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Non-perturbative guiding center and stochastic gyrocenter transformations:
gyro-phase is the Kaluza-Klein 5th dimension also for reconciling

General Relativity with Quantum Mechanics

Claudio Di Troia∗

The non perturbative guiding center transformation is extended to the relativistic regime and
takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form:
the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings.
Moreover, the presence of a gravitational field is also considered. The way to introduce the gravita-
tional field is original and based on the Einstein conjecture on the feasibility to extend the general
relativity theory to include electromagnetism by geometry, if applied to the extended phase space.
In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness
of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non
observable fifth dimension of the Kaluza-Klein model. Electrodynamic becomes non local, without
the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the pres-
ence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The
gyrocenter law of motion is the Schrödinger equation.

I. INTRODUCTION

In plasma physics, the gyrokinetic codes are heavily
used because they offer the possibility to understand
plasma mechanisms from first principles. The collective
dynamic is the effect of the self-consistent interaction of
single particles with electromagnetic fields. The parti-
cle interaction with electromagnetic (e.m.) fields is de-
scribed by the Lorentz’s force law, whilst the e.m. fields
are described by Maxwell’s equations. The difficulty is in
the nonlinearity of the problem, because the same e.m.
fields that influence the motion of the single particle are
sustained by the four-current charge density made by the
same particles.
The lagrangian for describing electrodynamics is the sum
of the single particle lagrangian, `(t, x, v), times the dis-
tribution function of particles, f(t, x, v), with the e.m.
lagrangian. The action is often expressed as [1]:

Splasma =

∫
d td xd vf(t, x, v)`(t, x, v)−

∫
FαβF

αβ

4
d td x,

(1)
where Fαβ is the e.m. tensor. This problem is so diffi-
cult that some approximations are often considered: the
motion of the particles is approximated, e.g. in labora-
tory plasmas the relativistic effects are neglected and/or
the non-uniformity of the magnetic field is ignored. In
the present work we use a non-perturbative approach
for describing the particle relativistic motion in a self-
consistent e.m. field. Moreover, mainly for astrophysical
and cosmic plasmas, the present description is extended
to a general relativistic formulation when the presence of
a gravitational field is not negligible. It is worth notic-
ing that the solution of an exact Vlasov-Maxwell-Einstein
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system gives the most complete description of what con-
cerns the classical field theory approach for studying
plasmas.
The work is divided in four parts. In the first part the
single particle lagrangian and its Euler-Lagrangian (EL)
equations of motion, i.e. the Lorentz’ force law, is stud-
ied. In the second part the non-perturbative guiding cen-
ter description is described, which differs a lot from the
standard perturbative approach [2], for obtaining the so-
lutions of the Lorentz? force law.
In the third part it is proposed a method for describ-
ing electrodynamics within the general relativity, also
for solving the problem of the self-energy. Finally, in
the fourth part of this work, electromagnetic fluctuations
are considered for obtaining the gyrocenter transforma-
tion. The e.m. fluctuations are, firstly, considered as
stochastic and the present derivation of the gyrocenter
transformation is very different from [3]. Once fluctua-
tions are considered it will be possible to include quan-
tum effects through the Nelson’s approach (if applied
to the guiding center instead of the particle). The in-
troduction of the stochastic calculus, even if necessary,
doesn’t mean that there are some changes on the physi-
cal laws. The Lorentz’s force law could remain valid also
at a micro-scale. The result is very ambitious because
from totally classical assumptions it will be possible to
propose an explanation of gravitation, electromagnetism
and, at least, some aspects of quantum mechanics within
the same framework of gyrokinetics applied to general
relativity.
We can begin by noticing that there is an asymmetry
in the action (1) between the particle part and the field
part. The e.m. action is obtained by integrating the
lagrangian density over a definite portion of space-time.
This is because Faraday defined a field as an object that
depends only on space-time variables, e.g. the magnetic
field is B = B(t, x). Differently, in the particle action,
the motion of charges is described on the whole phase-
space during time evolution. The integration is done over
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the extended phase-space (the phase space plus time). In
principle, for restoring the symmetry between the two la-
grangians, matter plus fields, it should be simple to think
at an action written as

Splasma =

∫
d td xd vLplasma, (2)

where Lplasma = f(t, x, v)`(t, x, v)+”somethingnew” and
the property that∫

”somethingnew”d v = −FαβF
αβ

4
. (3)

Introducing the phase space lagrangian, which is a
lagrangian density over the extended phase-space,
Lplasma = Lplasma(t, x, v, ẋ, v̇), it could be possible to ex-
tend to the whole extended phase-space a (6 + 1) dimen-
sional field theory machinery for studying plasmas.
In the theory of gravitation, a similar symmetry between
fields and masses is obtained because the required inte-
gration of the lagrangian density is only on a definite
portion of space-time, thus the velocity doesn’t effec-
tively matter. The gravitational force doesn’t depend
on the velocity of masses even if gravitation determines
the motion of masses, thus, also their velocities. In the
lagrangian of a neutral massive body, there is not an in-
teraction term like A ·v, depending on the velocity of the
body. In general relativity theory, it is possible to think
at a consistency between the gravitational field and the
motion of masses. Indeed, what is said is that the space-
time coincides with the gravitational field in the general
relativity theory thanks to the Einstein’s equation. The
mass trajectory, the curve in space occupied by the mass
during time evolution, is a geodesic on the space-time
manifold curved by the presence of masses: the mass
can only follow its trajectory consistently with the un-
derlying gravitational field. Is it possible to think at the
charge trajectory in a similar fashion? Is it possible to say
that the charge trajectory, the curve in phase-space occu-
pied by the charge during time evolution, is the geodesic
on the extended phase-space curved by the presence of
charges? If yes then it should be possible to obtain an
Einstein’s equation also for electromagnetism.
The reason for reviewing some topics of the general rela-
tivity theory is that in the third part of the present work
we will encounter an Hilbert-Einstein (HE) action, as
done in the variational approach for deriving Einstein’s
equation in general relativity but, this is done by consid-
ering a metric on the whole extended phase-space. It is
proposed to substitute the term ”somethingnew” in (2)
with a HE term when velocities are considered as dy-
namical variables. In this way, we are able to obtain the
self-consistent solution of the problem of electrodynam-
ics concerning plasmas in a general e.m. field. Moreover,
having used an HE action we will discover that our solu-
tions are also valid in the presence of a gravitational field.
If the correctness of such approach will be confirmed the
result is very important because it could be said, from
now on, that the gravitational field coincides with the

extended phase-space and not only with the space-time.
The important difference with the standard approach is
that from giving a geometry to the extended phase-space
it is possible to obtain both gravitation and electromag-
netism.
Although an Einstein’s equation on the extended phase-
space should be, somehow, analyzed, it will not been
studied here. However, it will be analyzed what hap-
pens if the (non perturbative) guiding center description
of motion is adopted. In such case, a similar mechanism
to the one proposed by Kaluza and Klein (KK) a century
ago [4, 5] is found. The advantage of using the present
description is that, now, there is no need of looking for a
compactification scheme as required in the original KK
mechanism. Indeed, the extra-dimension that appears in
the guiding center transformation is a physical and, in
principle, measurable variable being the gyro-phase, the
angle obtained when the velocity space is described in
a sort of cylindrical transformation of velocities coordi-
nates. Regardless of the equations that are really similar
to the one seen in the KK mechanism, the new claim is
in the interpretation of the extra dimension as a coor-
dinate coming from the phase-space. Until now, all the
compactification mechanisms have been shown to give
problems, like the inconsistency of the scale of masses
with observations. Instead, without a compactification
at the Planck scale length and giving a physical meaning
to the extra-coordinate, it seems that the KK mechanism
can finally be accepted as a realistic explanation of the
presence of gravitation and electromagnetism treated in
a unified manner in classical physics.

In section II, the basic equations needed for introduc-
ing the non perturbative guiding center transformation
[6] are considered, and they are extended to relativis-
tic regimes. Within such approach it will be possible to
analytically describe the motion of a charged (classical)
particle in a general e.m. field. Some trivial solutions are
shown in section III. These are the guiding particle solu-
tion which is minimally coupled with the magnetic field
and the gyrating particle solution that describes a closed
orbit trajectory spinning around a fixed guiding center.
In section IV, the relativistic non perturbative guiding
center description of single particle motion is described.
Similar results are obtained in section V, by adopting the
same lagrangian formalism used for the magnetic force
lines in [7].
Finally, in section VI, the particle dynamics are consid-
ered with different metric tensors: from a flat space-time
geometry (M4) to a curved extended phase-space (posi-
tion, velocity and time) geometry. The novelty is that, in-
stead of directly adding to the single particle lagrangian,
a term for taking into account the presence of e.m. fields,
we prefer to add a HE-like lagrangian. Thus, the metric
tensor could be determined through the variation of the
HE action in extended phase-space. If the guiding center
coordinates are employed, it will be possible to apply the
KK mechanism [8, 9] with a geometry R3,1 × S1 for the
extended phase space so that the solution for the metric
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tensor is exactly the one proposed by KK.
The e.m. fluctuations are considered in Section VII and
the analysis of solutions, which is the important issue
studied in gyrokinetics, is considered here from a stochas-
tic perspective. Thanks to such improvement on the gy-
rocenter transformation, if non relativistic energies are
considered, it will be shown that the gyrocenter motion
is fine described by the Schrödinger equation. The possi-
bility of reconciling general relativity with quantum me-
chanics is resolved by the fact that they describe differ-
ent quantities, the general relativity describes the guiding
center, whereas quantum mechanics describe gyrocenters
whose motion, with respect to guiding centers, is also due
to electromagnetic fluctuations.
The analysis is firstly done by adopting the Eulerian de-
scription of dynamical quantities. However, the final
description of motion is done in the guiding center de-
scription. Even if the motion is independent on such
choice, the privileged reference system here adopted is
the guiding center one. In the appendix some details on
the derivation of the KK mechanisms are reported fol-
lowing [10].

II. BASIC EQUATIONS

A charged particle (charge e and massm) that moves in
a given e.m. field is classically described by the Lorentz’s
force law:

d

dt
γvv =

e

m
(E + v ×B) , (4)

for c = 1. The relativistic factor is γ−1v =
√

1− v2 in
the flat Minkowski spacetime. If s is the proper time
or the world line coordinate, then γ−1v = ṡ, where the
dot is indicating the time derivative. In (4), v = ẋ is
the velocity. To obtain the solutions of (4), we use the
newtonian idea of a deterministic world. Following [6],
supposing to know the exact solutions of the motion, in
such a way that it is possible to fix the velocity, v, for
each point of the space (traced by the particle), x, at each
time, t: ẋ = v(t, x). The former equation indicates the
pathline in continuum mechanics [11]. The motion will
also depend on other quantities, e.g. the initial energy
ε0, being ε = γv + eΦ/m (Φ is the electric potential), or
the initial velocity, v0. However, we treat such variables
as constant parameters and, at the moment, they are not
explicitly considered. The total derivative with respect
to time is:

d

dt
γvv = ∂tγvv+v·∇γvv = ∂tγvv+γ−1v ∇

γ2vv
2

2
−v×∇×γvv.

(5)
Introducing the e.m. potentials, Φ and A, in (4) then the
equation (5) becomes

∂t(γvv + eA/m) + γ−1v ∇
γ2vv

2

2
+ (e/m)∇Φ = (6)

= v × [(e/m)B +∇× v].

From the identities γ−1v ∇γ2vv2/2 = γ−1v ∇γ2v/2 = ∇γv, it
follows:

∂t(γvv+eA/m)+∇(γv+eΦ/m) = v×∇×(γvv+eA/m).
(7)

The latter equation can be suggestively read introducing
the ”canonical” e.m. fields Ec = −(m/e)∇ε − (m/e)∂tp
and Bc = (m/e)∇ × p. In fact, Ec and Bc are said
”canonical” because of the potentials, Φc = (m/e)ε and
Ac = (m/e)p, that are the energy and momentum, i.e.
the canonical variables of time and position, respectively.
Now, the equation (6) is rewritten as

Ec + v ×Bc = 0, (8)

which means that in the reference frame that moves
with the particle, ẋ = v(t, x), the particle is seen always
at rest. In fact, the resultant of forces vanishes in
such co-moving frame. This is the free-fall reference
frame for electromagnetism and something similar to
the equivalence principle can also be stated here. The
difference with the standard approach is that it has been
adopted an eulerian description of motion instead of the
lagrangian one. The main differences between the two
approaches are soon analyzed.

A. The Lagrangian and the Eulerian description of
motion

If the charge position at t = 0 is known: x(t = 0) =
x0, then the flow is represented by the map, Φt, that
determines the charge position at a later time:

x(t) = Φt(x0), (9)

being x0 = Φt=0(x0). In continuum mechanics, the for-
mer equation is simply named the motion. Concerning
the definition of Lagrangian vs Eulerian descriptions, we
closely follow the textbook [11]. The Lagrangian ve-
locity is defined to be v = v(t, x0), and it is referred
to the charge x0, that means the charge that initially
was at x0 (when t = 0). The Eulerian velocity is de-
fined to be v = v(t, x), that gives the velocity when
the particle x0 passes through x at time t. The same
is true for any quantities, e.g. O can be expressed in
Lagrangian description, then O = O(t, x0) and the par-
ticular charge x0 is followed in its time evolution, other-
wise, in eulerian description, O = O(t, x), and O refers
to the charge x0 when it passes through x at time t.
The time derivative is often called the material deriva-
tive: Ȯ = ∂tO |x0

= ∂tO |x + ẋ · ∇O = ∂tO + v · ∇O , for
the chain rule. What is important and heavily used in
the present work is the fact that the computation of the
acceleration, a = v̇, at (t, x) can be done without solv-
ing the motion first. This only enables the knowledge of
v = v(t, x) and not of x = Φt(x0):

a = ∂tv + v · ∇v. (10)
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1. Note on lagrangian mechanics

The non relativistic Lorentz’ force law is the same of
equation (4) with the substitution γv = 1. It is quite
simple to obtain such force from the Euler-Lagrange (EL)
equations:

d

dt
∇ẋLnr −∇Lnr = 0, (11)

where the non relatvistic lagrangian, Lnr = Lnr(t, x, ẋ),
is

Lnr(t, x, ẋ) =
ẋ2

2
+ (e/m)ẋ ·A(t, x)− (e/m)Φ(t, x). (12)

It is remarkable that the EL equations can be obtained
from a variational principle, i.e. the Hamilton’s principle.
If the action is defined to be

Snr =

∫ tout

tin

Lnr dt. (13)

being tout and tin two different instants of time, then it is
possible to associate the EL equations with an extremal
of the action. If all the trajectories are considered, from
tin and tout, there are some of those trajectories for which
the action is at an extremal. Let’s take a trajectory of
motion, x = X(t) that passes in Xin at tin and in Xout at
tout. Such trajectory is the so-called trajectory of motion
because it is solution of Ẍ = (e/m)(E + Ẋ ×B). Start-
ing from such trajectory it is possible to consider all the
other trajectories that are parametrically written at each
instant of time, t, as

x = X + ρ(t,X, α) (14)

ẋ = Ẋ + ρ̇(t,X, α),

where α = (α1, α2, α3) could vary on a three dimensional
domain. It is useful to ask for the following property: if
α2 goes to zero, then also ρ goes to zero and the consid-
ered trajectory collapses on the trajectory of motion, x
goes to X (and ẋ goes to Ẋ). With respect to the stan-
dard approach we are considering all the trajectories, not
only the one starting from Xin at tin to Xout at tout. Such
difference causes the following consequence. The varia-
tion of the action ( with respect to the parametric space),
δSnr is always given by

δSnr = ρ · ∇ẋLnr|tout
tin −

∫ tout

tin

[
d

dt
∇ẋLnr −∇Lnr

]
· ρ dt,

(15)
but now the EL equations doesn’t ensure that δSnr = 0
because of the term ρ ·∇ẋLnr which can be different from
zero. The common practice is to consider ρ = 0 at t = tin
like at t = tout. However, this is not necessary. You can
also consider all the trajectories with ρ · ∇ẋLnr = 0 but
ρ(tin) 6= 0 and ρ(tout) 6= 0, and, again, the result is that
the force law corresponds to the vanishing of the first vari-
ation of the action. In this case there are many (infinite)

trajectories for which the EL equations (i.e. Lorentz’

force law) are satisfied, even if the coordinates X, Ẋ are
always describing the unique trajectory that starts from
Xin at tin to reach Xout at tout. In such case, both the
EL equations and the Hamilton’s principle are satisfied,
even if α2 6= 0. The reason for noting such difference
with respect to the standard approach is quite unimpor-
tant unless there is something, like an indetermination
principle or some non-locality properties, that doesn’t
allow to exactly known where the particle is at tin and at
tout. We will see in section VI that the present theory is
non-local and the latter extended approach to the vari-
ational description is useful. Moreover, in section VII,
it is shown that α2 6= 0 almost always and the classical
trajectory (with α2 = 0) is ruled out by electromagnetic
fluctuations.

