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Abstract

Impurity accumulation in the core plasma leads to fuel dilution and higher radiative losses

that can lead to loss of H-mode and to thermal collapse of the plasma and eventually even to a

disruption in tokamaks. In present experiments, it has been shown that ELMs at sufficiently

high frequency are required to prevent W accumulation in the core, by expelling impurities

from the edge plasma region, thus preventing their penetration into the plasma core. We

present a full-orbit particle extension of the MHD code JOREK suitable for simulating

impurity transport during ELMs. This model has been applied to the simulation of an

ELM crash in ASDEX Upgrade, where we have quantified the displacement of W particles

across flux surfaces. The transport mechanism is shown to be the particle E×B-drifts due

to the electric field created by the MHD instability underlying the ELM. In- and outwards

transport is observed as a series of interchange motions leading to a superdiffusive behaviour.

This causes particles near the plasma pedestal to move outwards, but also particles outside

of the pedestal to move inwards. This has important consequences for operation with W

in ITER, where it is expected to be screened in the pedestal, and ELMs are shown here

to increase the core W density. A comparison with existing diffusive modelling is made,

showing a qualitative agreement and the limitations of this simplified modelling approach.
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†See appendix of A. Kallenbach for the ASDEX Upgrade Team and the EUROfusion MST1 Team 2017 Nucl.

Fusion 57 102015
‡See author list of H. Meyer et al 2017 Nucl. Fusion 57 102014

1

d.c.v.vugt@tue.nl


1 Introduction

Tokamak operation with tungsten (W) plasma facing components (PFCs) has many operational

advantages regarding fuel retention and lower wall erosion, leading to increased lifetime of the

PFCs. The PFC of the ITER divertor will be tungsten [1]. The main drawbacks for its application

in fusion reactors concern W contamination of the core plasma and melting of the PFCs by

transient events; although the melting temperature for W is the highest of any metal the energy

fluxes in these events in a fusion reactor are expected to be large enough to potentially cause W

PFC surface melting [2]. Sputtered W accumulating in the core plasma leads to higher radiative

losses that can cause a back-transition from H- to L-mode, a thermal collapse of the plasma

or even a disruption. Relative W concentrations in the range of a few 10−5 are expected to

significantly decrease fusion performance in ITER and next step devices [3]. This pollution

must be controlled to have reliable H-mode operation, for instance by triggering frequent ELMs

with pellet injection or by vertical position oscillations. ELMs at sufficiently high frequency

are required to prevent W accumulation in the core [4], by expelling impurities from the edge

plasma region [5, 6]. This effect is more pronounced for high-Z impurities given the large inwards

edge neoclassical pinch that they are subject to and the ensuing edge impurity density peaking

in present experiments. The effect of ELMs on high-Z impurity outflux in ITER, however,

remains uncertain given the expected impurity screening in the plasma pedestal [7]. There is

circumstantial evidence that in some cases ELMs can contribute to the increase of W influx

in the core plasma that leads to an increase of edge radiation and a decrease of the pedestal

temperature [8].

Besides preventing accumulation in the core, ELMs also play a role in creating impurities.

The higher heat fluxes and plasma temperatures in the divertor region during an ELM greatly

increase the sputtering yields and cause most of the impurity production [9]. It is thus important

to keep the power fluxes impinging onto the divertor during ELMs at a sufficiently low level that

avoids melting of the W PFCs and large W impurity production. Calculating this impurity

production and subsequent neoclassical transport in JOREK is currently under investigation but

out of the scope of this article.

Heavy impurities can be transported up the fieldlines and neoclassically inwards by the tem-
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perature gradient force, until a balance with temperature screening effects is established. During

the inter-ELM period this sets up a density profile, often with a peak in the pedestal top region,

which is then altered strongly by the ELM [7, 10].

