
WP15ER-PR(17) 18915

M Perne et al.

Local Decay of Residuals in Dual
Gradient Method with Soft State

Constraints

Preprint of Paper to be submitted for publication in
Optimization and Engineering

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Optimization and Engineering manuscript No.
(will be inserted by the editor)

Soft Inequality Constraints in Gradient Method and Fast
Gradient Method For Quadratic Programming

Matija Perne · Samo Gerkšič · Boštjan Pregelj
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Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia



2 Matija Perne et al.

1 Introduction

Real-time linear model predictive control (MPC) typically requires solving a con-
vex quadratic program (QP) at every sample (Qin and Badgwell, 2003). In the recent
decade, a number of approaches to fast online solution of MPC-derived QPs were
proposed (Domahidi et al, 2012; Ferreau et al, 2008, 2014; Hartley et al, 2014; Mat-
tingley and Boyd, 2012; Mattingley et al, 2011; Wang and Boyd, 2010) with the aim
of making MPC useful for control of systems with faster dynamics. First-order meth-
ods (Giselsson, 2014a; Giselsson and Boyd, 2015; Kouzoupis, 2014; Patrinos et al,
2015; Richter, 2012) such as the fast gradient method (FGM) are a promising group
of methods for fast MPC. As the necessary precision is relatively low (Mattingley
and Boyd, 2012), they can calculate a sufficiently accurate solution fast in spite of
their low convergence rate. For even faster computation, they are implementable us-
ing field-programmable gate arrays (FPGA) (Gerkšič et al, 2018) since the iterations
are relatively simple. Their complexity certification possibilities are good (Richter,
2012). In the presence of state or output constraints, when the primal form of FGM
would require inefficient projections on sets that are not simple, the dual form of
FGM can still be used (Borrelli et al, 2015).

While QPs arising from MPC with hard state or output constraints are not guaran-
teed to be feasible (Wang and Boyd, 2010) and may not have an optimum, reasonable
behaviour of an MPC controller is typically required in all circumstances (Matting-
ley et al, 2011; Qin and Badgwell, 2003). One of the ways of mitigating infeasibility,
which is adequate in many practical control applications, is by softening the state
and/or output constraints with slack variables and augmenting the cost function with
penalties on the slack variables (de Oliveira and Biegler, 1994; Zafiriou and Chiou,
1993; Zheng and Morari, 1995). The augmented QP obtained in this way is guaran-
teed to be feasible. With suitable slack variable penalties, it can be designed in such
a way that its optimum is equal or close to the optimum of the original QP when it
exists (Hovd and Stoican, 2014; Kerrigan and Maciejowski, 2000). When the origi-
nal QP is infeasible, the augmented one behaves in a sensible manner, e.g. violating
softened constraints to a reasonable degree while enforcing physical input constraints
that remain hard (Afonso and Galvo, 2012; Zafiriou and Chiou, 1993). However, the
softly constrained QP with slack variables has higher QP dimensions and is compu-
tationally significantly more demanding to solve than the original QP. Because the
slack variables are highly correlated with the corresponding state or output variables,
the augmented QP is ill-suited for solving with first-order methods without adaptation
(Jerez et al, 2014).

It is possible to derive an algorithm that solves the soft-constrained QP and does
not use much more resources than the dual gradient method (GM) or the dual FGM
applied to the hard-constrained QP. The solver code generator QPgen (Giselsson,
2014b; Giselsson and Boyd, 2014) solves the soft-constrained QP by an iteration
scheme that is very similar to dual GM or dual FGM applied to the original QP
with a modified proximity operator, however it is limited to the special case of only
linear cost on the soft constraint violation. Kouzoupis (Kouzoupis, 2014) derives the
required modification of the proximity operator for a form of dual FGM with both
linear and quadratic cost on the soft constraint violation for a sparsely structured QP,
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where the optimization vector comprises the control input, the system state and the
output with box inequality constraints, where Lagrange relaxation is used for both
equality and inequality constraints.