2. The non relativistic case

In (12), it is possible to substitute the potentials, that
are fields, i.e. functions of time and position, with other
physically meaningful fields. For an arbitrary velocity
field, V (t, x), it is possible to define E(t, x) = V 2/2 +
(e/m)Φ(t, x) and P (t, x) = V +(e/m)A. Also E = E(t, x)
and P = P (t, x) are fields. The Lagrangian becomes

Lnr =
ẋ2

2
+ ẋ · (P − V )(t, x)− (E − V 2/2)(t, x) =

=
(ẋ− V )2

2
+ P · ẋ− E . (16)

The momentum, p ≡ ∇ẋL, is p = ẋ− V + P .
It is worth noticing that the arbitrariness of V is very
important. Behind such arbitrariness there is the rela-
tivity principle. In fact, the presence of V can be seen as
a particular choice of the reference frame in the space of
velocities and, therefore, does not affect the dynamics. It
is not important if the observer of an experiment moves
with an arbitrary velocity V , the physics described by
the experiment remains the same because the lagrangian
has the same value, being a scalar. The property of the
lagrangian of being a scalar is the relativity principle and
it will be very useful in next sections.
Now, it is easy to recognize two different descriptions of
the same motion, the Lagrangian description, which is
almost adopted, is when V = 0 and the Lorentz’s force
law is recovered. Whilst, for ẋ = V (t, x), the description
is said Eulerian.
Concerning the Euler-Lagrange (EL) equations, they are
computed:

d

dt
(ẋ− V ) = −∂tP −∇E + ẋ×∇× P + (17)

−(ẋ− V )×∇× V − (ẋ− V ) · ∇V.

Introducing the canonical e.m. fields (e/m)Ec = −∂tP −
∇E and (e/m)Bc = ∇× P , the former can be rewritten
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as

d

dt
(ẋ− V ) = (e/m)(Ec + ẋ×Bc) + (18)

−(ẋ− V )×∇× V − (ẋ− V ) · ∇V.

It is now evident that a solution of motion is when ẋ = V
and V is solution of equation (8):

Ec + V ×Bc = 0, (19)

which seems, only apparently, an algebraic equation.
In dynamical systems or continuum mechanics, given the
eulerian velocity field V = V (t, x), i.e. the velocity of the
charge when it passes at x at time t, the problem is to find
the particle path, integrating the equation ẋ = V (t, x).
Differently, here the eulerian velocity is not given and we
have to solve equation (8) to obtain the velocity field,
eventually for trying to integrate the motion (which is
not our first interest). We concisely refer to equation
(8) as the velocity law because it can be found for every
e.m. fields and for every charge if the eulerian description
is adopted. Moreover, with respect to an observer that
moves with the Eulerian velocity V (t, x), from equation
(18), the electric field is Ec + V × Bc which is null so
that the charge is kept at rest. With respect to an ob-
server co-moving with the laboratory, the e.m. fields can
be measured to be E and B whilst the charge is seen to
move following the Lorentz’s force law.
Another interpretation of the same equation, is the fol-
lowing. Suppose to realize, in a laboratory, the electric
field, Ec, and the magnetic field, Bc, and to be able to
move the charge in X at t in such a way that its velocity
is described by V (t,X). Then, the Lorentz’ force on the
particle vanishes, being Ec + V × Bc = 0. Without a
force on the charge, it is possible to consider the charge
velocity preserved as in an inertial reference frame. The
problem is that the velocity is not constant and the tra-
jectory is not straight as for a global inertial reference
frame. This is exactly what occurs if the reference frame
is considered inertial only locally as it happens when an
equivalence principle is considered.
It is worth noticing that there is an interesting similarity
between such equations of motion and the ideal Ohm’s
law encountered in magneto-hydro dynamics (MHD). In
MHD, the ideal Ohm’s law is below written: E+Vp×B =
0, being Vp the plasma eulerian velocity. Thus, even if
the context is different, the solutions are similarly classi-
fied ( see also [12] for the true relativistic Ohm’s law ).
If Bc 6= 0, it is possible to rewrite Ec + V ×Bc = 0 as

V = Vbb+
Ec ×Bc
B2
c

, (20)

where b is the unit vector in the direction of the canonical
magnetic field, Bc = |Bc|b, and Ec×Bc/B2

c is the E×B-
like drift velocity. In plasma physics, it is interesting to
study the case corresponding to the gyro-kinetic ordering
that neglects the E ×B-like drift.

Last but not least, in the Eulerian description the la-
grangian in (16) corresponds to the Poicare’-Cartan form,
which linearly depends on the velocity:

LPC = P (t, x) · ẋ− E(t, x). (21)

3. The relativistic case

When relativistic energies are considered it is impor-
tant to give a covariant description. In this section
the spacetime is considered Minkowskian (flat geome-
try) with signature ηαβ = diag(1,−1,−1,−1). Let’s start
from the scalar Lagrangian:

L = −1 + (e/m)(A · u− Φ
√

1 + u2), (22)

being
√

1 + u2 = γv. We indicate with the prime the
derivative with respect to the world line coordinate, s,
so that u = x′ is the relativistic velocity. The lagrangian
(22) is the sum of two effects, the free single particle
lagrangian is Lfree = −1 while the lagrangian express-
ing the interaction between matter and the e.m. field is
Lime = (e/m)(A · u− Φ

√
1 + u2). Adopting the summa-

tion convention and for uαuα = 1 with α = 0, 1, 2, 3, the
lagrangian can be re-written in the familiar form

L = −uα(uα + eAα/m), (23)

being A0 = Φ the electric potential. Explicitly, we
have assumed that the contravariant velocity is uα =
(γv, γvv), while the covariant velocity is obtained from
the product uα = ηαβu

β , that gives uα = (γv,−γvv).
From 1 = 1/2 +uαuα/2, an equivalent lagrangian can be
written:

L = −u
αuα
2
− e

m
uαAα −

1

2
. (24)

It is worth to note that such lagrangian is very similar to
the non relativistic one, Lnr = v2/2 + (e/m)(v · A − Φ);
if u→ v then the difference is only due to the energy at
rest, which is absent in Lnr.

Now, for an arbitrary four co-variant velocity field,
Uα = Uα(xβ) it is possible to define a co-vector field,
Pα = Pα(xβ) = Uα+(e/m)Aα. The Lagrangian becomes

L = −u
αuα
2
− uα(Pα − Uα)− 1

2
. (25)

The four co-momentum are

pα = − ∂L

∂uα
= uα + Pα − Uα. (26)

The EL equations are simply

d

ds
pα = uβ∂α(Pβ − Uβ), (27)

that, finally, can be written as:

d

ds
(uα − Uα) = uβ(∂αPβ − ∂βPα)− uβ∂αUβ . (28)
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As before, if Uα = 0 the equations of motion give the
covariant Lorentz’s force law, and a Lagrangian descrip-
tion is preferable. However, if uα = Uα(xβ), then the
description is Eulerian. In the Eulerian description, the
Eulerian four velocity satisfy the equation (8) because
uαuα = 1 and uβ∂αuβ = 0. The velocity law can be
written in co-variant form as

uβωαβ = 0, (29)

being ωαβ = ∂αPβ−∂βPα, known as the Lagrange tensor.
The canonical Maxwell tensor, Fc αβ is proportional to
the Lagrange tensor, ωαβ :

(e/m)Fc αβ ≡ ωαβ = ∂αPβ − ∂βPα. (30)

Thus, equation (8) is found when α = 1, 2, 3; whilst, if
α = 0 then

γvv · (−∇E − ∂tP ) = 0, (31)

which means that Ec is transversal to v, so that it doesn’t
contribute to the energy variation (for this reason, in [6],
Ec was indicated as Et).
Even if we have already obtained the covariant equations,
it is instructive to derive the same equations (29) directly
from the most simple lagrangian: L = −uαpα(xβ), which
is the same of (23) but now the covariant momentum,
pα = pα(xβ), is only function of the spacetime coordi-
nates and it doesn’t depend on the (relativistic) velocity
(its one-form is the Poincaré-Cartan form). For such
lagrangian, the four momentum is

pα(xβ) ≡ − ∂

∂uα
L (32)

and the EL equations are:

uβ∂βpα = uβ∂αpβ , (33)

being p′α = uβ∂βpα. The former is exactly the equation
(29).

III. SOLUTIONS OF THE VELOCITY LAW

There are some simple solutions of the equation (29).
The trivial solution, ωαβ = 0, results to be very impor-
tant. Another simple solution is ωαβ = εαβγδk

γuδ, where
εαβγδ is the Levi-Civita symbol (ε0123 = 1) and kγ is the
wave number four-vector. Also this solution is trivial be-
cause the Levi-Civita symbol is totally anti-symmetric,
so that uβεαβγδk

γuδ = 0 due to the symmetry β ↔ δ.
From equation (20) it is possible to classify the solutions
of the velocity law depending on i) Bc = 0 and Ec = 0,
ii) Bc 6= 0 and Ec = 0 and iii) Bc 6= 0 and Ec 6= 0. They
are called, gyrating particle solution, guiding center solu-
tion in gyrokinetics ordering and guiding center solution
in MHD ordering, respectively.

A. Relativistic guiding particle solution

Let’s start with the analysis of the following solution:
ωαβ = εαβγδk

γuδ and consider the case k0 = 1/λ and
k = 0. Now, ωαβ = uδεδαβ0/λ. Thus, only the spatial
components survive:

ωij =
uk

λ
εijk with i, j, k = 1, 2, 3. (34)

Multiplying for εijl both sides of the latter equation, and
using the equivalence εijkε

ijl = 2δkl , then

ul

λ
=
εijl

2
ωij = εijl∂ipj , (35)

which is the l component of the fundamental equation:

u

λ
=

e

m
B +∇× u, (36)

as in the non-relativistic case [6].
The latter equation is said fundamental because its so-
lution gives the answer for many problems encountered
in plasma physics and/or electrodynamics. At first, if
λ → ∞ then B = −(m/e)∇ × u and the velocity be-
comes strictly related to the vector potential: the prob-
lem is to find a vector potential from a given magnetic
field. This kind of solution will be called the gyrating par-
ticle solution. Secondly, If (e/m)→ 0 then u = λ∇× u,
which is recognized as the force free equation [13, 14] that
denotes the Beltrami field [15]. In [6], equation (36) is
treated as the non-homegeneus version of the force free
equation. Finally, the guiding particle solution is ob-
tained when the vorticity, ∇ × u, is small: ∇ × u ∼ 0.
In this case, the velocity is mostly parallel to the mag-
netic field u ∼ (e/m)λB, and the vorticity gives the drift
velocity [6]: vD = λ∇ × u. In [16], the same equation
is part of a system of equations where the equation (36)
is coupled with another similar equation that describes
the magnetic field. Such system of equations is used for
describing interesting diamagnetic structures in plasmas.
Nevertheless, written in the latter form, something un-
usual appears. In fact, the Hamilton-Jacobi solutions,
that are classical solutions, are obtained setting p = ∇S,
where S is the principal Hamilton function[17]. In our
case, p is not a gradient of a function, otherwise its curl
should vanish. We have already defined the canonical
magnetic field exactly as the curl of (m/e)p. This means
that classical solutions have Bc = 0 and so, we are in-
specting non classical solutions with Bc 6= 0.
Together with (36), there is also the condition ω0i = 0,
which means:

∂tp+∇ε = 0, (37)

as it should in the gyrokinetic-like ordering (Ec = 0).
Such equation, already studied in [6], is particularly im-
portant when u ∼ λeB/m. In this case it is better to
indicate u with U and refer to it as the guiding particle
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relativistic velocity. The reason is that it describes the
motion of a particle, with null magnetic moment that
proceeds mostly parallel to the magnetic field with a drift
velocity λ∇× U . For a generic magnetic field, it is pos-
sible to obtain a perturbative solution ordered in power
of λ so that the 0th order approximation is

U (0) =
e

m
λB. (38)

The leading order approximation is

U (1) = λ
e

m
B + λ∇× U (0). (39)

If λ = (m/e)u‖/|B|, then the former is the familiar guid-
ing center (relativistic) velocity (for null magnetic mo-
ment) at leading order:

U (1) = u‖b(0) + (m/e)u‖/|B|∇ × u‖b(0), (40)

with B = |B|b(0). In [6], an exact solution of (36) is
obtained when the magnetic field is axisymmetric as it
happens in many interesting circumstances. In such case,
a common representation of B is

B = ∇ψp ×∇φ+ F∇φ, (41)

where φ is the toroidal angle, ψp is the poloidal magnetic
flux surface and F/R is the toroidal component of the
magnetic field, (∇φ = eφ/R with eφ, the unit vector in
the toroidal direction, and R the radial distance from the
axis). The guiding particle velocity solution of (36) in an
axisymmetric magnetic field like (41) is [6]

U = λ
e

m
∇Pφ ×∇φ+

e

m
(Pφ − ψp)∇φ (42)

with the guiding particle toroidal momentum, Pφ (in
magnetic flux unit), satisfying the following equation:

λR2∇ · λ∇Pφ
R2

+ Pφ = 0, (43)

if λ = −ψp/F . The latter equation, that can be written
as an eigenvalue equation for the Shafranov operator, was
already obtained but wrongly written in [6] (see [18] for
details).

B. Velocity law solutions in MHD-like orderings

Previously, we have analyzed the following solution of
the velocity law: ωαβ = εαβγδk

γuδ, with kγ the time-like
four-vector: k0 = 1/λ and k = 0. We have noticed that
from this choice it follows that Ec = 0, which is said
the gyro-kinetic-like ordering. Now we want to consider
the case where kγ is the space-like four vector (0, k). In
such case, ωαβ = εαβiδk

iuδ = εαβi0k
iu0 + εαβijk

iuj . The
component of ωαβ are

ω0k = ε0kijk
iuj = (k × u)k (44)

and

ωkj = εkji0k
iu0. (45)

That can be written in vectorial form as

Ec = (m/e)γvk × v (46)

and

Bc = (m/e)γvk, (47)

being ωαβ = (e/m)Fc αβ . In such case it is the wave
number, and not v, that is parallel to Bc. The solution for
v is the same of (20) but contrary to before the particle
motion don’t follow trajectories close to the magnetic
field lines because of the presence of the electric field Ec.
This is what happens in the MHD-like ordering. Thus, we
can easily distinguish the MHD-like from the gyrokinetic
ordering giving to kσ the character of a space-like or time-
like four-vector, respectively. The same conclusion can
also be done if the ideal Ohm’s law is considered instead
of the velocity law of equation (8).