The MHD instability causing the ELM creates strong electric fields, leading to perpendicular

E×B flows with an RMS velocity of hundreds of m/s in the peeling-ballooning mode vortices

in the outer regions of the plasma. This is much faster than either neoclassical or turbulent

transport. Here, the transport of W due to the ELM MHD instability is evaluated by tracing the

full orbits of collisionless Tungsten ions in the 3D perturbed electric and magnetic fields obtained

from a JOREK [11, 12] nonlinear MHD simulation of an ELM in ASDEX Upgrade [13].

This will provide insight into the nature of radial heavy impurity motion due to ELMs,

which is important for present experiments and the extrapolation to ITER. In ITER, while

unmitigated type-I ELMs are unacceptable in the 15MA plasma current experiments they are

potentially acceptable at the half-current scenarios (up to 7.5 MA) [2]. Mitigated small ELMs,

such as those triggered by pellet injection or by vertical kicks [14] are characterised by the same

underlying MHD mode (i.e. ballooning-peeling mode), leading to an interchange motion of the

tungsten distribution similar to that shown in the rest of this paper.

In this paper, we provide insight into the nature of this motion and the underlying physical

mechanisms. Relevant questions are for instance whether the motion is caused by electric or

magnetic field fluctations, and to what extent it can be described by a convection-diffusion

model.

In Section 2 we introduce the kinetic particle extension to JOREK and explain the numerical

methods used. Section 3 contains results for particle transport in a realistic multi-mode (n = 1..8)

simulation of a type-I ELM in ASDEX Upgrade. We will discuss the validity of 1D diffusive ELM

flushing modelling in Section 4. In Section 5 we summarize our findings and indicate directions

for future research.
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Figure 1: Schematical view of the operations in the JOREK particle tracer. Events are used for
diagnostic output, as well as for reading new JOREK output files.

2 Full-orbit particle tracking in nonlinear MHD simula-

tions

To simulate W motion in time-varying fields, we have implemented a kinetic particle tracer and

coupled it to the non-linear MHD code JOREK [11, 12]. This section describes the algorithms

used and provides an overview of the implementation. A diagram of the code operation is shown

in figure 1. A more detailed description of this particle extension, including a feedback from the

impurity distributions and the associated losses to the plasma (radiation, ionization, etc.) into

the reduced MHD equations can be found in [15].

The charged particle trajectories are determined by the Lorentz force F = q
m (E + v ×B),

leading to orbits around the magnetic field lines. These are integrated with the well-known Boris

integrator [16], a leap-frog type scheme [17]. The positions and velocities are staggered in time,

shifted by ∆t/2. The velocities are known at the half-timesteps, vn+1/2 and the positions are

known at the full timesteps xn. The equation is written in centered difference form, where the

magnetic term is centered by averaging vn−1/2 and vn+1/2, following [18]. The electric and

magnetic fields are interpolated from the JOREK simulation at the particle location at the full
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timesteps xn.

vn+1/2 − vn−1/2

∆t
=

q

m

[
E +

vn+1/2 + vn−1/2

2
×B

]
, (1)

If we substitute vn+1/2 = v+ + qE
m

∆t
2 and vn−1/2 = v− − qE

m
∆t
2 into (1), E cancels entirely and

we are left with

v+ − v−

∆t
=

q

2m

(
v+ + v−

)
×B (2)

which produces a pure rotation of the velocity vector due to the magnetic field, leading to

the energy-conservation properties of the Boris method. Extra accuracy is obtained here by

replacing f = q∆t
2m with f ′ = tan(f |B|)/|B| to reproduce the gyrofrequency exactly. In the

JOREK cylindrical coordinate system (R,Z, φ) the position update is determined as [19]

Rn+1 =

√(
Rn + v

n+1/2
r ∆t

)2

+
(
v
n+1/2
φ ∆t

)2

(3)

Zn+1 = Zn + v
n+1/2
Z ∆t (4)

φn+1 = φn + sin−1

(
v
n+1/2
φ ∆t

Rn+1

)
. (5)

Finally the velocity vector vn+1/2 is rotated to match the change in φ

vn+1/2
r → cosα vn+1/2

r + sinα v
n+1/2
φ (6)

v
n+1/2
φ → − sinα vn+1/2

r + cosα v
n+1/2
φ (7)

(8)

where α = φn+1 − φn.