Our goal is to form an efficient implementation of soft constraints with linear
and quadratic costs on the constraint violation in the dual GM and the dual FGM
algorithm suitable for use with the condensed formulation as used in QPgen. These
algorithms were found to be well-suited for the implementation of MPC for plasma
magnetic control in tokamak fusion reactors where real-time MPC is challenging due
to fast dynamics, where moderately-sized QPs must be solved with relatively low
precision repetitively on a millisecond time-scale (Gerkšič and De Tommasi, 2016).
While dual FGM with linear cost on constraint violation is implemented in QPgen,
a quadratic cost term is regarded necessary for the intended application as well. We
achieve our goal by modifying the proximity operator, prove that it gives the expected
result, and illustrate it on the AFTI-16 aircraft MPC benchmark example (Giselsson,
2014a).

The paper is organised as follows: the optimization problem of MPC is described
in Sect. 2. Lagrange duality is introduced and dual GM is defined in Sect. 3. A solu-
tion is proposed in Sect. 4 and proven in Sect. 5. Finally, the modification is applied
to dual FGM in Sect. 6 and demonstrated on an example in Sect. 7.

2 MPC Problem description

Consider a discrete time linear system with the dynamics described as

x(t +1) = Ax(t)+Bu(t) , (1)

where t is the time index, x is the system state, u is the system input, and the matrices
A and B model the dynamics. A quadratic cost function J is introduced (Giselsson,
2014a) as

J =
1
2
(xN−xref)

T Q(xN−xref)+
1
2

N−1

∑
k=0

(xk−xref)
T Q(xk−xref)+(uk−uref)

T R(uk−uref) .

(2)
The expressions xref and uref are the system state and system input setpoints, xk and
uk are the state and input values k time steps towards the future from the current
time. The signals are constrained to polyhedra x ∈X ,u ∈ U where the polyhedra
are defined using the constraint matrices C ′

x , C ′
u and the constraint vectors b ′x , b ′u as

X =
{

x ∈ R j|C ′
x x� b ′x

}
, U =

{
u ∈ Rl |C ′

u u� b ′u
}

. The question of finding the
minimizer of the cost for a given value of x(0) is (Boyd and Vandenberghe, 2004)

minimize
(x0,...,xN ,u0,...,uN−1)

J (xk,uk)

subject to xk+1 = Axk +Buk,

xk ∈X ,uk ∈U ,

x0 = x(0) .

(3)



4 Matija Perne et al.

By substituting x1, . . . ,xN via (1) (Ullmann and Richter, 2012), (3) can be trans-
formed into the condensed QP form

minimize
z

1
2

zTHz+ cTz (4a)

subject to Cz� b (4b)

with the Hessian H ∈ Rn×n positive definite (n = l×N), the gradient vector c ∈ Rn,
the constraint matrix C∈Rm×n, the constraint vector b∈Rm, the optimization vector
z ∈Rn. Using the condensed form of the QP, only the system inputs u0, . . . ,uN−1 are
assembled into the optimization variable z.

A solution to an optimization problem of the type (4) arising from MPC with hard
state constraints may be infeasible. In order to avoid the problem of infeasibility, the
augmented form of the QP with softened state constraints is introduced

minimize
z,s

1
2

zTHz+ cTz+
1
2

sTWs+wTs (5a)

subject to Cxz� bx + s, (5b)
Cuz� bu, (5c)
s� 0. (5d)

We have split

C =

[
Cx
Cu

]
, b =

[
bx
bu

]
, (6)

so that (5b) describes the system state constraints that are softened and (5c) describes
the system input (actuator) constraints that are hard. The dimensions are Cx ∈ Rp×n,
Cu ∈ R(m−p)×n, bx ∈ Rp, bu ∈ Rm−p. The vector s ∈ Rp is the vector of slack vari-
ables, the linear cost on the slack vector w ∈ Rp only has positive components, the
matrix W ∈ Rp×p is diagonal positive semi-definite. The QP (5) always has a solu-
tion. If the QP (4) is feasible, the QP (5) has the same optimum in z if the components
of w are big enough (Hovd and Stoican, 2014; Kerrigan and Maciejowski, 2000). If
(4) is infeasible, the optimum of (5) violates the constraints of (4) in a predictable
way that is determined by the choice of w and W.