C. Gyrating particle solution

The trivial solution of (29) is ωαβ = 0. In such case
the canonical fields are null: Fc αβ = 0, or Ec = Bc = 0.
If Bc = 0, then (e/m)B + ∇ × u = 0. Now, it is
possible to choose a very particular vector poten-
tial: A = −(m/e)u + ∇g, being g a gauge function.
Moreover, the function g is also seen to be propor-
tional to the principal Hamilton’s function, S, which
is an action. Indeed, the canonical momentum is
p = u + (e/m)A = (e/m)∇g. If g = (m/e)S, then
p = ∇S and we have just set the initial condition for
finding the classical solution in the Hamilton-Jacobi
method. This is also consistent with Ec = 0, that
means that ∇u0 + (e/m)∇Φ + (e/m)∂t∇g = 0. If
ε = u0 + (e/m)Φ = −(e/m)∂tg, then we found the
other Hamilton-Jacobi equation: ε + ∂tS = 0, being
S = (e/m)g.

1. Zitterbewegung

The gyrating particle solution is the most important
solution. The reason will only be clear in Section VII,
but it is possible to notice some interesting properties
also here if the gauge function is settled to g = (m/e)2γ
(such choice will soon be defined as the guiding cen-
ter gauge function). The four-vector co-momentum is
pα = −(m/e)µ∂αγ. Explicitly, p = (m/e)µ∇γ and
ε = −(m/e)µ∂tγ.
Such solution allows to compute the Lagrangian, whose
value is: L = v ·p−ε = (m/e)µ(∂tγ+v ·∇γ) = (m/e)µγ̇.
If γ is the gyro-phase, the conjugate coordinate, µ, is the
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magnetic moment. Thus, the gyrophase comes to be pro-
portional to the action. Such remark was already consid-
ered by Varma [19], who firstly recognizes the importance
of identifying the gyrophase with the action in another
context: path integral formulation of quantum mechanics
for discovering quantum effects on macro-scale dynam-
ics. In the present work, it is not possible to sufficiently
stress why we should consider the gyrophase an action
coordinate and it will be considered elsewhere together
with the Varma’s idea. However, another surprising cor-
respondence with quantum mechanics is here described
Concerning the non relativistic energy of the charge,

ε =
[p− (e/m)A]2

2
+

e

m
Φ. (48)

it can be re-written in an interesting way once the phase
function, ψzbw = e−iγ , is considered. Here, zbw stands
for Zitterbewegung [20–23]. From the derivatives of the
phase function

∇ψzbw = −iψzbw∇γ and ∂tψzbw = −iψzbw∂tγ.
(49)

Thus, the momentum and the energy can be written as

p = i(m/e)µψ?zbw∇ψzbw, (50)

ε = −i(m/e)µψ?zbw∂tψzbw, (51)

where ψ?zbw indicates the complex conjugate of ψzbw,

which, in this case, it is also the inverse: ψ?zbw = ψ−1zbw.
The energy is computed:

−i(m/e)µψ?zbw∂tψzbw =

1

2
[i(m/e)µψ?zbw∇ψzbw − (e/m)A] ·

· [−i(m/e)µψzbw∇ψ?zbw − (e/m)A] +
e

m
Φ,

being p and ε real quantities. The former expression is
written as

−i(m/e)µψ?zbw∂tψzbw =

ψ?zbw
[i(m/e)µ∇− (e/m)A]2

2
ψzbw +

+
i

2
∇ · [i(m/e)µψ?zbw∇ψzbw − (e/m)A] +

e

m
Φ.

The divergency term is ∇ · v and it is null for an in-
compressible charge, neither created nor destroyed. A
Schrödinger -like equation is obtained:

−i(m/e)µ∂tψzbw = (52)

[i(m/e)µ∇− (e/m)A]2

2
ψzbw +

e

m
Φψzbw.

The operator, of the former partial differential equa-
tion, is exactly the same of the Schrödinger equation if
e < 0, as for an electron, and µ = |e|~/m2. From to-
tally classical assumptions, the expression of the energy
for a charged particle together with the constrain that
∇·v = 0, give rise to a wave equation. Thus, for a gyrat-
ing particle solution it is possible to describe a classical

solution of motion through a Schrödinger equation ap-
plied to a phase function like ψzbw. What is important is
that determinism is preserved by the fact that |ψzbw| = 1,
which means, in the Born interpretation of |ψzbw|2, that
the probability of finding the particle in the state repre-
sented by ψzbw is almost certain (only if you know the
initial gyrophase).

2. Magnetic flux linked to closed loops

For the gyrating particle solutions, it is possible to
take the following representation for the magnetic field:
B = ∇Ψ×∇γ, which is commonly called Clebsh represen-
tation. Ψ and γ are said Clebsh potentials. Topologically,
it is possible to choose γ ∈ S1, in such a way that, in this
case, it is considered the gyro-phase. The variable Ψ is
the magnetic flux linked to the closed loop traced by γ.
∇Ψ is orthogonal to ∇γ, in such a way that B doesn’t
depend on γ. The particle, that travels along the closed
loop of curvilinear coordinate γ, always feels the same
orthogonal magnetic force. This happens for the partic-
ular representation of the magnetic field, not because the
magnetic field is straight and uniform. For this reason,
such representation is also known as the straight field
line representation. The motion of the gyrating particle
is expressed by:

x = X + ρ(γ)

u = U + ν(γ) = ν(γ),

where we have set U = 0, so that the guiding center, X,
is fixed. The gyrating loop motion has been described in
[6] setting

ν = ρ× Ω, (53)

where Ω is the relativistic angular frequency, that de-
pends on the position of the particle. It is possible to
choose a local tern of orthogonal unit vectors: eγ ·eρ×b =
1, where ρ = |ρ|eρ, Ω · b = γ′ and ν = |ρ|γ′eγ .
It is worth noticing that |ρ| becomes a conserved quan-
tity if (53) is allowed. In fact, the world line derivative
of ρ2/2 is ρ · ρ′ = ρ · ρ×Ω = 0. Thus, |ρ| doesn’t depend
on γ. However, |ρ| depends on the magnetic flux linked
to the closed orbit. In other words, distances are now
measured in terms of Ψ. Moreover, also the time of one
revolution depends on Ψ, so that it can be considered a
good time-like coordinate.
From (53), the closed trajectory lives on the surface of a
sphere, S2, of radius |ρ|. However, if other coordinates
are used then the same particle is seen to move on a heli-
coidal trajectory. The circle S1 is both the representation
of the particle orbit, but also the description of the gy-
rating motion in the guiding center coordinates. What
is important is that there is no difference from the point
of sight of the particle. The particle moves in a circle,
ignoring the rest of the world because it can only feel
the effect of the Lorentz’ force with the same magnetic
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field intensity. If the charge is described in the guiding
center reference frame, then the magnetic field is always
orthogonal to its direction of motion. In a certain sense,
it is similar to a massive body in a gravitational field:
the massive body moves straight along the geodesic but
the spacetime is curved due to the presence of a gravita-
tional field and the body is seen from an observer, e.g. to
fall versus another massive body. On the same footing,
a charged particle moves circularly but the spacetime is
measured in units of magnetic field and if such magnetic
field is non uniform then the charge is seen from an ob-
server with a relative relativistic velocity −U 6= 0, e.g.
to follow a helicoidal trajectory. In the forthcoming sec-
tions, the guiding center description of motion will be
described , when both U and ρ are not vanishing, and it
will be shown how the electromagnetism can be described
within the formalism of general relativity.

IV. GUIDING CENTER DESCRIPTION

Here, another interesting and important description of
motion is considered, with respect to the Eulerian and
the Lagrangian descriptions: the guiding center descrip-
tion of motion which is neither Lagrangian nor Eulerian.
Such possibility arises if the velocity of the charge is writ-
ten as ẋ = V + σ. Now, the motion is not Eulerian,
because V 6= ẋ, and it doesn’t express the velocity of
the charge at a given time and position. V expresses the
velocity field that is used as a system of reference for
velocities measured by σ = ẋ − V . Such description is
not Lagrangian, because V 6= 0, now. However, if the
vector field σ is defined on the same domain of V , then
re-naming Ṽ = V +σ, the description can be done in the
Lagrangian or Eulerian way, as previously done. Instead,
for the guiding center description we do something dif-
ferent, now σ depends on a new variable or parameter,
γ ∈ S1, which it can be identified with the gyro-phase. In
practice, γ must live in a different domain from the one
where the e.m. fields are defined and, thanks to Faraday,
the e.m. field only varies on space-time. Such new vari-
able is always part of the whole phase-space. The non
perturbative guiding center transformation is the trans-
formation from (t, x, v) to (t,X, γ, µ, ε), where µ is the
magnetic moment, that will be defined later on, whilst
ε is the energy of the charge. The transformation is im-
plicitly written as

x = X + ρ(t,X, γ;µ, ε) (54)

v = V (t,X;µ, ε) + σ(t,X, γ;µ, ε).

The latter relations are considered at each time, t, and
express the trajectory of the charge through the guid-
ing center coordinates (t,X, γ, µ, ε). Comparing such re-
lations with the parametrized trajectories in (14), it is
straightforward to identify α with α = (γ, µ, ε). Specif-
ically α1 = γ, α2 = µ and α3 = ε. In (54), ρ is the
gyro-radius and X is the guiding center position. The
guiding center velocity is Ẋ = V , if V is computed at X.

The contra-variant guiding center coordinates are ZA =
(t,X, γ, µ, ε), with the index A from 0 to 6. The coor-
dinates ZA are contra-variant because they transform in
the following way: if ZA = ZA(zB) then

dZA =
∂ZA

∂zB
dzB . (55)

In the guiding center description of motion the single
particle lagrangian doesn’t depend on γ, therefore, a re-
duction of the complexity of the problem is achieved: γ
is cyclic and the conjugate variable, that is the magnetic
moment, µ, becomes an invariant of motion. The la-
grangian in (12) is rewritten by separating the guiding
center part:

Lnr(t,X + ρ, V + σ) =

=
(V + σ)2

2
+ (e/m)(V + σ) · (A+ δρA)− (e/m)(Φ + δρΦ),

where A(t, x) = A(t,X) + δρA and Φ(t, x) = Φ(t,X) +
δρΦ. Here, V is always solution of equation (19) for en-
suring that if µ → 0 then V describes the velocity of a
particle. The lagrangian is written in such a way that
it is divided in what surely doesn’t depend on γ, firsts
three terms below, from what it should:

Lnr =
V 2

2
+ (e/m)V ·A− (e/m)Φ +

+P · σ + (e/m)(V · δρA− δρΦ) +

+
σ2

2
+ (e/m)(σ · δρA). (56)

It is advantageous denoting Lnr0 = V 2/2 + (e/m)V ·A−
(e/m)Φ, as the leading order lagrangian, with Lnr1 =
P · σ + (e/m)[ρ · (∇A) · V − ρ · ∇Φ], as the first order
lagrangian, and the rest with Lnr2 = Lnr − Lnr0 − Lnr1.
The reason is that the equation of motions are obtained
only if the first order lagrangian vanishes. This it can be
easily seen if ρ and σ are considered small. In such case
Lnr2 can be ignored and Lnr1 = ρ·(e/m)[(∇A)·V −∇Φ−
Ṗ ] + d(ρ · P )/dt. The equation of motion are obtained
when it is required that Lnr1 − (d/dt)(ρ · P ) = 0, if the
identity (∇A) · V = V × ∇ × A + V · ∇A is used. This
is equivalent to ask for the action to be at an extremal
since, neglecting the small variation of the trajectory ρ,
Lnr = Lnr0.

A. The guiding center gauge function

The single particle lagrangian is gauge independent
and, for a gauge function g, then the transformation
A → A − ∇g and Φ → Φ + ∂tg leaves the trajec-
tories of motion unaltered. Indeed, together with the
gauge transformation of e.m. potentials the lagrangian
is shifted, Lnr → Lnr − (e/m)ġ, and the addition of a
total time derivative doesn’t affect the EL equations of
motion. However, it is common practice to use a gauge



10

function that depends on space and time only. Here, we
use a gauge function that depends on the guiding center
coordinates. It is worth noticing that quantum mechan-
ics forbids the dependency of e.m. potentials from the
velocities by limiting the domain of the gauge function
only to the whole space-time. Even though the redefini-
tions of e.m. potentials doesn?t affect the e.m. field (E
and B), it is now possible to cancel or add some terms
in the lagrangian that depend on all the variables of the
whole phase space, like γ. The dependency of γ in the
single particle lagrangian can be manipulated through
an efficient choice of the gauge [24]. Let’s try to ex-
press the single particle lagrangian in the guiding cen-
ter coordinates, for A,B = 0, 1, 2, 3, 4, 6: L̃nr(Z

A, ŻB) =

L̃nr(t,X, γ, µ, ε, V, γ̇, ε̇). The simplest way to express
the lagrangian in (56) in the guiding center coordinates,

Lnr = L̃nr(Z
A, ŻB), is setting g = g(ZA, ŻB) and asking

for the following relation

(e/m)ġ = −P · σ − (e/m)(V · δρA− δρΦ) +

−σ
2

2
− (e/m)(σ · δρA). (57)

Moreover, if ∂γ ġ = 0 then the lagrangian

L̃nr =
V 2

2
+ (e/m)V ·A− (e/m)Φ− (e/m)ġ (58)

doesn’t anymore depend on γ.
However, the former relation denotes something really
important, the equivalence of

p · v − ε = P · V − E − (e/m)ġ, (59)

being ε = v2/2 + (e/m)Φ(t, x) and E = V 2/2 +
(e/m)Φ(t,X). From the former relation it is clear the
reason for indicating (e/m)g as the (Lie) generating func-
tion for the guiding center transformation. In the non
perturbative guiding center transformation it is chosen
to set ε = E + (e/m)ġ and the product p · v is conserved:
P · V = p · v. From the linear dependency of the en-
ergy on ġ, it seems that the energy of the particle should
depends also on the chosen gauge. This is what it com-
monly happens because the energy is linearly dependent
on the electric potential which itself is gauge dependent.
However, it could be nice if the energy becomes inde-
pendent from the gauge function, g. This means that
∂g ġ = 0. In fact, we have just seen that for asking γ
to be cyclic in the lagrangian, then ∂γ ġ = 0. Thus, a
simple identification occurs: g ∝ γ. Let’s introduce the
magnetic moment as the constant useful for identifying
the gauge function with the gyro-phase:

g = (m/e)2µγ, (60)

then

ε = E + (m/e)µγ̇. (61)

At the same time, it is found from the transformation in
(54) that

ε = E +
σ2

2
+ σ · V + (e/m)δρΦ. (62)

Comparing the latter relations, the definition of the cy-
clotron (angular) frequency, ωc = γ̇, is:

ωc =
σ2/2 + σ · V + (e/m)δρΦ

(m/e)µ
, (63)

and it doesn’t depend on γ, because γ has been imposed
to be cyclic for construction. It is quite easy to demon-
strate that the magnetic moment is the constant of mo-
tion associated to the cyclic variable γ. In this way we
have constructed a constant magnetic moment. Its con-
stancy has not been explicitly derived but required for
consistency from the following property: the gauge inde-
pendency of electrodynamics.
The gauge transformation is

A→ A− (m/e)µ∇γ, and Φ→ Φ + (m/e)µ∂tγ
(64)

also for the relativistic case.