The accuracy of the pusher is tested in appendix A in an axisymmetric, stationary JOREK

equilibrium through conservation of energy and canonical toroidal momentum Pφ, showing the

expected second-order scaling of the Boris method, and leading to a timestep requirement of

10−8 s or smaller for acceptable accuracy. We choose a timestep of 10−9 for extra safety margin.

After each particle position update, the new JOREK element-local coordinates need to be

calculated, since the iso-parametric finite element discretisation in JOREK [12], mapping the

element-local coordinates ξ = (s, t, ielm) to real-space coordinates x = (R,Z) is not analytically
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invertible. We can calculate the new element-local coordinates ξ by using Newton’s method to

solve x = F (ξ). Since space in the elements is typically only weakly distorted, this converges in

only a few iterations. We use a tolerance here of 10−12 m in the L2-norm. Particles that leave

the domain are assumed to be lost.

To speed up the search when no nearby position is known, e.g. in the beginning of the

simulation, we implement an R-Tree [20] which indicates the possible elements containing a

point x. Then we use several starting points in this element as initial guesses for the same

algorithm described above.

An interpolation in time between the output files of JOREK is also required, which are

generally not equidistant in time. For this we use third-order Hermite-Birkhoff interpolating

functions, with the local derivatives estimated using non-uniform second order finite differences,

a slight improvement on the method employed in [21]. This yields a C1-continuous interpolation,

which is important since the toroidal electric field is related to the time derivative of the poloidal

magnetic flux ψ in the JOREK reduced MHD models [22].

Particle positions are initialised by a rejection sampling algorithm, which can take arbitrary

functions of the MHD and space variables, but is used to sample uniformly in this work. Once the

particle positions have been chosen, the velocity is sampled from the local Maxwellian velocity

distribution and the charge is sampled from the coronal equilibrium charge state distribution.

No other particle sources, like sputtering, are implemented, since any sputtered particles are very

unlikely to make it into the core plasma during this simulation of a single ELM crash.

After each particle step the ionisation and recombination probabilities in that time are calcu-

lated from the ADAS ADF11 dataset, at the interpolated local electron temperature and density.

Charge-exchange processes are not included. The particle charge is then updated by drawing

two uniform random numbers ui, ur on [0, 1] and ionizing or recombining if the probability is

greater than ui or ur respectively.

This code improves upon earlier modelling of W transport in stationary fields (for instance

IMPGYRO [23], SOLPS [24]) by having time-dependent electromagnetic fields. The plasma

background evolution is not affected by impurity dynamics.

Particle-background collisions are not included in the present model as a first approximation,

since the collisional slowdown time τs, seen in Table 1, is comparable to the correlation time of the
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Table 1: Typical values of W properties at the plasma core, top and bottom of the density
pedestal. The temperature T , in keV, density in 1020 [m−3], the safety factor q, the most
probable charge state of W qmp, the sound speed cs,W in km/s, the gyrofrequency ωg in MHz,
the gyroradius rg and the average banana orbit width wb in mm, the average banana orbit period
tb in ms, the Coulomb logarithm ln Λ and the collisional slowdown time τs in ms, assuming a
0 and 1% concentration of beryllium in the plasma, which provides a stronger drag on W than
pure deuterium.