It is possible to rewrite the QP (5) to the general form of QP (4) by augmentation
of z, H, c, and C of (4) with s, w, W. The resulting form is, for example,

minimize
[z

s ]

1
2

[
z
s

]T [H 0
0 W

][
z
s

]
+

[
c
w

]T [z
s

]

subject to

Cx −I
Cu 0
0 −I

[z
s

]
�

bx
bu
0

 , (7)

where the symbol I stands for an identity matrix of the appropriate size and each 0 is
a matrix of zeros of the appropriate size.
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3 Lagrange duality and dual methods

For input-constrainted MPC, the inequality (4b) defines a set that is simple, meaning
that a projection on it can be carried out efficiently. A GM can then be used to solve
the QP (4) in primal domain as explained in Nesterov (2003); Patrinos and Bemporad
(2014); Richter (2012). In contrast, state constraints in the MPC problem result in a
set defined by (4b) that is not simple, necessitating the use of a dual method.

We define the Lagrangian associated with (4) by relaxing the inequality con-
straints (4b) to obtain the expression

L(z,µ) =
1
2

zTHz+ cTz+µ
T (Cz−b) . (8)

The vector z comprises the primal variable while µ ∈ Rm is the dual variable or the
Lagrange multiplier.

One can define the Lagrange dual function as

g(µ) = inf
z

L(z,µ) . (9)

The problem

maximize
µ

g(µ) (10a)

subject to µ � 0 (10b)

is called the dual problem to the quadratic program (4) and its optimum can be la-
belled µ∗. Since g(µ) may not be strongly concave (Bemporad et al, 2002), the max-
imizer may not be unique and µ∗ labels an arbitrary one. An important attribute of
the optimal Lagrange multiplier is that the unconstrained optimization

minimize
z

L(z,µ∗) (11)

has the same optimum in z as the quadratic program (4) (Boyd and Vandenberghe,
2004).

The dual problem (10) is a QP (Dorn, 1960) as the dual function is g(µ) =
− 1

2

(
CTµ− c

)T H−1
(
CTµ− c

)
− µTb. The non-negative orthant defined by (10b)

is a simple set so the QP (10) can be solved using a GM and (11) can be used to
reconstruct the primal solution. Similarly, the dual GM solves a QP of the type (4)
through the iterations of (Giselsson and Boyd, 2014)

yk =−H−1
(

CTvk + c
)

vk+1 = vk +Cyk−proxh

(
vk +Cyk

)
.

(12)

The vector yk ∈ Rn in (12) has the role of the approximate primal solution and vk ∈
Rm is the dual variable. The proximity operator of a closed convex function f :Rr→
R∪{+∞} that is not identical to {+∞}, is defined as

prox f (t) = argmin
r∈Rr

f (r)+
1
2
‖t− r‖2 (13)
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(Giselsson, 2014a; Richter, 2012). In (12), h(t) symbolises the indicator function

h(t) =
{

0 if t� b
∞ if t� b. (14)

It follows from (13) that proxh (t) where h(t) is an indicator function is the projection
onto the cone t� b. Since the cone is a translated orthant and projection can be done
by component, the whole iteration cycle is straightforward to perform. The variable
yk converges to the solution of the QP when k→ ∞ if all eigenvalues of CH−1CT

are smaller than or equal to 1 (Giselsson and Boyd, 2014) and this condition can be
fulfilled by scaling the cost function.

4 Proposed solution

The main idea of the paper is as follows. What we want is to use the method (12)
for the problem (5) in an efficient way. In particular, we avoid rewriting (5) into (7)
and applying (12) because of the bigger dimensions and slower convergence that
would result. Our goal is deriving a scheme that is similar to and similarly efficient
than (12) applied to (4) and results in the solution of (5). We proceed similarly as
Giselsson (2014a); Kouzoupis (2014), modifying the proximity operator so it is not a
simple projection anymore.