B. The relativistic guiding center transformation

The relativistic transformation is implicitly written as

x = X + ρ(t,X, γ;µ, ε) (65)

u = U(t,X;µ, ε) + ν(t,X, γ;µ, ε),

being u = x′, U = X ′ and ν = ρ′. The relativistic
lagrangian is:

L = −u
αuα
2
− e

m
uαAα(t, x)− 1

2
. (66)

Once u0 = γv has been considered, it is convenient to
introduce U0 and ν0. The guiding center velocity is not
the velocity of a charge, so that UαUα 6= 1 if να 6= 0. In-
deed, it is possible to ask for νανα = 0. In such case να is
a light-like four-vector, as for a photon. Such correspon-
dence is stressed writing Uα = wα−ηα, with ηαηα = 0, as
for ν, and wαwα = 1, as for a charge. Now, it is possible
to re-write the guiding center four-velocity transforma-
tion, uα = Uα + να, in the following way:

uα + ηα = wα + να. (67)

The advantage is that it is possible to obtain the corre-
spondence with the conservation of energy and momen-
tum in the Compton-like scattering (e− + γ → e− + γ).
It is worth noticing that the role of the guiding center is
equivalent to the virtual particle in particle physics, now.
From such correspondence it is possible to easily obtain
the relation between ν0 and η0 like for the frequencies
involved in the Compton scattering: if η · ν = η0ν0 cos θ
and wα = (1, 0, 0, 0), then

η0 =
ν0

1 + ν0(1− cos θ)
, (68)

and

U0 = w0 − η0 =
1− ν0 cos θ

1 + ν0(1− cos θ)
, (69)
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being ν0 = ±|ν| and, from U0 + ν0 = γv,

cos θ = 1− γv − 1

ν0(γv − ν0)
. (70)

The Lagrangian becomes

L = − (Uα + να)(Uα + να)

2
− e

m
(Uα+να)(Aα+δρA)− 1

2
,

(71)
or

L = −UαUα/2− (e/m)UαAα − 1/2 +

−ναPα − (e/m)UαδρAα +

−νανα/2− (e/m)ναδρAα, (72)

very similar to the non relativistic case. As before,
L0 = −UαUα/2− (e/m)UαAα− 1/2 is the leading order
lagrangian, L1 = −ναPα − (e/m)Uαρβ∂βAα is the first
order (linear) lagrangian, and L2 = L−L0−L1, the rest.
In L1, ρβ should be defined from the extended relations:

xβ = Xβ + ρβ(t,X, γ, µ, ε), (73)

in such a way that equations of motion are obtained from
L1−(d/ds)(ραPα) = 0. It is worth noticing that the time
component of the latter relation is t = X0 + ρ0, from
which u0 = t′, U0 = X ′0 and ν0 = ρ′0.
However, in the relativistic case L0 6= UαPα if UαUα 6= 1.
The same gauge function (60) is substituted to (e/m)g′ =
(m/e)µγ′, or

(e/m)g′ = (m/e)µγ′ = (74)

= να(Uα + Pα) + (e/m)UαδρAα + (e/m)ναδρAα,

being νανα = 0. Along the motion, the latter reduces to
(m/e)µγ′ = ναUα − L2 − (d/ds)(ραPα).
The gauge function has been chosen in such a way that
the equivalence in (59) is replaced by

L = −pαuα = −PαUα − (e/m)g′. (75)

Thus, after a gauge transformation, the product uαpα is
not an invariant anymore. Here, it is possible to an-
ticipate what it will be crucial in the KK model: if
you assign the values z0 = t, z = X, z4 = γ and
w0 = P0 = U0 + (e/m)Φ, w = P = U + (e/m)A and
w4 = (m/e)µ, then

L = −waz′a, for a=0,1,2,3,4. (76)

which is a scalar product in a space-time of five dimen-
sions. Moreover, if you require that w5 = w6 = 0 and
z5 = µ, z6 = ε, then you can also write

L = −wAz′A, for A=0,1,2,3,4,6. (77)

The latter is what is called the phase-space lagrangian
from which it is possible to find the Hamilton’s equa-
tions. It is better to denote with a tilde the guiding
center phase-space lagrangian: L = L̃(zA, z′B), for

A,B = 0, 1, 2, 3, 4, 6. As said in [7], the reason for the
vanishing of w5 and w6 is due to the fact that ε is the
conjugate coordinate of t and (m/e)µ is the conjugate
coordinate of γ.
Now, the lagrangian is invariant at a glance with respect
to general non-canonical phase-space coordinates trans-
formations, that include also the gauge transformations.

V. NON-CANONICAL LAGRANGIAN FOR
THE GUIDING CENTER DESCRIPTION

Following the work of Cary and Littlejohn [7], it is pos-
sible to find a lagrangian derivation of the former guid-
ing center description. The point here is to describe the
hamiltonian mechanics using non-canonical variables on
the extended phase space (position, velocity and time,
hereafter). We start with simple static case with time
independent fields. The (Maupertius) principle of least
action states that:

δW = δ

∫ sout

sin

ds p(x) · dx
ds

= 0. (78)

with p(x) = u(x) + (e/m)A(x) and p(x) · δx = 0 at the
end points. The EL equations are

dx

ds
×∇× p(x) = 0, (79)

which means that the velocity u is parallel to ∇ × p(x)
or

u = λ∇× p(x), (80)

re-obtaining the fundamental equation (36).
The lagrangian p(x) · u is missing something. Now, we
explicitly consider the time and the variation of the time
dependent action:

δS = δ

∫ sout

sin

ds

[
p(t, x) · dx

ds
− ε(t, x)

dt

ds

]
= 0. (81)

The variation can be computed as

δS =

∫ sout

sin

ds δx · ∇
[
p(t, x) · dx

ds
− ε(t, x)

dt

ds

]
+

+

∫ sout

sin

ds δt∂t

[
p(t, x) · dx

ds
− ε(t, x)

dt

ds

]
+

+

∫ sout

sin

ds

[
δ
dx

ds
· p(t, x)− δ dt

ds
ε(t, x)

]
.

In the present notation, δx = ρ and δt = ρ0, the latter is

δS =

∫ sout

sin

ds ρ · ∇
[
p(t, x) · dx

ds
− ε(t, x)

dt

ds

]
+

+

∫ sout

sin

ds ρ0∂t

[
p(t, x) · dx

ds
− ε(t, x)

dt

ds

]
+

+

∫ sout

sin

ds
[
ν · p(t, x)− ν0ε(t, x)

]
.
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A step forward gives

δS =

∫ sout

sin

ds ρ ·
[
dx

ds
· ∇p+

dx

ds
×∇× p− dt

ds
∇ε
]

+

+

∫ sout

sin

ds ρ0
[
dx

ds
· ∂tp−

dt

ds
∂tε

]
+

+

∫ sout

sin

ds

[
d(ρ · p)
ds

− d(ρ0ε)

ds

]
+

−
∫ sout

sin

ds

[
ρ · dp

ds
− ρ0 dε

ds

]
.

In covariant notation, such variation is

δS =

∫ sout

sin

ds ραuβ(∂βpα − ∂αpβ) +

+(ραpα)|sout
sin .

The extremals of the action, δS = 0, for all the trajecto-
ries with ραpα = 0 (at least at sin and sout), are found
if

uβ(∂βpα − ∂αpβ) = 0, (82)

which is (29).
Up to now, we have referred to the guiding particle as the
particle satisfying (29), or (82), with null magnetic mo-
ment (and minimally coupled with the magnetic field).
The same equation (29), or (82), is considered as the
equation describing the guiding center velocity if the par-
ticle has a non vanishing magnetic moment. In such
case we use capital letters e.g. for describing the po-
sition X, the velocity V = Ẋ and the four-momentum
Pα = (E ,−P ), of the guiding center.
We can add or subtract to the lagrangian a total world
line derivative without changing the equation of motion
and preserving the scalar value of the Lagrangian. We
subtract to L = P · U − EU0 the total derivative of the
following gauge function:

g = (m/e)2µγ, (83)

being µ the constant magnetic moment and γ the gyro-
phase.
The new lagrangian is L̃ = P · U − EU0 − (e/m)g′ =
P ·U −EU0 − (m/e)µγ′. With respect to the lagrangian

L = P · U − EU0, L̃ is known as (minus) the Routhian,
which is defined through the Legendre transformation of
L with respect to the cyclic coordinate γ:

−L̃ ≡ (m/e)µγ′ − L. (84)

The properties of L̃ are to combine the EL and the Hamil-
ton’s equations together for describing the motion:

d

ds
∇U L̃−∇X L̃ = 0. (85)

and

(e/m)∂µL̃ = γ′, ∂γL̃ = −(m/e)µ′, (86)

respectively. The use of the Legendre transformation
for the cyclic variable has been used for describing the
motion with the coordinates γ, µ instead of γ, γ′. Being
γ cyclic, µ′ = 0 in (86).

A. Non canonical Hamilton’s equations of motion

The present and the next paragraphs are quite techni-
cal, but it is important to describe what concerns the di-
mensional reduction of a system. Historically, the dimen-
sional reduction was a technique used to attack a com-
plicated problem by progressively reducing it in order to
reach a resolvable system. In gyro-kinetic the dynamic of
the particle is separated from the fast gyro-motion reduc-
ing the analysis to the dynamic of the guiding center (if
fluctuations are turned off). In the KK mechanism [8, 9],
the same particle dynamic, now extended to consider also
the presence of a gravitational field, is reduced from a
five-dimensional to a four-dimensional space-time, leav-
ing the 5th dimension unobservable. Thus, the Routhian
reduction scheme [25] is a method implemented to de-
scribe a mechanical system where the reduction is made
to suppress an angle coordinate after a smart change of
variables. We will see how all these reduction schemes
can be seen as different approaches for disregarding the
gyro-phase from the equations of motion. However, in
the present section we want to show why it is possible to
reduce the dimensionality of a system by cutting out a
coordinate from the description of motion.
The idea, originally proposed by [7] even if applied only
at the perturbative approach, was to properly use non
canonical coordinates in Hamiltonian mechanics for sim-
plifying a problem. Starting from requiring that the La-
grangian is a scalar, it is written as the scalar product
between coordinates and momenta. The coordinates for
describing the motion can be changed together with the
conjugate momenta but by taking care that such trans-
formation must not change the scalar value of the La-
grangian, which means that a relativity principle holds.
As for example, the 1-form associated to the guiding cen-
ter lagrangian is

L̃ds̃ = PdX − (m/e)µdγ − Edt. (87)

For such system the motion is described by the variables
za = (t,X, γ), with index a from 0 to 4, so that the
world line coordinate, s̃, is function of za: s̃ = s̃(za).
Moreover, the conjugate momenta, wa, are easily intro-
duced consistently with the lagrangian in (87): wa =
(E ,−P, (m/e)µ). Now,

L̃ = −waz′a, for a = 0, 1, 2, 3, 4. (88)

However, following the analysis done in [7], it is more
convenient to extend the description of motion to the
whole extended phase space. The reason is that for
charge motion the most useful coordinates appear like
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a mixture between positions and velocities, as for the
canonical four-momentum. It is useful to consider the
lagrangian in (87) as the reduced lagrangian of the entire
lagrangian that operates on the extended phase space,
L̂. Now the indexes, A,B, ..., go from 0 to 6 and the
generalized coordinate is zA = (t,X, γ, ε, µ) which in-
cludes also the independent coordinates ε and µ. It is
worth noticing that we are adopting non-canonical coor-
dinates. Here, we will refer to zA = (t,X, γ, ε, µ) as the
guiding center coordinates. As before, it is possible to
associate a set of conjugate momenta to such variables.
The new co-momenta are wA = (E ,−P, (m/e)µ, 0, 0), as
similarly chosen in [7] for a different problem. However,
it is worth noticing that wA = wA(zB) is function of the

non-canonical coordinates so that L̂ = L̂(zA). Thus, the
lagrangian can be written as

L̂dŝ = −wAdzA, for A = 0, 1, 2, 3, 4, 5, 6. (89)

The scalar character of the lagrangians, (88) like (89), is
always preserved and it is possible to change coordinates
from zA → ZA and wA → WA leaving unaltered the
Poincaré-Cartan form: −wA(zB)dzA = −WA(ZB)dZA.
This means that the principle of relativity is generalized
to the extended phase space: a change of coordinates of
the extended phase space preserves the physics.
The EL equations for (89) are

ωAB
dzB

dŝ
= 0, (90)

with

ωAB = ∂AwB − ∂BwA. (91)

Multiplying eq. (90) for dŝ/dt, it is found what it can
be called the velocity law (compare (29) with (90)) in 7
dimensions (or 5 dimensions if the motion is described
through ε and µ, if ε′ = µ′ = 0). It is worth notic-
ing that a canonical Maxwell tensor in 7 dimensions is
proportional to ωAB . The generalized angular frequency
tensor, ωAB , is known as the Lagrange tensor. The La-
grange tensor is expressed by the Lagrange’s brackets:

[zA, zB ] ≡ ∂AwC∂BzC − ∂BwC∂AzC = (92)

= ∂AwCδ
C
B − ∂BwCδCA = ωAB

where [zA, zB ] are the Lagrange brackets.
It is convenient to normalize ż0 = 1 in (90), which means
choosing z0 = t. Three properties of motion must be
reminded: 1) det (ωAB) = 0, from (90), 2) the gauge in-
variance of motion if wA → wA + ∂Ag, from (91), and 3)
in (90) the case A = 0 is redundant due to the antisym-
metry of ωAB .
Equation (90) can be arranged to

ωA0 +
6∑

B=1

ωAB ż
B = 0, (93)

with

ωA0 = ∂Aw0 − ∂twA = ∂AE − ∂twA. (94)

For obtaining the Hamilton’s equations of motion it oc-
curs introducing the antisymmetric Poisson tensor, JAB ,
with the property that

6∑
C=1

JACωCB = −δAB , if A 6= 0 andB 6= 0 (95)

Now, the expression in (93), with equation (94), becomes

żA =

6∑
C=1

JAC (∂CE − ∂twC) if A 6= 0. (96)

The latter are the Hamilton’s equations of motion for
non-canonical coordinates and it can be reduced to

żA = {zA, E}+ ∂tz
A. (97)

if canonical coordinates are employed, being {zA, zB} the
Poisson brackets.