ASDEX Upgrade [25] JET [26] ITER 15MA [27]
Core Top Bottom Core Top Bottom Core Top Bottom

T [keV] 3 0.5 0.1 5 1.5 0.1 30 4.5 0.3
ne [1020 m−3] 0.7 0.3 0.1 1.0 0.5 0.1 1.2 0.8 0.5
q = 1/ι 1 5 6 1 3 6 1 3 6
qmp [e] 42 23 14 47 30 14 65 45 19
cs,W [km/s] 69 28 4 88 48 13 220 80 20
ωg [MHz] 8 4 2 8 4 2 27 15 6
rg [mm] 1.1 1.0 0.7 1.5 1.5 0.9 1 0.7 0.4
wb [mm] 40 50 40 60 40 50 10 20 20
tb [ms] 2 4 10 3 2 2 0.5 3 19
ln Λ 15 13 12 15 14 12 17 15 12
τs [ms] 0.17 0.11 0.09 0.20 0.16 0.07 1.1 0.2 0.04
τs [ms] (1% Be) 0.12 0.08 0.07 0.16 0.13 0.05 0.9 0.15 0.03

E×B drift velocity caused by the ELM (the ELM eddy turnover time of ∼ 100µs) and the E×B

drifts move every species in the plasma equally. This indicates that the influence of collisional

processes on ELM-induced particle motion is limited. The particle-background collisions are

however necessary for longer-time simulations, for instance to model impurity accumulation in

the inter-ELM period, which we intend to address in future work.

Additionally it is important to note the length of the bounce time tb and the slow sound

speed, noted in Table 1 for several devices. This means that W ions do not make many toroidal

turns during an ELM crash, since their parallel velocity is low. This limits the contribution of

radial W transport due to parallel motion along ergodic fieldlines, which will be further detailed

in the next section.

3 W transport in an ASDEX Upgrade ELM

We follow W impurity particles initialized uniformly throughout the volume in a JOREK sim-

ulation of a convective type I ASDEX Upgrade ELM (#33616) [13, 25], with parameters as in
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Table 1. The simulated ELM-induced density losses are 7% and the duration is 2 ms, in good

agreement with experimental results, indicating that E×B convective losses, causing the den-

sity losses, are reproduced realistically in the ELM simulation. The initial unstable mode is an

n = 6 peeling-ballooning mode, which later couples to n = 5 and other toroidal mode numbers,

in bursts with an approximate period 0.2 ms and duration of 0.1 ms. The n = 3 − 5 modes

are dominant, with n > 6 remaining strongly subdominant in this simulation, which includes

diamagnetic flows. The energy losses are 2.5%.

Non-linear MHD simulations of ELMs at the low, experimental, values of the resistivity are

challenging due to the small scale lengths in the current density at low resistivity. In this case,

the resistivity is almost exactly matching the Spitzer resistivity with neoclassical corrections,

differing by only a factor 4.1 This can be considered the state of the art of what is presently

possible in non-linear MHD simulations of ELMs. In this regime of low resistivity a further

decrease by the factor of 4 is not likely to have a significant influence on the global size of the

vortices and the E×B flow velocities.

To start the particle simulation, a total number of 10 million particles are sampled from a

Maxwellian velocity distribution at the local background plasma temperature, with charge states

determined from the coronal equilibrium distribution.

We then trace the paths of these particles in the nonlinear fields of the ELM simulation with

a timestep of 10−9 s, which has been chosen after a convergence study shown (Appendix A). The

particles make large radial excursions inwards and outwards during the ELM crash. In Figure 2

we show characteristic paths of particles that started with ψn ∈ [0.895, 0.905]. ψn is the poloidal

magnetic flux, normalized to be 0 at the magnetic axis and 1 at the separatrix.

To investigate the motion of particles in the whole plasma due to the ELM we group all

particles into a set of rings in ψn. The number density of particles from a specific ring is

reconstructed using a Gaussian kernel density estimator on the number of particles with a specific

ψn and dividing by the flux surface volume differential dV
dψn

. This reconstruction is shown at every

0.5 ms during the ELM in Figure 3. They show the spread in location of particles that started

in a specific interval in ψn. Particles that originated near the top of the density pedestal can be

1In the original publication [13] a factor of 8 was mentioned, since neoclassical corrections were not taken into
account there.
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Figure 2: Projection onto the poloidal plane of the paths of characteristic particles starting with
ψn ∈ [0.895, 0.905] (region shaded in grey). Different behaviours are observed, such as trapping
and fast radial motion. The outer thin grey line is the separatrix. Particle paths are coloured
for clarity.

found inside up to ψn = 0.75, and outside the separatrix. Particles outside of the separatrix have

moved inwards or have been lost to the wall and divertor. Transport to and from the private

region (not shown in the figure) is small, in agreement with experimental observations that show

ELM transport being outwards in the SOL.