We write the iteration scheme used to solve the QP (5) as

yk =−H−1
(

CTvk + c
)

(15a)

vk+1 = vk +Cyk− p̃roxh,W,w

(
vk +Cyk

)
, (15b)

where we define p̃roxh,W,w
(
vk +Cyk

)
by components. The i-th component of p̃roxh,W,w

(
vk +Cyk

)
is

p̃roxh,W,w (t)i :=


ti if ti ≤ bi
bi if ti > bi and i hard
bi if bi < ti ≤ bi +wi and i soft

ti+Wiibi−wi
Wii+1 if ti > bi +wi and i soft

(16)

and all the eigenvalues of CH−1CT are smaller than or equal to 1. We will see that yk

converges to the optimum of (5) as k→ ∞.

Lemma 1 The algorithm (15) converges.

Proof Define

h̃(t) :=
m

∑
i=1


0 if ti ≤ bi

wi (ti−bi)+
Wii
2 (ti−bi)

2 if ti > bi and i soft
∞ if ti > bi and i hard.

(17)

Calculating proxh̃ (t) by the definition of proximity operator (13), it can easily be
shown that proxh̃ (t)= p̃roxh,W,w (t). Because h̃(t) is a proper closed convex function,
the algorithm (15) converges (Giselsson and Boyd, 2015). We name the limits for yk,
vk when k→ ∞ as y∗, v∗. ut
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5 Correctness of the proposed solution

A Lagrangian associated with (5) is defined by relaxing the inequality constraints
(5b) and (5c) to obtain the expression

L(z,s,µ) =
1
2

zTHz+ cTz+
1
2

sTWs+wTs+µ
T
(

Cz−b−
[

s
0m−p

])
. (18)

The remaining set of constraints (5d) is not relaxed since it is straightforward to keep
fulfilled and can be treated separately. The vectors z and s together comprise the
primal variable while µ ∈ Rm is the Lagrange multiplier.

Lemma 2 If y∗, v∗ are limits of yk, vk in the algorithm (15) as k → ∞ and s∗ is
defined to be composed of components s∗i = max(0,(Cy∗)i−bi), where i is a soft
constraint, then z = y∗, s = s∗ is the optimum of the QP (5).

Proof We verify that Karush-Kuhn-Tucker (KKT) conditions for optimality (Boyd
and Vandenberghe, 2004; Karush, 2014; Kuhn and Tucker, 1951) for the Lagrangian
(18) are fulfilled at z = y∗, s = s∗, µ = v∗.

We start by expressing v∗. In the limit, (15b) becomes

v∗ = v∗+Cy∗− p̃roxh,W,w (v
∗+Cy∗) .

Taking the definition of p̃roxh,W,w (v∗+Cy∗) in the account, we find that

v∗i


= 0 if (Cy∗)i < bi
≥ 0 if (Cy∗)i = bi and i hard

≥ 0 and ≤ wi if (Cy∗)i = bi and i soft
=Wii ((Cy∗)i−bi)+wi if (Cy∗)i > bi.

(19)

The first part of the stationarity condition states that the gradient of the Lagrangian
(8) in z is 0 at optimal z when µ is an optimal Lagrange multiplier. The gradient is

∇zL = Hz+ c+CT
µ. (20)

From (15a) we see that y∗ = −H−1
(
CTv∗+ c

)
. When we take the expression into

account and substitute µ = v∗, z = y∗, it directly follows ∇zL = 0. The condition is
fulfilled.