B. the Lagrange tensor

Within the guiding center description, when guid-
ing center coordinates, zA = (t,X, γ, µ, ε) and wA =
(E ,−P, (m/e)µ, 0, 0), are used, ωαβ has been already
computed in (30), in particular

ωij = [Xi, Xj ] = εijk(e/m)Bkc for i, j = 1, 2, 3. (98)

The other components are

ω4j = [γ,Xj ] = −∂γPj + (m/e)∂jµ = 0 for j = 1, 2, 3,
(99)

ω45 = [γ, µ] = −(m/e)∂µµ = −m/e, (100)

ω46 = [γ, ε] = (m/e)∂εµ = 0, (101)

ω56 = [µ, ε] = 0, (102)

ωi5 = [Xi, µ] = ∂µP
i for i = 1, 2, 3, (103)

ωi6 = [Xi, ε] = ∂εP
i for i = 1, 2, 3, (104)

The Lagrange tensor is:∣∣∣∣∣∣∣
(e/m)Fαβc 0 −∂µPα −∂εPα

0 0 −m/e 0
∂µPβ m/e 0 0
∂εPβ 0 0 0

∣∣∣∣∣∣∣ (105)

The equations of motion, from (90), are∣∣∣∣∣∣∣
(e/m)Fcαβ 0 −∂µPα −∂εPα

0 0 −m/e 0
∂µPβ m/e 0 0
∂εPβ 0 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V β

γ̇
µ̇
ε̇

∣∣∣∣∣∣∣ = 0 (106)
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Explicitly, the system of equations of motion is:

(e/m)FcαβV
β − µ̇∂µPα − ε̇∂εPα = 0 (107)

−(m/e)µ̇ = 0 (108)

V β∂µPβ + (m/e)γ̇ = 0 (109)

V β∂εPβ = 0, (110)

where the equation (110) is redundant for the antisym-
metry of Fcαβ . If also ε̇ = 0 then

Ec + V ×Bc = 0 (111)

µ̇ = 0 (112)

V · ∂µP = (m/e)γ̇(1− V 0) (113)

V · ∂εP = V 0, (114)

If V 0 = 1 then V · ∂µP = 0 and V · ∂εP = 1.
It is worth noticing that all the lagrange brackets
involving γ and µ are null, [µ, γ] apart, which is equal to
m/e. This is the reason that allows reducing the particle
motion ignoring the gyro-phase coordinate, γ, which is
said cyclic.

C. Leading order non-relativistic guiding center
transformation

In the perturbative approach of the guiding center
transformation a completely different procedure is of-
ten used. Moreover, the perturbative approximation
is treated with the highly technical Lie-transformation
method without solving some ambiguities. For such rea-
son it is often hard to overcome the leading order approxi-
mation. However, in the present work, we do not consider
a comparison between the two distinct methods, the per-
turbative and the non-perturbative one. Here, we need
only the first order approximation for explaining why µ
is the magnetic moment and γ is the gyrophase.
The guiding center lagrangian used in the perturba-
tive approach is the leading order approximation of
Lgc, which is the lagrangian in (21) associated to the
Poincaré- Cartan one-form:

Lgc = Lnr + (e/m)ġ = P · Ẋ − E . (115)

Explicitly,

Lgc = p · ẋ− ε+ (m/e)µγ̇, (116)

being g = (m/e)2µγ, the guiding center gauge function
in (83). Setting ε = E + (m/e)µγ̇, as in (61), then

Lgc = P · Ẋ − ε+ (m/e)µγ̇. (117)

The orderings, which are commonly employed, are the
ones that allow to consider the particle close to the
magnetic field line, in such way that field lines deviate
only linearly from being straight and uniform (this is
quite a rough approximation but almost always used).

Within such orderings, the charges are gyrating circu-
larly around the guiding center. Once the tern of unit
vectors, e1 · e2 × b(0) = 1, are defined with b(0) ·B = |B|
parallel to the magnetic field, the guiding center is con-
sidered mostly moving in the parallel direction of the
magnetic field in such a way that P is substituted with
P ≈ v‖b(0) +(e/m)A(t,X). The gyro radius can be writ-
ten as

ρ ≈ a(0) = ρL(e1 cos γ − e2 sin γ), (118)

with the constant Larmor radius, ρL. It is worth noticing
that γ is the angle in the cylindrical representation of the
velocity space. If γ̇ = (e/m)|B|, which is the important
cyclotron frequency, then

v⊥ ≈ ȧ(0) = −ρLγ̇(e1 sin γ + e2 cos γ) = (e/m)a(0) ×B.
(119)

Commonly the electric potential is neglected and the en-
ergy of the charge is the only kinetic energy:

ε = v2/2. (120)

Moreover, the problem is often considered static: A =
A(X) with ∂tA = 0. The single particle lagrangian,

L = [v‖b(0) + v⊥ + (e/m)A] · ẋ− ε, (121)

is approximated by

L ≈ (v‖b(0) + ȧ(0)) · (Ẋ + ȧ(0)) + (122)

+[(e/m)A+ (e/m)a(0) · ∇A] · (Ẋ + ȧ(0))− ε,

which is regrouped and simplified to

L ≈ [v‖b(0) + (e/m)A] · Ẋ − ε (123)

+ȧ(0) · [(e/m)A+ Ẋ] + (e/m)a(0) · (∇A) · Ẋ
+(e/m)a(0) · (∇A) · ȧ(0) + ȧ2(0).

The terms in the first row are independent on γ, the ones
in the second row depend on γ and are not negligible,
the ones in the third row also depend on γ but they
are very little. Now, it is possible [26] to find a gauge
function, S = −a(0) · (e/m)A− (e/m)a(0) · (∇A) · a(0)/2,
for expressing the lagrangian as

L ≈ [v‖b(0) + (e/m)A] · Ẋ + ȧ2(0)/2− ε+ dS/dt. (124)

as shown in [24].
Finally, defining the magnetic moment as

µ ≈ v2⊥
2|B|

, (125)

then Lgc = L− dS/dt is

Lgc ≈ [v‖b(0) + (e/m)A] · Ẋ + (m/e)µγ̇ − ε, (126)

which is the lagrangian obtained in (117) if P ≈ v‖b(0) +
(e/m)A(t,X). At the same ordering, being the energy
quadratic, the guiding center energy is E ≈ v2‖/2 in such

a way that the total energy is ε = E + (m/e)µγ̇ ≈ v2‖/2 +

µ|B|.
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D. General comments

The guiding center coordinates in the presence of a
magnetic field, similarly to the center of mass coordinates
in a gravitational field, describe the origin of the reference
frame where efficiently positions, velocities and time are
measured, so that

x = X + ρ(γ)

u = U + ν(γ)

t = tb + τ(γ).

It is worth noticing that the latter equation is often writ-
ten in plasma physics as t = tslow + tfast(γ), so dividing
what depends on slow variations from what depends on
fast variations. In the present analysis tb is considered as
a reference time which it can also be used for obtaining
the Abraham-Lorentz-Dirac force [27, 28]:

Ẍ(t) ≈ Ẍ(tb) + τ
...
X(tb). (127)

It is worth to note that the guiding center transforma-
tion is simply a translational transformation on the ex-
tended phase space. All the coordinates are translated
by a quantity depending on γ ∈ S1. This property al-
lows the following new definition to emerge: the guiding
center reference frame is the particular reference frame
where the particle moves in a closed orbit with a periodic
motion [29]. The efficiency of describing the general mo-
tion is only because the orbit is reduced to a closed loop
parametrized by the angle γ. In order to reach such ref-
erence system we must subtract the relativistic guiding
center velocity U from u and also shift the position of the
particle to the guiding center position X. In the guiding
center reference frame it is possible to observe that the
particle is gyrating in a closed loop with the cyclotron
frequency.
If the manifold of the extended phase-space is not flat,
then the above translations must be considered as if the
quantities depending on γ are parallel transported over
the manifold.

VI. KALUZA-KLEIN SOLUTION

The coordinates zA with A = 0, 1, 2, 3, 4, 5, 6, intro-
duced in the previous section, belong to the extended
phase space. As for general relativity, where a geometry
is given to the space-time, in this section a geometry is
given to the extended phase-space.

We have seen that in the presence of e.m. fields, it
is useful to describe the motion in guiding center coor-
dinates, zA = (t,X, γ, µ, ε). For accuracy, the guiding
center transformation is the map, T , that allows to de-
scribe particles through the guiding center coordinates,
T : (t, x, p)→ (t,X, γ, µ, ε). It is worth noticing that the
vector X indicates the position of the guiding center, not

of the particle. If µ 6= 0 then the particle is elsewhere
from X.
The KK mechanism was used in the past to explain the
presence of gravitation and electromagnetism thanks to
the addition of, at least, a new coordinate of spacetime.
The KK model can be obtained from a Hilbert-Einstein
(HE) action extended to a space-time of five dimensions.
However, in the present approach, we adopt the same
mechanism, in which the new dimension is a coordinate
that belongs to the velocity space. In fact, the 5th dimen-
sion is identified with the gyro-phase coordinate, γ. As a
consequence we are changing the paradigm of the general
relativity theory that only takes into account the space-
time geometry. Thus, if you want to describe gravity then
you can only consider the geometry of space-time, whilst
if you want to describe gravity plus electromagnetism
you have to consider the geometry of the extended phase
space. Mathematically, it is not so difficult to extend
the general relativity formalism to five or more (seven)
dimensions. However, the physical interpretation of an
Einstein equation in extended phase space, is quite un-
usual to be exposed in the present work. What is pro-
posed here is a minimal change of the KK model and the
use of the relativistic guiding center transformation. In
this section we leave the Minkowski metric for a pseudo-
Riemannian one.
Let’s start from the Poincaré-Cartan one-form in (88):

L̂dŝ = −wAdzA, for A = 0, 1, 2, 3, 4, 5, 6. The same one-
form can be written as

L̂dŝ = −ĝABwBdzA, (128)

being L̂ a scalar quantity and where ĝAB is the metric
tensor with the property that wA ≡ ĝABw

B . Thus, wB

are the contravariant momenta. Once the metric tensor
is appeared, it is possible to apply a variational principle
for finding it. For this reason, we consider a lagrangian
density over the extended phase space where the single
particle lagrangian is multiplied for the distribution of
masses and, then, added to the HE lagrangian in ex-
tended dimensions. In the following lagrangian density,

`a = fmL̂−
R̂

16πĜ
, (129)

fm is the scalar distribution function of masses, for sim-
plicity only one species is considered; Ĝ and R̂ are the
gravitational constant and the scalar curvature for the
extended phase space, respectively. The scalar curvature
is defined as usual:

R̂ = ĝABR̂ic
AB
, (130)

again, R̂ic
AB

is the Ricci tensor in the extended phase
space which is furnished of a Levi-Civita connection. The
lagrangian, (129), is a lagrangian density over the ex-
tended phase-space and the action is computed from the
integration of `a over the extended phase space. If

√
−ĝ

indicates the square root of minus the determinant of the
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extended phase space metric, then the extended phase
space volume element, dM, can be written as:

dM =
√
−ĝ d7z, (131)

if the guiding center coordinates are used then d7z =
dt d3X dγ dε dµ. Explicitly, the action is:

S =

∫
`a dM, (132)

which is a definite integration in a domain ∂M of the
extended phase space. It is possible to separate in `a the
effects of different contributions. A matter lagrangian
distribution:

`am = −fm, (133)

a field lagrangian distribution:

`af = − R̂
16πĜ

, (134)

and an interaction dynamics lagrangian distribution:

`aid = fm(1 + L̂), (135)

The distribution of masses, fm is taken as a scalar func-
tion: fm = fm(zA)[30].
Within the guiding center description, fm indicates the
presence of a particle of mass m with guiding center co-
ordinates (t,X, γ, µ, ε).

The particle described by fm must be counted only
once to obtain the total mass, M , of the system. The
following equivalence chain of integrations is assumed for
the matter action, Sm:

Sm = −
∫
fm
√
−ĝd7z = −

∫
ρm
√
−gdtd3X = −

∫
M dŝ,

(136)
where ρm is the mass density and, above all,

√
−g is the

square root of minus the determinant of the space-time
metric. In fact, if you call JP the quantity

√
−ĝ/
√
−g,

then:

ρm =

∫
fmJP dγ dε dµ. (137)

The density of masses is obtained from the integration
of the distribution of masses in the velocity space. If
you introduce unspecified velocities or momenta, P, with
the only property that allows to write the latter velocity
space volume element:

d3P = JP dγ dε dµ, (138)

then the former integral is written in the usual form:

ρm =

∫
fmd

3P. (139)

Concerning the fields action, Sf , we wish to have:

Sf = −
∫

R̂
16πĜ

√
−ĝd7z = (140)

= −
∫
FαβF

αβ

4

√
−gdtd3X −

∫
R

16πG

√
−gdtd3X,

In order to obtain the latter result we will use the KK
mechanism. However, before doing that, we are inter-
ested in studying the interaction dynamics action Sid,
that should be expressed by:

Sid =

∫
fm(1 + L̂)

√
−ĝd7z = −

∫
AαJ

α√−gdtd3X,

(141)
where Jα is the charge four-current density which is a
field depending on (t,X). The former equation will be
obtained in the forthcoming subsection. It is worth notic-
ing that, if the above equations for `am, `af and for `aid,
defined in (136), (140) and (141), respectively, are con-
sidered, once `a is integrated in the velocity space, then
the following lagrangian density appears:

L = −ρm −AαJα −
FαβF

αβ

4
− R

16πG
. (142)

The latter is exactly the lagrangian density used for de-
scribing the presence of (e.m. interacting) matter as
source of a gravitational field, which gives the Einstein
equation, together with a charge four-current density as
source of an e.m. field, which gives the Maxwell equa-
tions.

A. The misleading symmetry

In lagrangian mechanics the symmetries of a system
are expressed by the invariance of the lagrangian under
the considered transformations. In relativity, the con-
servation of the energy-momentum tensor, Tαβ , is fun-
damental. The conservation of Tαβ is due to the sym-
metry of the lagrangian under the spacetime translation:
Xα → xα = Xα + ρα. This is also true if we explicitly
take, Xα = (tb, X) and ρα = (τ, ρ); so that, x = X + ρ
and t = tb + τ . If the manifold is not flat the translation
is expressed by the parallel transport.
For our needs, the single particle lagrangian, L = p · u−
εγv can be written with a null magnetic moment term:
L = p · u − εγv + (m/e)µ0ω0, if µ0 = 0. Now, the guid-
ing center transformation leaves unaltered the form of
the lagrangian. In the non perturbative guiding center
transformation, the momentum of the particle, p → P ,
becomes the guiding center momentum computed at the
guiding center X and at the time t, whereas the parti-
cle relativistic velocity, u → U , becomes the relativistic
guiding center velocity U . Moreover, the null magnetic
moment µ0 → µ becomes a positive magnetic moment
so that the gyro-phase γ becomes meaningful (because if
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µ = 0 then γ is singular). The single particle lagrangian
under such transformation, is

L = p · u− εγv = p · u− εγv + (m/e)µ0ω0 → (143)

→ L̂ = P · U − EU0 + (m/e)µγ′,

which is the guiding center Lagrangian, already seen in
the former section.
In the relativistic approach we haven’t yet considered a
relation as (m/e)µγ̇ = ε − E , used for defining the fre-
quency, γ̇. Such relation was used in the non relativis-
tic case for obtaining p · v = P · V . In the relativis-
tic case, another relation is chosen that allows to write
L = −1 + (e/m)uαAα(t, x) = L̂ with

L̂ = −1 + (e/m)UαAα(t,X), (144)

which is the same form of L. This means that
uαAα(t, x) = UαAα(t,X) is preserved. From uαpα =
UαPα + (m/e)µγ′, it was immediately found that the
required condition is reached if

(m/e)µγ′ = 1− UαUα. (145)

The latter relation is also more interesting if (m/e)µγ′ =
U4U4, where U4 = z4′ = γ′ and U4 is firstly defined as
U4 ≡ w4 = (m/e)µ. In such way that

UaUa = 1, for a = 0, 1, 2, 3, 4. (146)

Moreover, if the relation wa = Ua + (e/m)Aa is used,
then A4 = 0 for consistency: there is not a 5th compo-
nent of the e.m. potential. The symmetry that leaves
invariant the form of L = −1 + (e/m)uαAα(t, x) =
−1 + (e/m)UαAα(t,X) is said misleading because there
is no way, starting from the lagrangian, to distinguish
particle’s coordinates from guiding center’s coordinates.
The only chance for appreciating the difference is by mea-
suring the dispersion relation: from kinematics, the par-
ticle has uαuα = 1 whilst the guiding center doesn’t,
UαUα 6= 1. If we suppose to observe a helicoidal tra-
jectory made by the motion of a charged particle in a
given e.m. field, then such trajectory could be consid-
ered a solution of motion. However, it is possible to zoom
on the trajectory, by increasing the sensibility of detec-
tors, and discover that the simple helicoidal trajectory
is made by another sub-helicoidal motion, as shown in
the cartoon of figure 1. At first sight the trajectory of
the particle has been confused with the trajectory of the
guiding center. Moreover, such misinterpretation can be
iterated (with some constrains e.g. the velocity cannot
overcome the speed of light), so that the sub-helicoidal
motion can, once again, hide another subsub-helicoidal
motion at a finer scale. Similarly to a fractal, when the
magnetic field differs from being constant and uniform a
family of solutions enriches the extended phase space of
helicoidal trajectories made by other helicoidal trajecto-
ries. It is worth noticing that realistic magnetic fields are
never constant and uniform and, moreover, any realistic
detector doesn’t have infinite resolution.