There are two candidate mechanisms for radial transport, the E×B-drift and the parallel

transport of W along an ergodic magnetic field, which has small radial excursions leading to

radial transport. We can distinguish between these by disabling the effect on the particles of

either the non-axisymmetric electric or magnetic field component, which is caused by the peeling-

ballooning mode. To test this we plot in Figure 4 the distribution of a single ring of particles

over time with and without electric field perturbation, and with and without magnetic field per-

turbation. Disabling the non-axisymmetric component of the magnetic-field perturbation leads

to no significant changes in the W density distribution. In all cases where the non-axisymmetric

component of the electric field is zero no significant radial transport is visible. The electric field

is thus a necessary ingredient for radial particle motion, which indicates the E×B-drift as the

cause. The E×B-drift is parallel to the isolines of the potential perturbation in the poloidal
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Figure 5: The velocity stream function u of the ELM fields (left) with an inset including also
E×B drift of particles in an ELM at t = 0.3 ms. Arrows indicate the direction of the drift, with
the color indicating the magnitude |v| and

√
|v| as the length. The velocity stream function

isolines are colored with the local velocity magnitude |v|. Labels below the inset indicate the
value of ψn.

plane to first order in |∇ψ|/|F0|, drawn in figure 5. The radial E×B-drift velocity is shown in

Figure 6 at 0.5-ms intervals after the start of the ELM. The figure shows the E×B-drift velocity

distribution be time-varying and present far into the core plasma, with radial velocities of up to

5000 s−1, which indicates a drift of one minor radius in 0.2 ms. There is no preferential radial

direction, i.e. the distributions are symmetric around the point of zero radial motion.

We compare the W particle radial motion with the E×B-drift velocity in Figure 7, for particles

just inside the top of the pedestal, during a short period around t = 1.025 ms. It shows a

Gaussian core with longer tails, with approximately exponential decay. The distribution is also

almost symmetric, with a mean value of -1.6 s−1 meaning that as many trajectories move inwards

as outwards at this point. The measured distribution is in close agreement with the radial E×B-

drift velocities in s−1:

vψn
=

E×B

|B|2 · ∇ψn. (9)

The motion of W particles due to the ELM can thus be characterized as a localized interchange
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motion, with roughly similar proportions of particles moving radially inwards and outwards. This

will act to flatten any steep density gradients.

To look at time-resolved motion, we compare the kinetic energy of the MHD perturbation

against vr and v2
r , the first and second moment of the particle velocity distribution at each radial

location in Figure 8 during 2 ms after the ELM onset. These are calculated as

vr(ψn, t) =
1

N∆t

N∑
j=1

(
ψi+1
n − ψin

)
j

(10)

and

v2
r(ψn, t) =

1

N∆t2

N∑
j=1

(
ψi+1
n − vr(ψin, t)∆t− ψin

)2
j
, (11)

where j numbers the radial bins and i numbers the snapshots, at time-increments of ∆t. There

is a clear correlation between the peaks in kinetic mode energy Ekin and v2
r , which characterizes

the strength of the interchange motion. This shows that the radial transport is intermittent on

the timescale of the eddy turnover time τ = 0.18 ms.

To find the effect of this ELM on a specific W density distribution we weigh the uniformly

distributed particles with three initial profiles and calculate the time-evolution. The first is a

W impurity profile which resembles that of the electron density in H-modes, shown in Figure 9.

