∇⊥f)k

)
=

1

J̃

∑
k

∂

∂uk

(
J̃

B̃2
||ek||2εijkεlniB̃lB̃j

∂f

∂un

)
(44)

where we define [φ, f ]x,y := ∂xφ∂yf − ∂yφ∂xf

We note that the poloidal flux varies on the length scale of a, that the
toroidal gradients of the evolved quantities f vary on the length scale of
R0, while their gradients in the poloidal plane vary on the length scale
of lp, with ρs0 < lp < a. We therefore simplify the expressions above by
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retaining the leading order terms in ε = a/R0, σ = lp/R0 and δ = ρs0/R0

Since all operators are written in terms of the covariant and controvari-
ant components of the magnetic field, let us start by considering their or-
dering in terms of a, R0 and B0. For the covariant components in eq. (39)
we observe:

B̃ = − 1

r̃R̃︸︷︷︸
a−1R−1

0

∂θψ̃︸︷︷︸
a2B0

∇r̃︸︷︷︸
1

+
r̃

R̃︸︷︷︸
aR−1

0

∂r̃ψ̃︸︷︷︸
aB0

∇θ︸︷︷︸
a−1

+B0R0︸ ︷︷ ︸
R0B0

∇ϕ︸︷︷︸
R−1

0

= B̃r̃︸︷︷︸
aR−1

0 B0

∇r̃ + B̃θ︸︷︷︸
a2R−1

0 B0

∇θ + B̃ϕ︸︷︷︸
R0B0

∇ϕ (45)

where we assumed ψ̃ ∼ a2|B0| and for the controvariant components in
eq. (40):

B̃ = − 1

r̃R̃︸︷︷︸
a−1R−1

0

∂θψ̃︸︷︷︸
a2B0

er̃︸︷︷︸
1

+
1

r̃R̃︸︷︷︸
a−1R−1

0

∂r̃ψ̃︸︷︷︸
aB0

eθ︸︷︷︸
a

+
B0R0

R̃2︸ ︷︷ ︸
R−1

0 B0

eϕ︸︷︷︸
R0

= B̃r̃︸︷︷︸
aR−1

0 B0

er̃ + B̃θ︸︷︷︸
R−1

0 B0

eθ + B̃ϕ︸︷︷︸
R−1

0 B0

eϕ (46)

The modulus of B is

B̃2 = B̃iB̃
i = B̃ϕB̃

ϕ︸ ︷︷ ︸
B2

0

+ B̃r̃B̃
r̃︸ ︷︷ ︸

a2R−2
0

+ B̃θB̃
θ︸ ︷︷ ︸

a2R−2
0

= B2
0
R2

0

R̃2
+O(ε2) (47)

Additionally it is useful to have the ordering for ∂r̃B̃
2, ∂θB̃

2, ∂r̃B̃θ and
∂θB̃r̃, that is

∂r̃B̃
2 =

2

R̃
cos θB̃2 +

[
− 2

R̃2r̃3
∂θψ̃

2 +
1

R̃2r̃2
∂r̃(∂θψ̃)2 +

1

R̃2
∂r̃(∂r̃ψ̃)2

]
∼ B2

0

R0

(48)

∂θB̃
2 = − 2

R̃
r̃ sin θB̃2 +

[
1

R̃2r̃2
∂θ(∂θψ̃)2 +

1

R̃2
∂θ(∂r̃ψ̃)2

]
∼ aB2

0

R0
(49)

∂r̃B̃θ =
1

R̃
∂r̃ψ̃ +

r̃

R̃
∂2
r̃r̃ψ̃ +

[
r̃

R̃2
cos θ∂r̃ψ̃

]
∼ aB0

R0
(50)

∂θB̃r̃ = − 1

r̃R̃
∂2
θθψ̃ −

[
sin θ

R̃2
∂θψ̃

]
∼ aB0

R0
(51)

With the terms inside the square brackets being order ε higher than the
leading order terms.

We now have all the ingredients to write the dimensionless differential
operators in toroidal coordinates, neglecting all terms that are order one or
higher in ε, σ and δ. We show the full derivation of the curvature operator
as an example for all the others. From eq. (43) and eq. (15) and using
the ordering for the magnetic field and its derivatives in eqs. (45)-(51) we
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obtain the following dimensionless form of the curvature operator:

C(f) =−

δσ−1︷ ︸︸ ︷
ρs0R0

2J̃︸ ︷︷ ︸
ρs0a−1

B̃ϕ

B̃︸︷︷︸
R0

∂θB̃
2

B̃2︸ ︷︷ ︸
aR−1

0

∂f

∂r̃︸︷︷︸
l−1
p

+

δσ−1︷ ︸︸ ︷
ρs0R0

2J̃︸ ︷︷ ︸
ρs0a−1

B̃ϕ

B̃︸︷︷︸
R0

∂r̃B̃
2

B̃2︸ ︷︷ ︸
R−1

0

∂f

∂θ︸︷︷︸
l−1
p a

+

δ︷ ︸︸ ︷
ρs0R0

2J̃︸ ︷︷ ︸
ρs0a−1

( ∂r̃B̃θ
B̃︸ ︷︷ ︸

aR−1
0

− ∂θB̃r̃
B︸ ︷︷ ︸

aR−1
0

− B̃θ

B̃︸︷︷︸
a2R−1

0

∂r̃B̃
2

B̃2︸ ︷︷ ︸
R−1

0

+
B̃r̃

B̃︸︷︷︸
aR−1

0

∂θB̃
2

B̃2︸ ︷︷ ︸
aR−1

0

) ∂f

∂ϕ︸︷︷︸
1

The first two terms containing the poloidal derivatives of f are order
δσ−1 = ρs0/lp and are non-negligible, since a > lp > ρs0 and ε < δσ−1 <
1. The third term containing the toroidal derivative is instead order δ ∼
ρs0/R0 and can be neglected. Substituting the expression for B̃, B̃ϕ,
∂θB̃

2, ∂r̃B̃
2 and J̃ we obtain the final expression for C(f) implemented

in GBS reported in eq. (20):

C(f) =
B0

B̃

R2
0

R̃2

(
sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ

)
+O(δ)

=
B0

|B0|

(
sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ

)
+O(εδσ−1) (52)

In eq. (52) we used the dimensionless radial coordinate r = r̃/ρs0 as well
as R̃ = R0(1+O(ε)) and B̃ = |B0|+O(ε), according to eqs. (36) and (47).
Note that εδσ−1 < ε.
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