FIG. 1. The same trajectory in space of a charged particle in
an e.m. field observed with three different resolutions. At first
sight each curve can be understood as the particle’s trajectory
but it could also not be.

The approximation of considering the guiding center mo-
tion instead of the particle motion is said drift approxima-
tion and, if applied with criteria, it becomes the zero-th
order approximation in all the gyro-kinetic codes used for
studying magnetic confined plasmas for controlled fusion
through a kinetic perspective.
It is worth noticing that there is another interpretation
where many trajectories are described by the same mo-
tion of a representative guiding center. The latter inter-
pretation is possible because we have considered all the
trajectories with free initial and final conditions in the
variational approach in Section II. In fact, if we impose
with (almost) certainty the initial and the final values of
the particle’s coordinates then there is only (almost) a
unique solution of motion, whilst for an initial and final
uncertainty, there is the possibility to have many trajec-
tories that differs by the value of the magnetic moment
and by the initial value of the gyrophase. Thus, the ques-
tion is: ”what are the trajectories that minimize the ac-
tion and are also well represented by the Lorentz’s force
law?”, instead of being ”what is the trajectory that min-
imizes the action and is solution of the Lorentz’s force
law?”. Those trajectories are indistinguishable and can
be resolved only after a measurement, like for the collapse
of a quantum state into a physical eigenstate in quan-
tum mechanics. Indeed, the only way for distinguishing
a guiding center from a particle is from the misleading
condition in (146) that pertains to kinematics, being ex-
pressed by the Lorentz violation, UαUα 6= 1. The dy-
namics is still preserved by the same lagrangian.
Thanks to the misleading condition, equation (146), it is
very easy to show that the action Sid takes the desired
form (141) when the guiding center coordinates are used.

In fact, L̂ = −1 + (e/m)AαU
α and

Sid =

∫
fm(1+L̂)

√
−ĝd7z = − e

m

∫
ρmAαŪ

α√−g dt d3X.

(147)
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If Jα = (e/m)ρmŪ
α, being

ρmŪ
α =

∫
fmU

αd3P, (148)

then the former is exactly the relation in (141).
We have just seen that the guiding center transforma-
tion, which is a particular local translation in the ex-
tended phase space, is a symmetry because it leaves the
same lagrangian form. In analogy to what happens for
the local translation in spacetime, the conserved quantity
for the present symmetry should be called the extended
energy-momentum tensor T̂AB , which is obtained from
the variation of `am + `aid = fmL̂ with respect to the
metric tensor variation, δĝAB :

T̂ABδĝ
AB = −2δ(`am + `aid) + ĝAB(`am + `aid)δĝAB .

(149)

Now, the Einstein tensor for the extended phase space
is obtained from the variation of `af with respcet to δĝAB :

ĜAB = R̂icAB − R̂ ĝAB/2, (150)

and the Einstein equation can be written also for the
extended phase space,

ĜAB = 8πĜ T̂AB . (151)

It is worth noticing that, if confirmed, we have just
obtained gravitation and electromagnetism from a geo-
metrical perspective. A similar equation holds in the
Projective Unified Theories proposed by Schmutzer [31]
since ’80, where the extended energy-momentum tensor
is replaced by an energy projector divided into a sub-
strate energy-momentum tensor and a scalaric energy-
momentum tensor.
However, when extending the dimensionality from four
to seven it is possible to take into account many possibil-
ities. We will show that the abelian nature of the gauge
theory comes suddenly from the choice of the γ ∈ S1

gyro-phase as coordinate of the velocity space but, any-
ways, the gauge theory could become non abelian by
choosing other variables with different groupal proper-
ties from the gyrophase. The possibility to definitely
separate in the extended phase space what belongs to
spacetime and what to velocity space must be reformu-
lated. It seems that the space-time is simply defined as
the domain of variation of the e.m. fields, in such a way
that we need an e.m. field for defining space-time vari-
ables. Such route needs some care and it cannot be taken
just now. We prefer to show the minimal five dimensional
extension of gravitation explicitly using the guiding cen-
ter coordinates. Such extension is sufficient to include
electromagnetism. Moreover, the present description is
facilitated by the work of KK, because most of the gen-
eral relativity equations that we will soon encounter, have
already been studied [32].

B. The minimal five-dimensional theory

Instead of deriving the metric tensor from a variational
approach, it is possible to settle the metric tensor di-
rectly. This can be less elegant but easier to do mostly
because it has already been done. The original KK mech-
anism needs an extension of the dimensionality of space-
time by only one dimension. Only five dimensions occur
to display electromagnetism and gravitation. However,
we have formulated an extension to seven, not five, di-
mensions of general relativity. This is too general for
the present scope, but we have seen that in the single
particle one-form (87) there is only the variation of five
coordinates: za = (t,X, γ), with a world line coordinate
s̃ = s̃(za), for a = 0, 1, 2, 3, 4. In this subsection we
re-formulate the lagrangian density, (129), in five dimen-
sions and, after adopting the KK metric tensor, we prove
the equation (140), which is the last equation needed to
get the wanted lagrangian density (142).
The KK mechanism is used following the review arti-
cles [8] and [9]. Many books can be consulted for the
computation of the Ricci tensor and Christoffel symbols,
but a particularly interesting note inherited with the KK
mechanism is [33]. If two (canonical) constants of motion
coordinates are taken into account, then the description
of the dynamic of a particle in the extended phase space
can be reduced from seven to five dimensions. For the
guiding center description of motion such coordinates are
the energy, ε, and the magnetic moment, µ, and we can
divide the extended phase space in slices of reduced phase
space with assigned ε and µ. This is allowed because the
co-momenta are wA = (E ,−P, (m/e)µ, 0, 0), where the
zeros are just indicating the use of canonical coordinates
in zA = (t,X, γ, ε, µ). The one-form (89) is the same
of (88) which lives in five dimensions. We have indicated

with the hat a seven dimensional quantity, e.g L̂(zA, z′B),

whilst with a tilde a five dimensional one, e.g. L̃(za, z′b).

The lagrangian in (87), L̃ = P · U − EU0 − (m/e)µγ′, is
always the same but it is now written with the metric
tensor g̃ab:

L̃ = −g̃abwaz′b, for a,b=0,1,2,3,4. (152)

Also the lagrangian distribution, (129) can be considered
into five dimensions:

`a = fmL̃−
R̃

16πG̃
, (153)

being R̃ the five dimensional scalar curvature, and G̃
the five dimensional gravitational constant. In practice,
R̃/G̃ = R̂/Ĝ, as if we are considering flat the space de-
scribed by the canonical coordinates ε and µ. It is worth
noticing that although in five dimensions, all the quan-
tities can depend also on ε and µ, e.g the distribution
function fm is always the distribution of masses in the
whole extended phase space and it surely depends on ε
and/or µ if it describes an equilibrium [18]. Even if the
action is the same, now

√
−ĝ should be decomposed into
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√
−ĝ =

√
−g̃J̃P , where

√
−g̃ is the square root of minus

the determinant of the metric tensor g̃ab, and J̃P is the
jacobian, not specified here, for measuring the density of
states for assigned ε and µ. From (132) and (131), in
guiding center coordinates, the action is

S =

∫
`a
√
−g̃J̃P dt d3X dγ dε dµ. (154)

Finally, we use the following KK metric tensor:

g̃ab =

∣∣∣∣ gαβ + κ2ϕ2AαAβ κϕ2Aα
κϕ2Aβ ϕ2

∣∣∣∣ . (155)

1. The action for the fields

If the chosen signature is ηαβ = diag(+1,−1,−1,−1)
then ϕ2 < 0. Differently from KK, setting κ2ϕ2 = −k2G
and ϕ2 = −k2G(m/e)4µ2 (or κµ = (e/m)2), the metric
tensor becomes:

g̃ab =

∣∣∣∣ gαβ − k2GAαAβ −k2G(m/e)2µAα
−k2G(m/e)2µAβ −k2G(m/e)4µ2

∣∣∣∣ . (156)

being kG a constant that will be specified below. From
(A2), it is possible to obtain the contravariant momenta.

wa = g̃abwb =

∣∣∣∣ Uα

(e/m)(1/µ)[1 + (e/m)2(1/kG)2 + L̃]

∣∣∣∣ ,
(157)

in such a way that, from L̃ = −waUa, it is obtained the
constancy of L̃ in terms of important physical constants:

L̃ = −1− 1

2k2G(m/e)2
. (158)

The latter metric tensor is used to compute the five
dimensional scalar Ricci tensor (A16): R̃ = R −
κ2ϕ2FαβF

αβ/4. Now, the field action is

Sf = − 1

16πG̃

∫
dtd3X

√
−g̃
(
R+

k2G
4
FαβF

αβ

)
J̃Pdγdεdµ,

(159)
where

√
−g̃ is

√
−g̃ =

√
−g(m/e)2kGµ. For obtaining the

standard gravitational plus e.m. fields action, kG must
be k2G = 16πG, so that

G̃ = G

∫
(m/e)2kGµJ̃Pdγdεdµ. (160)

and

Sf = −
∫ √
−gdtd3X R

16πG
−
∫ √

−gdtd3X FαβF
αβ

4
.

(161)
It is worth to note that the single particle interaction
density lagrangian comes to be:

L̃ime = − e2

32πm2G
= − αfs

32π

λ2c
`2p
. (162)

where αfs = e2/~, λc = ~/m and `p =
√
~G.

In this way, we have obtained the lagrangian density
in (142) from the five dimensional lagrangian (153). It is
worth noticing that, even if the terms in the lagrangian
density (142) are the desired ones, they are referring to
fields on (t,X) where X is the guiding center position
and it doesn’t indicate the position of a particle. This
is an effect of the misleading symmetry. The problem
is that once we have integrated the lagrangian density,
expressed in guiding center coordinates, on the velocity
space, we have lost the possibility to know where the
particles effectively are. This means that the present
theory is non local. Fortunately, such non-locality helps
for the consistency of electrodynamics, e.g. the problem
of self-energy, or self-interaction, is promptly solved
once a non-locality property is assumed. Moreover, we
already know that, at some scale, an indetermination
principle should be invoked. The relation between the
misleading symmetry and the quantum non-locality
property should be investigated. A simple guess is
the following. In the Bhomian formulation [34] of
quantum mechanics the two ingredients are:anyways,
the gauge theory could become non abelian by choosing
other variables w strange trajectories and non locality.
We can easily prove that strange trajectories can be
obtained from ad hoc e.m. field and that the property
of non-locality has been just been obtained. However, a
more precise draft on the relation between the present
derivation and quantum mechanics is described in the
next section.

2. Comments on the novel KK mechanism

The KK mechanism was discarded as a possible true
mechanism of Nature because it holds many problems.
The standard doubts refer to the reason for applying the
cylinder condition, which is at the origin for explaining
compactification. Another problem is the compactified
scale length of the order of the Planck length, `p. Such
scale length is inconsistent with the observed masses of
elementary particles. Other approaches without these
two ingredients, compactification and cylinder condition,
are commonly less considered. However, all the prob-
lems are inherited to explain why the fifth dimension is
unobservable [8, 9]. In the present case, this is not a
problem, because the fifth dimension is measurable, be-
ing a physical meaningful and observable (not compact-
ified) variable. The KK mechanism can be extended to
include more species, more than five dimensions, gener-
alized to include the cosmological constant (see appendix
A) and, most importantly, it is known to satisfy the Weyl
transformation [8, 9]. For simplicity, we don’t exam-
ine these interesting extensions of the theory. Moreover,
the present approach, that starts from the Lorentz’ force
law, is completely Newtonian. Thus, another big prob-
lem, as it happens with general relativity, will be its re-
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formulation within the quantum mechanical rules. The
procedure for obtaining a quantum mechanical descrip-
tion is even more difficult because we have explicitly used
some issues that are not allowed in quantum mechanics,
as the non-canonical hamiltonian description of motion
and a gauge function which is not only defined over the
space-time. Without an extension of the present the-
ory to quantum mechanics it is not possible to accept
the present theory. Similarly, for example, without a
quantum reasoning it is not possible to deduce the scale
of masses of the elementary particles. With respect to
the latter remark an intriguing coincidence clearly ap-
pears. If an indetermination principle is applied the fact
that we have considered the 5th dimension belonging to
the velocity space should set the length scale of the ex-
tra dimension equal to the Compton length, not to the
Planck length. Immediately, it is recognized that with
the present, now compactified, KK mechanism, also the
scale of masses assumes the correct value. With an inde-
termination principle, the extra-dimension scale length
becomes important because it is not possible anymore
to know, at the same time, both the position and the
velocity of the particle. Within quantum mechanics, it
becomes forbidden to observe a gyro-radius below of the
order of the Compton length.
The extension of the present theory to quantum mechan-
ics will be described in another work which is in prepa-
ration. However, here it can be roughly shown how the
present approach is not too much in conflict with quan-
tum mechanics, thanks to the misleading symmetry and
the instability of the guiding centers due to electromag-
netic fluctuations.

VII. STOCHASTIC GYROCENTER
TRANSFORMATION

In this section we introduce quantum rules without
following the orthodox way. The probabilistic concepts
that pertain to the quantum world are shown to be conse-
quences of e.m. fluctuations. Several studies concerning
the relation of quantum mechanics and stochastic pro-
cesses are described in books like [34–37]. Others sug-
gested lectures with many correspondences to the present
derivation are in [19] and [38]. However, the present de-
scription is novel because it is applied to the gyrocenter,
instead of considering the particle motion, when the gy-
rating particle solution is considered in the presence of
e.m. stochastic fluctuations, that has never been studied.