We show that the ELM causes a net movement of particles into the SOL coming from the region

ψn ∈ [0.75, 0.95]. The density that establishes there is roughly half the initial density inside the

pedestal. At ψn = 0.85− 0.9 ,the density does not change much after the first millisecond, while

further inside the plasma, particles are still moved outwards.

The second W profile, in Figure 10, has a maximum near the pedestal top. This has been

observed in experiments when the density and temperature pedestals are not aligned [28]. This

local W pedestal peak disappears completely during the ELM. Most of the particles in the peek

region are moved outside of the pedestal. This corresponds well to results in earlier modelling of

edge transport of W [29]. Besides this, the behaviour is similar to that shown in Figure 9.

Finally, in Figure 11 we look at a distribution where W is strongly screened, leading to W

profiles which are hollow in the pedestal region. In this case, we obtain large particle losses to

the divertor and wall, and inward penetration of 10-20% of W. From our results, it becomes
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clear that W expulsion by ELMs, when there is good W screening in the pedestal, will be very

ineffective as also identified with a diffusive ELM model [7, 30], and a few 10 % of the W outside

the pedestal can actually be transported inside it in some cases by the ELM crashes.

4 Comparison with 1D diffusive models

Simple 1D diffusive models are commonly used to estimate the effect of ELMs on impurity

distributions, such as in [29, 6]. The peeling-ballooning mode vortices lead to an interchange-

type mode which is however not properly described in 1D by a diffusive model, since the trajectory

of the particle depends on the mode phase and not just on the radial position. The strength

of the E×B-drift varies locally with the mode amplitude, on a length scale comparable to the

radial excursions of the particle, i.e. the ballistic length of transport is comparable to the system

size. Additionally, the characteristic time scale of the particle radial velocity, the eddy turnover
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Figure 10: Profile of a distribution with edge W density peaking, which can be caused due to
neoclassical transport when the temperature and density pedestals are not coincident, at 0.5 ms
intervals after ELM onset.
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Figure 11: Profile of a W density distribution with dominant screening in the pedestal at 0.5 ms
intervals after ELM onset.
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time τ = 0.18 ms, indicates that, since diffusive-like behaviour can only be seen after many

ballistic times, a diffusion coefficient can only be defined on a time scale of multiple milliseconds.

Nonetheless, it is relevant to compare the performance of diffusive models with the full trajectory

calculations in this paper, to see how they perform.

We can make a rough estimate of a diffusion coefficient from the time scale and typical

velocity, at for instance t = 1.0 − 1.05 ms at ψn = 0.95 by calculating the RMS of the radial

velocity distribution in Figure 7,
√
〈v2
r〉 = 157 /s. Multiplying the square of this with the eddy

turnover time τ gives us

Dψn ≈
〈
v2
r

〉
τ = 4.4 /s. (12)

To estimate the magnitude of the diffusion coefficient in m2/s we can multiply this by the flux-

surface average of 1/|∇ψn|2, which is (at ψn = 0.95) 1.51 m2, corresponding to Dr ≈ 6.6 m2/s

which is comparable to the diffusion coefficients used in literature [29, 6].

Additionally, from the microscopic trajectories ,we can estimate a local diffusion coefficient.

In a homogeneous medium and on timescales much longer than that of the driving force, this

can be measured from the mean-squared displacement

2Dψnt =
〈

(ψn(t)− ψn(0))
2
〉
, (13)

where ψn denotes the position of a specific particle and the brackets denote an average over

all particles in a region. In this case it is complicated by the locality of the driving forces in

space and time. The time of our measurement needs to be small enough for the particles not

to encounter significantly different diffusion coefficients. This means that our integration time

must be much smaller than the ELM burst period. In space, we have the locality requirement

as
√

2Dψn
t � 0.05, which is approximately the radius of the ballooning mode structure of the

ELM. A scan of analysis timesteps shows t = 0.02 ms to be a suitable period.

We can then determine transport coefficients from the moments of the particle radial velocity

distribution, shown in Figure 8. The effective radial velocity contains both the real radial velocity

as well as the contribution due to the spatial gradient of the diffusion coefficient driven by the
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Figure 12: The calculated diffusion coefficient, a fit with a Gaussian (A = 4.2, µ = 0.94, σ = 0.05)
and the diffusion coefficient used in [29].

divergence of the flux proportional to ∇n,

∂n

∂t
= D∇2n+ (∇D − vr) · ∇n− (∇vr)n. (14)

We can obtain an estimate of the diffusion coefficient Dψn
from the second moment of the position

distribution function, as

Dψn(ψn, t) =
∆t

2
v2
r . (15)

To perform one-dimensional modelling, we calculate a time average over the ELM of Dψn to

obtain a smooth 1D profile, localized between ψn = 0.80 and ψn = 1.05, as seen in Figure 12. The

radial velocity veff , which can be estimated from the average of the radial velocity distribution

function in Figure 7, is small compared to the ∇D radial velocity, except near the separatrix.

We follow the evolution with our 6D model, with the 1D coefficients derived above as well as
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with one-dimensional diffusion coefficients approximated from [29], shown in Figure 12. These

have been chosen to reproduce experimental ELM flushing behaviour [29] in STRAHL. This has

negligible v/D during the ELM, and for D a gaussian profile with height 20 m2/s, center 2 cm

inwards from the separatrix and σ = 3.5 cm, which we translate to ψn-coordinates2 as

Dref = 6.5 · exp

(
−(ψn − 0.98)

2

2 · 0.0282

)
(16)

where we kept the diffusion coefficient constant over time (instead of linearly decreasing), since

this corresponds better to the character of radial and interchange motions seen in Figure 8, but

have decreased the strength by a factor of 2 to compensate. It is peaked slightly further outwards

than our derivation from particle trajectories.

In the 1D modelling we include a sink in the SOL, modelled as in [29] with a parallel connection

length L‖ = 50 m, a loss frequency

ν‖ =
2v‖,W

L‖
, (17)

an impurity velocity

v‖,W ≈ v‖,D = M

√
kB(3Ti + Te)

mD
= 10km/s (18)

at Ti = Te = 100 eV, with a Mach number of 0.07. This leads to ν‖ = 387/ s, corresponding

well with the estimate we can make from the evolution of the impurity distribution in Figure 11,

where 50% of the SOL density is removed in 2 milliseconds, leading to ν‖,est = − ln(0.5)
2ms = 346/ s.

In the case where all impurities start inside the pedestal, i.e. Figure 13, the Dux diffusion

coefficients overestimate flushing into the far SOL, but reasonably reproduce the total amount of

flushing. The inwards extent of the impurity flushing is however not reproduced well by either of

the models. Particles are drawn from much farther inside the plasma than the diffusive modelling

suggests. In the related case, including edge peaking of the impurity distribution, the behaviour

is similar 14.

The inverted profile, where W is screened and the concentration outside of the pedestal is

higher than inside, the Dux model and to a lesser extent the 1D model presented here, under-

estimate the inwards motion of W. The losses from the SOL are modelled well, as well as the

2using the flux-surface average of 1/|∇ψn|2, which is (at ψn = 0.95) 1.51 m2 as a length scale.
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Figure 13: A W impurity distribution with a profile similar to that of the electron density after
an ELM, compared with two diffusive models. The diffusive models show the same qualitative
behaviour, but cannot reproduce the steepness of the profiles after our simulation or the inwards
extent of flushing.
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Figure 14: Profile of a distribution with edge W density peaking after an ELM, compared with
two diffusive models. Qualitatively the diffusive models show the same behaviour, though the
flushing from inside the peak is not reproduced.
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Figure 15: Profile of a W density distribution with dominant screening in the pedestal after an
ELM, compared with two diffusive models. The 6D model shows further inward penetration
than the diffusive models, but there is good qualitative agreement.
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general characteristics of the motion.