A. The stochastic gyro-center

The e.m. fluctuations are commonly considered sep-
arately from the guiding center description. There is a
simple reason for this, indeed in non relativistic regime,
it is possible to separately take into account the time
behavior of the e.m. fields. In plasma physics applied

to laboratory plasmas this is almost the case, because
the guiding center approach is used for describing par-
ticles motion in the background equilibrium e.m. fields
(E0, B0) that don’t explicitly depend on time. The ef-
fective e.m. fields will be affected by changes induced by
a redistributions of charges in the plasma. Such changes
are e.m. fluctuations and they are particularly difficult
to model because they are caused by collectives phenom-
ena. However, in plasma physics modeling, the current
approach [3] is to give a spectral behavior to such fluctu-
ations in such a way that after various efforts a dispersion
relation is obtained. The dispersion relation is known as
the generalized fishbone-like dispersion relation [39]. Dif-
ferently, here we consider stochastic fluctuations of the
e.m. field. Moreover, given the stochastic nature of the
e.m. fluctuations, we are inducted to separately consider
the guiding center from the gyro-center description. The
single charged particle non relativistic Lagrangian is the
same, but let us distinguish what is deterministic from
what is stochastic:

L = ẋ2/2 + (e/m)A0(t, x) · ẋ− (e/m)Φ0(t, x) +

+(e/m)δξA · ẋ− (e/m)δξΦ, (163)

where Aα0 = (Φ0, A0) is the (deterministic) four -vector
potential and δξA

α = (δξΦ, δξA) is the stochastic four -
vector potential fluctuations. The e.m. fluctuating
fields could be written as δξE = −∂tδξA − ∇δξΦ and
δξB = ∇ × δξA, but some care should be considered
when applying the stochastic differential calculus on such
stochastic quantities.
The gyrocenter description is easily obtained from the
guiding center description, because the effects of fluctua-
tions will be easily reflected on the guiding center trans-
formations that become

X̄ = X + ξ, (164)

where X̄ is the gyro-center position, X is the guiding
center position and ξ is the guiding center displacement.
Similarly for the velocity,

V̄ = V + δξV, (165)

where V̄ is the gyro-center velocity, V is the guiding cen-
ter velocity and δξV = ξ̇ is the guiding center velocity
displacement. Concerning stochastic processes, it is bet-
ter to write the latter equation with the increments in-
stead of the derivatives:

dX̄ = V dt+ dξ. (166)

Moreover, being V = v − σ, the gyro-center increment
dX̄ is rewritten as

dX̄ = (v − σ)dt+ dξ, (167)

where the guiding center velocity, V , is the mean gyro-
center velocity, and dξ at time t is independent of X̄
for a time before t. In stochastic differential calculus
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the limit dt → 0 should be considered with care and
it is meaningful to define two kinds of derivatives. The
forward derivative:

DX̄ = lim
dt→0+

〈
X̄(t+ dt)− X̄(t)

dt

〉
, (168)

and the backward derivative

D?X̄ = lim
dt→0−

〈
X̄(t)− X̄(t− dt)

dt

〉
, (169)

Here, DX̄ = V and D?X̄ = V?. In such a way that they
are coincident, V = V?, when X̄ is differentiable. Thus,
the stochastic process should be characterized also by the
backward increments that can be written as

dX̄ = V?dt+ dξ?, (170)

where dξ? at time t is independent of X̄ for a time after
t. In general, V? = v−σ?. Finally, the stochastic process
ξ is considered a simple Wiener process with

〈dξ〉 = 〈dξ?〉 = 0, (171)

and

〈dξidξ?j〉 = 2νpδijdt, (172)

with dξi and dξ?j specifying the cartesian components
of the stochastic vectors dξ and dξ?, respectively. The
constant νp indicates the product of a length times a ve-
locity and coincides with the diffusion coefficient of the
stochastic process. It is worth noticing that the origin
of such diffusive process is due to the e.m. fluctuations.
The implicit reason for such fluctuations are the absorbed
and/or emitted radiation by the charge, its motion be-
comes markovian, as for the brownian particle. If we can
ruled out the radiation, then the behavior could be dif-
ferent, for instance νp = 0. However, here we will always
consider the presence of an e.m. field and, at least, one
charge. The dynamics of a charge cannot correctly be
described if separated from the e.m. field, that implies
νp 6= 0.
It is possible to associate two Fokker-Planck (FP) equa-
tions to the stochastic process. For a probability density
function, f , the forward FP equation is:

∂tf = −∇ · (V f) + νp∆f, (173)

or

∂tf + V · ∇f = −f∇ · V + νp∆f. (174)

Similarly, the Fokker-Planck equation for the backward
process is

∂tf = −∇ · (V?f)− νp∆f, (175)

or

∂tf + V? · ∇f = −f∇ · V? + νp∆f. (176)

From the sum and the difference of the two Fokker-Planck
equations,

∂tf = −∇ ·
(
f
V + V?

2

)
. (177)

From subtracting the two FP equations,

∇ ·
(
f
σ − σ?

2

)
+ νp∆f = 0. (178)

From the latter, Nelson argued the following particular
solution for σ − σ? = 2uN, where the osmotic velocity is

uN = −νp∇ log f, (179)

as in [40] apart from the minus sign. Moreover, it is
possible to define the Nelson’s current velocity :

vN = V + uN . (180)

The current velocity is the gyro-center velocity when ξ̇
is replaced by uN. Obviously, when fluctuations are ne-
glected, the gyro-center velocity becomes the guiding cen-
ter velocity.
If the backward process is realized with V? = vN + uN,
then the continuity equation, from eq.(177), is

∂tf = −∇ · (fvN), (181)

This is the reason for appropriately calling the gyro-
center velocity, vN, as the current velocity.

1. the straight and uniform magnetic field with fluctuations

In a straight and uniform magnetic field, we have
seen that σ = v⊥, which can be opportunely written
as σ = −ρLωc(e1 sin γ+e2 cos γ) = ρ2Lωc∇γ, if no fluctu-
ations are considered. Here, γ is always the gyro-phase,
with ∇γ = eγ/ρL, and ωc = (e/m)|B|. For such case
without fluctuations, ∇f = 0, or f = 1 , ensuring deter-
minism. Thus, by introducing fluctuations that modify
the effective velocity of the charge, v, and the velocity
σ. In such way that v = vN + σ − uN = V + σ. It is
worth noticing that he velocity v is an effective velocity,
which is very useful because both the true velocity and
the true e.m. field acting on the charge are unknown.
Fluctuations add a term, the osmotic velocity uN, to σ
that becomes:

σ = −νp∇ log f + ρ2ωc∇γ, (182)

where the Larmor radius is not anymore constant and
it has been substituted with the gyroradius ρL → |ρ|.
Thus, v = vN + ρ2ωc∇γ. The backward velocity, −σ? is
obtained changing the direction of γ (or the sign of the
charge): −σ? = −νp∇ log f−ρ2ωc∇γ. In such a way that
σ + σ? = 2ρ2ωc∇γ. Always in the straight and uniform
equilibrium magnetic field case, by taking f ∝ 1/(πρ2),
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that means that the probability for finding the particle is,
roughly, inversely proportional to the area of the disc of
radius |ρ| [41]. Now, the divergency of ∇· [f(σ+σ?)] = 0,
being γ an angle so that ∇2γ = 0. In such case the
continuity equation reads

∂tf = −∇ · (fv), (183)

being∇·[f(V +V?)] = 2∇·(fv)−∇·[f(σ+σ?)] = 2∇·(fv).
The gyro-velocity,

σ =
2νp
|ρ|

eρ + |ρ|ωceγ , (184)

is maintained perpendicular to the equilibrium magnetic
field. The product ρ · σ = 2νp is constant, so that if the
radius of the disc, |ρ|, increases (e.g. absoption of radi-
ation) then the radial velocity decreases. Thanks to the
gyrating part, the overall velocity, |σ|, increases. On the
contrary, if |ρ| decreases (e.g. emission of radiation), the
gyrating part of σ becomes negligible with respect to the
radial velocity that explodes as ∼ 1/|ρ|. Such remarks,
even if obtained in a non relativistic treatment, allows to
roughly deduce the order of magnitude of the constant νp
if a minimum value of |ρ| and, correspondingly, a maxi-
mum velocity is conceived. Let’s indicate the minimum
radius, corresponding to the diffusion length, with λc,
then a maximum velocity is obtained and indicated with
c ≈ 2νp/λc.
The gyro-phase symmetry of the system is maintained so
that the magnetic momentum is conserved, from equa-
tion (63):

µ =
(e/m)σ2

2ωc
=

(e/m)ωcρ
2

2
+

2(e/m)ν2p
ρ2ωc

, (185)

where the contribution of fluctuations with respect to
the standard magnetic momentum is evident from the
appearance of the factor νp in the second term on the
right hand side. As for the gyrating velocity, also the
magnetic moment is never vanishing in the presence of
fluctuations. Finally, the energy per unit mass is

ε =
v2‖

2
+
ω2
cρ

2

2
+

2ν2p
ρ2

(186)

with a zero field point energy per unit mass [42] written
as εzfp = 2(m/e)µBωc, and estimated to be, if v‖ = 0
and (|ρ| = λc, νp ≈ cλc/2):

εzpf ≈
(
λ2cωc

2
+

c2

2ωc

)
ωc. (187)

Thus, µB = (e/m)(λ2cω
2
c+c2)/(4ωc). Finally, the prestige

is the following, if λ2cω
2
c = c2 then the minimum energy

of the charge (times the mass) is Ezfp ≈ mc2. The sur-
prise is that instead of being the energy of the particle
at rest, in the present case, it is the guiding center which
is at rest. Above all, the energy mc2 has been obtained
without a relativistic approach, but with a magnetic field

|B| = (m/|e|)(c/λc). This is not the only surprise, in-
deed, if νp = ~/(2m) (as in [40]) then λc = ~/(mc) is the
Compton length (which means |B| = m2c2/(|e|~)). Now,

ρ · (mσ) = ~, (188)

If you introduce ∆x = |∆x|eρ, with |∆x| ≥ |ρ| and
∆p = |∆p|σ/|σ| with |∆p| ≥ |σ|, as representative es-
timators of the indetermination of the position and of
the velocity, respectively, of the charge with respect to
the gyro-center, then

∆x ·∆p ≥ ~ (189)

which is similar to the Heisenberg indetermination prin-
ciple. The explanation, with respect to the Copenhagen
interpretation, is quite different. The charge is moving
with a newtonian deterministic motion, the gyro-center
is moving with a stochastic motion and, due to such
stochasticity, it is not allowed to know exactly the po-
sition and the velocity of the gyrocenter with respect to
the charge and/or viceversa. Within the limit imposed
by the indetermination principle the gyrocenter and the
charge are undistinguishable entities. In the following,
the appellation of elementary particle will be shown to
be better suited for the stochastic gyro-center than for
the charge.
The zero field point energy (times the mass) becomes

Ezfp ≈ ~ωc, (190)

about twice w.r.t. the one obtained from a quantum
oscillator, but what is exactly needed for obtaining the
black-body spectrum from the Planck distribution. More-
over, with the latter z.f.p. energy, the energy of the
charge, E2 = mε, with respect to the energy of the guid-
ing center, E1 = mv2‖/2, is: E2 − E1 = ~ωc. The former

is similar to the Bohr’s frequency relation, but it is a
consequence of equation (61) when (m/|e|)µ = ~/m. It
is worth noticing that such results have been obtained
without introducing quantum mechanics or special rela-
tivity issues.
It is worth noticing that the non vanishing magnetic
moment, due to the e.m. fluctuation is estimated to
µB = (|e|/m2)~/2 which is the Bohr magneton. More-
over, asking for f to be inversely proportional to the disc
with radius equal to the radial position of the charge, we
are constructing a measure for determining the probabil-
ity of finding the unknown position of the particle. Is it
possible that such construction leave us close to the Born
interpretation?

2. the closed magnetic field line with fluctuations

An interesting behavior is seen if the canonical mag-
netic field line is closed. In the present paragraph we
analyze the behavior of a charge when the canonical
magnetic field is closed into a circle with radius aB =
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λc/αfs � λc. In the next paragraph, we will consider a
system of an electron and an ion when the canonical mag-
netic field is closed into an invariant tori. It is worth to
note that it is important to have, at least, α−1fs = O(102)
for closing the circle without changing too much the for-
mer results with the straight magnetic field case. In fact,
for a charge moving on a circle with a small radius, λc,
the magnetic field is still sufficiently straight and uniform
even if the field line is closed in a circle of radius O(102)
bigger than λc. A charge moving circularly with a radius
λc and velocity λcωc, gives rise to a magnetic field which
is almost straight in the vicinity of the charge but that it
closes in a circle when the effects of the charge are mostly
reduced. If ωc = c/λc then the radius of the magnetic
field line passing close to the center of the circle, and for
which the motion of the charge is mostly the same as if
it would straight, is λc/αfs.

Thus, let’s take v‖ → Vb = aB θ̇, where θ is a poloidal an-
gle. Now, the charge is moving with an orbit on the sur-
face of a torus of radius aB and described by the two an-
gles, γ and θ. The orbit is closed e.g. if, given n ∈ N then
nθ̇ = ωc. The closure can also happen on other tori with
a radius greater then aB ; such tori where the orbit are
closed loops are called invariant tori. It is worth notic-
ing the appearance of a diophantine relation.Moreover,
if both the velocity of the charge in the Larmor circle
and of the guiding center in the poloidal circle is c, then
αfs = 1/n is the inverse of an integer. The former picture
is an approximation because the effects occurring when
the cylinder is closed onto a tori has not been properly
taken into account.

3. A toroidal magnetic configuration

A picture very close to the de Broglie’s model but with
a reasoning applied to an invariant tori on a 3D space,
instead to a simple closed string on a 2D surface, is sug-
gested, here, once the system made by an electron with
mass me, and an ion with mass mA and charge Z|e|
is considered. Such analysis is done for considering a
rough relation between the toroidal magnetic configura-
tion, as seen in tokamaks, and some aspects of the Bohr
atomic model. Only in the following section, a rigorous
non relativistic atomic model can be addressed by de-
riving Schrödinger equation. However, a suggestive idea
explaining some old disputes on the first appearances of
quantum behaviors, is shown (without quantum mechan-
ics). In the presence of an axisymmetric magnetic field,
described by (41), the guiding center of the electron is
given by equation (42):

Ve = λ
e

me
∇Pφ ×∇φ+

e

me
(Pφ − ψp)∇φ, (191)

being λ = −ψp/F . If Pφ = ψp + λF then the former
velocity can be rewritten as

Ve =
e

me

Pφ − ψp
F

(∇Pφ ×∇φ+ F∇φ) . (192)

In parenthesis the magnetic field Bc = ∇Pφ×∇φ+F∇φ
is rewritten with the Clebsh representation as:

Bc = ∇Pφ ×∇(φ− qsfθ), (193)

where θ is the generalized poloidal angle and

qsf =
Bc · ∇θ
Bc · ∇φ

(194)

is the safety factor. Now, Pφ is the poloidal magnetic
flux of Bc. It is possible to introduce a flux radial co-
ordinate, r, in such a way that Pφ ∝ r2, which means
that we are considering nested poloidal surfaces with cir-
cular cross sections. We also consider the presence of a
positive charge, Z|e|, which is moving toroidally with the
same toroidal component of the electron guiding center
velocity, For describing the effective velocity of the elec-
tron, as for the ion, we should add to the guiding center
velocity also the gyro-velocity, σ, with the osmotic ve-
locity. However, we only wish to consider a particular
case that reminds the old but always fascinating Bohr’s
atom model. It is chosen a very strange (never seen in
tokamaks) safety factor with the following dependency
on r:

qsf =
√
r/aB , with qsf ≥ 1. (195)

Thus, when the canonical magnetic field lines are closed
(the guiding center orbits are closed, too), the resonant
magnetic flux surfaces, Pφ.res, are determined by the con-

dition
√
r/aB = n ∈ N, or:

r = n2aB , (196)

in such way that Pφ.res ∝ n4.
Thus, only for some diophantine values of r the guiding
centers are resonants. Here, the question is if the mag-
netic field that allows the guiding center of the electron
to move on invariant tori can, or cannot, be generated
by the same electron and ion that we are describing. It
is not easy to answer but what it can be said is that if it
is chosen the reference frame where the toroidal guiding
center velocity of the electron is null, then we arrive at
the simple description of an electron moving circularly
around a positive ion. In such reference frame, the ion is
fixed. Concerning the electron, its motion is due to the
cylindrical symmetry of the system and to the electric
field generated by the central positive ion. The balance
of the electric field with the centripetal motion is

Ze2

r2
= merθ̇

2, (197)

which means

θ̇ =

√
Ze2

mer3
=

1

n3

√
Ze2

mea3B
. (198)

The angular momentum, Lφ = mer
2θ̇ is proportional to

the number of poloidal cycles, n, that are necessary to
close the orbit in the tori:

Lφ = n
√
meZe2aB . (199)
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Finally, if aB = ~2/(meZe
2) is the Bohr ’s radius, then

the angular momentum is quantized:

Lφ = n~, (200)

which is the Bohr-Sommerfield rule.
Even if the former examples are somehow suggestives,
the analysis is too rough and inappropriate for the deli-
cateness of the problem. In the next section we abandon
those simple cases for addressing a correspondence
between stochastic gyrokinetic and quantum mechanics.