To first order the W transport from the 3D interchange motion of the ELM ballooning mode

can be approximated by a 1D radial diffusion process, in the sense that any, positive or negative,

gradient in the initial profiles will be reduced. The 1D radial diffusion process however does

not describe well the after-ELM radial W profile as the W losses with the 1-D model do not

reach as far inwards and outwards as those of the 6-D model, and features such as the limited

flattening of the gradient at the outwards moved edge imply a low diffusive component. This

is incompatible with the 1-D modelling results and illustrates the limitation of applying simple

models to W particle expulsion by ELMs.

5 Conclusions

Our 6D simulation of W impurity transport in an ASDEX Upgrade ELM crash show very efficient

transport in the pedestal region, with particles being redistributed in a region of ψn ∈ [0.75, 1.05].

W impurities from the top of the pedestal are expelled into the SOL while those near and just

inside the separatrix are brought inwards by the ELM.

W transport is found to be due to the electric fields from the peeling-ballooning MHD insta-

bility causing an ELM. The transport due to magnetic field perturbations is negligible. Effective

radial transport, i.e. averaged over flux surfaces, is to first order diffusive, but this 1D description

lacks many features of the W particle motion observed here, such as the inward extent of flushing

of particles inside ψn = 0.85. This is to be expected in the case of a strong interchange motion,

where a diffusive model is not a completely appropriate description.

The very large inward and outward W fluxes created by the ELM have particularly important

consequences for W expulsion when W is well screened in the pedestal between ELMs. In this

case, the 6-D model applied here indicates that the ELMs will actually cause an increase of

the W density in the confined plasma rather than a reduction. The experimental validation of

this finding is essential to assess the viability of ELMs as the mitigation approach to provide W

exhaust in ITER scenarios.
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A Verification of the particle pusher

To prove the correctness of the particle pusher we check the conservation of kinetic energy K

and of canonical toroidal momentum Pφ in an axisymmetric JOREK equilibrium without electric

fields. This equilibrium is obtained by removing the electric field from the pre-ELM equilibrium

described in Section 3. W ions are initialized near the axis, with ψN ∈ [0, 0.214] and with

the velocities sampled from the local Maxwellian and charge state Z = 10. 10000 particles are

followed for each of the timestep sizes tested, between 0.1 microsecond and 0.1 nanosecond.

Figure 16 shows the mean change in kinetic energy < |K − K0| > after the start of the

simulation in eV. The error made here is negligible compared to the average value of the kinetic

energy of ∼ 4.1 keV. They grow as
√
t, indicating a random walk of floating-point roundoff errors

per step. This also explains why the error increases with number of steps and hence decreases

with timestep size.

Figure 17 shows the mean relative change in Pφ = Zeψ −mRvφ, a constant of motion. This

is nearly constant throughout the simulation, showing that the particle trajectory integration is
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Figure 16: Mean and maximum change in kinetic energy in eV.

correct. A small drift is present at the smallest timestep sizes, but is far too small to play a role

in our application. Decreasing the timestep size causes the conservation of Pφ to quadratically

improve, as expected from the second-order Boris method. This is better illustrated in figure 18,

where the solid line indicates the mean relative change and the violins show the distribution of

changes in Pφ. From this we can estimate a timestep size at which to run our simulations. Time

steps smaller than 10−8 second seem adequate, since they lead to an acceptable mean relative

variation of 8 · 10−6 over 6 milliseconds of simulation time.

B Convergence study of results with number of particles.

Figure 19 shows the scaling of reconstruction of tungsten profiles after an ELM with the number

of particles. This shows that enough particles have been used to remove statistical variation.

Particles followed have been placed pseudo-randomly in the plasma, leading to the scaling of

1/
√
N in the reconstruction.
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Figure 17: Mean relative change in Pφ over time at different timestep sizes.
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Figure 19: Reconstruction of the electron H-mode pedestal-like W density profile after 2 ms with
varying number of particles N . Inset shows the scaling of the mean absolute deviation to the
results with 10 million particles, which has the expected 1/

√
N -scaling for Monte-Carlo methods.
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