B. Nelson quantum mechanics

Finally, the acceleration of the gyro-center is consid-
ered as in [40]:

aN =
DD? +D?D

2
X̄. (201)

There are other possibilities on defining an acceleration
but in this work they are not taken into account. Once
the derivative is applied to DX̄ = V and D?X̄ = V?, we
find the Nelson’s acceleration:

aN = ∂tvN + vN · ∇vN − uN · ∇uN + νp∇2uN , (202)

It is worth noticing that v̇N 6= aN , if fluctuations are
considered. In other words, the trajectory of a particle
is different if f 6= 1 and νp 6= 0. The idea of Nelson
was to associate such discrepancy, that depends on the
presence of fluctuations, with the quantum mechanical
formulation.
In our case aN = (e/m)(E+vN ×B) and, with the same
procedure described in section II, it is possible to arrive
at a modified velocity law equation:

∂tpN +∇εN − vN ×∇× pN =

= (ν2p/2)∇(∇ log f)2 + ν2p∇∇2 log f, (203)

being pN = vN + (e/m)A and εN = v2N + (e/m)Φ.
However, a simple transversal electric field, Et =
−(m/e)∂tpN − (m/e)∇εp, is obtained if

εp = v2N/2 + (e/m)Φ− (ν2p/2)(∇ log f)2 − ν2p∇2 log f,
(204)

then

Et + vN ×Bc = 0, (205)

similarly to the Lorentz’s force law case. It is worth notic-
ing that the relation between εp and the Bohm quantum
potential [43],

QB = −ν2pf−1∇2f = νp∇ · uN − u2N , (206)

is

εp = εN + u2N/2 +QB .

Now, by considering the gyrating particle solution with
Bc = 0, it means that pN is a gradient, which is written
pN = ∇SN and Et = 0. For simplicity, let’s take

εp = −∂tSN . (207)

Nelson has shown in [40] that the continuity equation
in (181) and the equation for the acceleration in (202)
gives the Schrödinger equation once aN is substituted
with the Newtonian force per unit mass: F = maN , and
vN = ∇SN−(e/m)A. Nelson’s approach suffers from the
Wallstrom criticism [44] that we easily overcome defining
the complex function

ψ =
√
fe−iγ , (208)

where γ = SN/(2νp) is always the gyrophase, and be-
ing an angle it is multivalued as noticed by Wallstrom.
It is worth noticing that the gyrating particle solution
corresponds to the zitter-solution already described in
section III (C.1). In fact, it has been recently noticed
in [38] that the zittter-solution can overcome the Wall-
strom criticism. From (208) they are easily obtained the
relations:

f∂tγ = i
ψ∂tψ

? − ψ?∂tψ
2

, (209)

f∇γ = i
ψ∇ψ? − ψ?∇ψ

2
, (210)

and

f∂t log f = ∂tf = ψ?∂tψ + ψ∂tψ
? (211)

f∇ log f = ∇f = ψ?∇ψ + ψ∇ψ?. (212)

Thus,

uN = −νp
ψ?∇ψ + ψ∇ψ?

ψ?ψ
(213)

and the stochastic gyrocenter velocity, vN = −2νp∇γ −
(e/m)A, is

vN = +iνp
ψ∇ψ? − ψ?∇ψ

ψ?ψ
− (e/m)A. (214)

At the moment it doesn’t occur to specify that the po-
tentials are computed in X̄, however it makes a certain
difference.

1. The Schrödinger equation from classical physics and
stochasticity

Even if Nelson was clear in his derivation, we follow
a different approach, a constructive one, to reach the
Schrödinger equation. It is here required that vN ·uN = 0,
which means that the stochastic gyrocenter velocity is
perpendicular to the osmotic velocity due to fluctuations.
Such choice is a requirement on f . From the guiding
center velocity, V = vN − uN , it follows that V 2 = v2N +
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u2N = (vN + iuN ) · (vN − iuN ). In terms of ψ and ψ?, V 2

is below computed. Firstly

vN − iuN = ψ?
−2iνp∇− (e/m)A

f
ψ, (215)

and

vN + iuN = ψ
2iνp∇− (e/m)A

f
ψ?. (216)

Thus, the guiding center velocity squared is

V 2 = f−1[2iνp∇− (e/m)A]ψ? ·
·[−2iνp∇− (e/m)A]ψ =

= 2iνpf
−1∇ · f(vN + iuN ) +

+ψ?f−1[−2iνp∇− (e/m)A]2ψ.

From the continuity equation (183) and from the Bohm’s
quantum potential (206), V 2/2 is rewritten as

V 2

2
= −iνpf−1∂tf −QB +ψ?f−1

[−2iνp∇− (e/m)A]2

2
ψ

(217)
Finally, it occurs only set all the pieces together, from
(204):

εp = V 2/2 + (e/m)Φ +QB = (218)

= −iνpf−1∂tf + ψ?f−1
[−2iνp∇− (e/m)A]2

2
ψ + (e/m)Φ,

being Φ computed at the gyrocenter position, X̄. More-
over, being εp = −2νp∂tγ, the following equation is easily
obtained:

−2νp∂tγ + iνpf
−1∂tf =

= ψ?f−1
[−2iνp∇− (e/m)A]2

2
ψ + (e/m)Φ.

If νp = ~/(2m), as already considered in the straight and
uniform magnetic field case with fluctuations, then the
Schrödinger equation is derived:

2iνp∂tψ =
[−2iνp∇− (e/m)A]2

2
ψ + (e/m)Φψ. (219)

Finally, if we set the minimum allowed magnetic moment
to

µ = −(e/m)νp = µB , (220)

then the order of magnitude of the compactification scale
in the KK mechanism is the Compton length, λc, ensur-
ing the correct mass scale for the elementary particles.
Moreover, νp is the diffusion coefficient in (172), in such
a way that the Wiener process is recognized to be uni-
versal (as already noticed by Nelson).

VIII. CONCLUSIONS

The non-perturbative guiding center transformation
has been extended to the relativistic energies. Within
the relativistic regime, the same equation (8) already
seen in the non relativistic treatment [6], is re-obtained.
This has been called the velocity law. Although the
context is very different, the similarity with the ideal
Ohm’s law has been shown and, some solutions of
motion are studied in the light of the ideal Ohm’s law.
The covariant formalism has been adopted to better
describe the relativistic behavior. For this reason a
lagrangian approach is used for re-deriving the same
equation (8) in a covariant form.
Some important solutions of the velocity law are con-
sidered in section III. Here, the difference between the
guiding particle solution in gyrokinetic-like ordering, in
MHD-like ordering, and the gyrating particle solution,
is shown. All these solutions are practically identical
to the non relativistic case, which have been analyzed
in detail in [6]. The guiding particle solution is the
one described by the fundamental equation (36); the
guiding center can be described by the same equation
but having the magnetic moment different from zero.
The guiding center reference frame has been finally
defined in a geometrical sense as the reference frame
where the particle moves in a closed orbit with a pe-
riodic motion. The gyro-phase, γ, is the curvilinear
coordinates along the closed loop trajectory and the
magnetic moment is defined as the conjugate coordinate
to γ. Thus, the dynamics have been described in the
guiding center coordinates, zA = (t,X, γ, ε, µ), through
the non-canonical hamiltonian mechanics developed by
Cary and Littlejohn [7]. The Lagrange and Poisson
tensors have been described for the non-perturbative
guiding center transformation. The correspondence with
the velocity law in seven dimensions is shown, (90).
Moreover, a clear and known criteria to define when a
dimensionality reduction is possible, is also reminded.

Furthermore, a general relativity approach for describ-
ing electromagnetism using the relativistic guiding center
transformation is suggested. It is shown that the for-
malism of non-canonical hamiltonian mechanics is what
is needed to extend the presence of electromagnetic dy-
namics to the general relativity formalism. An Einstein’s
equation (151), for the extended phase space can be set-
tled for describing both the interactions: elelctromag-
netism plus gravitation. Moreover, it has been proved
that, for the guiding center coordinates, the relevant dy-
namics are five dimensional as for the original KK mecha-
nism. The lagrangian density (142), which is used for de-
scribing both gravitation and electromagnetism, has been
obtained. The metric tensor has been explicitly written
in (156). The gyro-phase coordinate, γ, is proposed to
be the fifth KK coordinate. Thus, the extra-dimension is
not an unobservable spacetime dimension but a measur-
able coordinate of the velocity space used for describing
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motion on the extended phase space. For this reason, the
KK mechanism does’t need of a compactification proce-
dure, anymore. If γ ∈ S1, which is exactly obtained only
for the non-perturbative guiding center transformation,
an abelian gauge theory can be settled: electromagnetism
is served on the gravitational banquet. The novelty of
the present work relies on the fact that the geometry of
the velocity space must be taken into account also for
describing the same gravitational field acting on the par-
ticles.
In the last section, some speculative possibilities are
taken into account. Once electromagnetic fluctuations
are considered, it is not allowed anymore to shrink the
gyroradius to zero. From the guiding center transforma-
tion to the stochastic gyrocenter one, it occurs to radi-
cally change the velocity law, which means that the gy-
rocenter moves differently with respect to the guiding
center. Using Nelson’s approach to quantum mechan-
ics, answering to the Wallstrom’s criticism and giving a
physical justification to the fluctuations required by Nel-
son’s approach, then it has been shown how to derive the
Schrödinger equation (219), with all its implications.
Finally, considering the diffusion coefficient as propor-
tional to the Planck constant and inversely proportional
to the inertial mass, it has been shown that the scale of
length for the extra dimension is the Compton length,
instead of the Planck length. This is correct also from
another kind of consideration. Thus, if the extra di-
mension belongs to the velocity space, the Heisenberg
indetermination principle which forbids the contempo-
rary knowledge of position and of velocity of the particle,
led to a different scale length limitation, which is caused
by the incommensurability between velocities and posi-
tions instead of by the unobservability of the 5th dimen-
sion. Thus, the length scale for the new compactification
scheme is fixed by the Compton length, ensuring the cor-
respondence with the observed masses.
What emerges from such picture is that some quantum
effects can be also explained, and not only interpreted, by
the old classical mechanics. Once the non perturbative
guiding center and the stochastic gyrocenter transforma-
tions are applied to plasma physics then a field theory
(on extended phase-space) approach can be, finally, well
suited for solving nonlinearities. From the plasma la-
grangian density in (2) where ”somethingnew” is substi-
tuted with the Hilbert-Einstein term on extended phase-
space, the consequences and the differences with the stan-
dard formulation should be investigated. Once macro-
and micro- behaviors will be described in a unified man-
ner, then the multi-scale non-linear problem encountered
in tokamak physics can be reformulated with new tools;
also for this reason, the non-perturbative guiding center
and the stochastic gyrocenter transformations have been
proposed.

ACKNOWLEDGMENTS

The author wishes to acknowledge S. Sportelli, S.
Briguglio, E. Giovannozzi, F. Zonca and C. Cosentino
for encouragement and suggestions. This work has been
carried out within the framework of the Nonlinear En-
ergetic Particle Dynamics (NLED) European Enabling
Research Project, WP 15-ER-01/ENEA-03, within the
framework of the EUROfusion Consortium and has re-
ceived funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053.
The views and opinions expressed herein do not necessar-
ily reflect those of the European Commission.

Appendix A: Christoffel and Ricci in 5D

a. Christoffel symbols

From

Γ̃abc =
1

2
g̃ae(∂cg̃eb + ∂bg̃ce − ∂eg̃bc), (A1)

with

g̃ab =

∣∣∣∣ gαβ −κAα
−κAβ κ2AαAα + 1/ϕ2

∣∣∣∣ , (A2)

it is possible to compute all the components of the
Christoffel symbol.

Γ̃αβδ = Γαβδ +
κ2ϕ2

2
gαη(AδFβη +AβFδη), (A3)

Γ̃4
βδ = −κ

2
AαΓαβδ +

κ3ϕ2

2
AδA

αFαβ +

+
κ3ϕ2

2
AβA

αFαδ +
κ

2
(∂βAδ + ∂δAβ),

Γ̃αβ4 =
κϕ2

2
gαηFβη, (A4)

and

Γ̃α44 = Γ̃4
44 = 0. (A5)

Last,

Γ̃4
α4 =

κ2ϕ2

2
AδFδα, (A6)

and

Γ̃4
α4 = Γ̃4

44 = 0. (A7)
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b. Scalar curvature in 5D

From the components of Γ the component R̃44 of the
Ricci tensor in 5D can be computed:

R̃44 = R̃a4a4 = R̃4
444 + R̃β4β4 = R̃β4β4, (A8)

with

R̃β4β4 =
κ2ϕ4

4
FαβFαβ −

1

2
∇α∇αϕ2 (A9)

The other components are

R̃α4 = R̃aαa4 = R̃4
α44 + R̃βαβ4 = R̃βαβ4 (A10)

with

R̃βαβ4 =
κϕ2

2
gδη∇ηFαδ + κAαR̃

β
4β4. (A11)

Finally,

R̃αβ = R̃aαaβ = R̃4
α4β + R̃δαδβ = R̃βαβ4, (A12)

explicitly

R̃αβ = Rαβ −
κ2ϕ2

2
gδηFαδFβη + κ2AαAβR̃44 +

+κAα(R̃β4 − κAβR̃44) + κAβ(R̃α4 − κAαR̃44) +

− 1

2ϕ2
∇α∇βϕ2 = (A13)

= Rαβ −
κ2ϕ2

2
gδηFαδFβη + κ2AαAβR̃44 +

+
κ2ϕ2

2
gδηAα∇ηFβδ +

κ2ϕ2

2
gδηAβ∇ηFαδ

Thus, the scalar curvature in 5D is

R̃ = R− κ2ϕ2

4
FαβFαβ −

1

ϕ2
∇α∇αϕ2 (A14)

It is convenient to settle the following Klein-Gordon
equation with the Laplace-Beltrami operator:

(∇α∇α + Λ)ϕ2 = 0, (A15)

being Λ the cosmological constant. However, let’s con-
sider the simplest case with Λ = 0. In such case,

R̃ = R− κ2ϕ2

4
FαβFαβ . (A16)
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