The other part of the stationarity condition states that the gradient of the La-
grangian (8) in s is 0 for optimal s when µ is an optimal Lagrange multiplier. The
gradient is

∇sL = Ws+w−µx, (21)

where µx is the vector of the components of µ corresponding to soft constraints. As
the set of inequality constraints (5d) is not relaxed, the condition in this form only
has to be fulfilled for the components si > 0. These correspond to the last line in the
relation (19) that ensures (∇sL)i = 0. For the other components, we want (∇sL)i ≥ 0
as this warrants si = 0 is a minimizer under the condition si ≥ 0 that we decided to
treat separately. For these, it thus follows from (21) that it has to be Wiisi ≥ µ i−wi.
The requirement is met because they all correspond to the first and third lines in (19),
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µ i−wi ≤ 0, and Wiisi = 0. The stationarity condition is thus met in full for z = y∗,
s = s∗, µ = v∗.

The primal feasibility condition demands the inequalities (5b) and (5c) be ful-
filled. It follows straight from the choice of s∗ that (5b) is fulfilled for z = y∗, s =
s∗. Inequality (5c) is fulfilled for z = y∗ because hard constraints always result in
p̃roxh,W,w (v∗+Cy∗) being calculated according to one of the first two lines in (16),
leading to (Cy∗)i ≤ bi.

Dual feasibility is the condition stating that the components of µ are non-negative,
µ � 0. It follows that v∗i > 0 for all cases of the relation (19) so the condition is met
for µ = v∗.

The complementary slackness condition demands µT · (Cz−b− s) = 0. As both
factors are non-negative, the i-th component of either one has to be 0 for all i. It is
true for z = y∗, s = s∗, µ = v∗.

– For the 1st case in (19), it is v∗i = 0.
– For the 2nd and 3rd case in (19), we know that (Cy∗)i = bi and s∗i = 0 so the

second factor is 0.
– In the 4th case, it is s∗i = (Cy∗)i−bi, so the second factor is 0.

All the KKT conditions are fulfilled for z = y∗, s = s∗, µ = v∗, so the limit of the
iteration scheme is an optimum. ut

Theorem 1 The algorithm (15) converges to the optimum of the QP (5).

Proof Lemma 2 tells us that the limit of the algorithm is an optimum, and lemma 1
tells us that the algorithm converges. ut

6 Dual fast gradient method

The dual FGM solves the QP (4) through the iteration scheme (Giselsson and Boyd,
2014)

ν
k = vk +β

k
(

vk−vk−1
)

yk =−H−1
(

CT
ν

k + c
)

vk+1 = ν
k +Cyk−proxh

(
ν

k +Cyk
)
,

(22)

where the sequence of scalar weights β k is chosen in a way that accelerates conver-
gence. We will show that the modified scheme

ν
k = vk +β

k
(

vk−vk−1
)

(23a)

yk =−H−1
(

CT
ν

k + c
)

(23b)

vk+1 = ν
k +Cyk− p̃roxh,W,w

(
ν

k +Cyk
)
, (23c)

with p̃roxh,W,w
(
vk +Cyk

)
as defined in (16) converges to a solution for the QP (5).
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We name the limits for yk, vk, νk of (23) when k→ ∞ as y ∗
FGM , v ∗

FGM , ν ∗
FGM .

Noting that v ∗
FGM = ν ∗

FGM , equations (23b), (23c) prescribe the same properties to
y ∗

FGM , v ∗
FGM as equations (15a), (15b) do to y∗ v∗. Since y∗ v∗ are optimal, so are

y ∗
FGM , v ∗

FGM .

7 Example

We demonstrate the modified dual FGM on a QP resulting from the AFTI-16 bench-
mark model (Giselsson, 2014a). We examine the simulated control response of the
AFTI-16 system with the proposed method (23) and pay special attention to one sam-
ple operating point that has some non-zero components of s at the optimum.

The model is described by the matrices

A =


0.9993 −3.0083 −0.1131 −1.6081
−0.0000 0.9862 0.0478 0.0000

0.0000 2.0833 1.0089 −0.0000
0.0000 0.0526 0.0498 1.0000



B =


−0.0804 −0.6347
−0.0291 −0.0143
−0.8679 −0.0917
−0.0216 −0.0022


when presented in the form (1). Possible system states and inputs are constrained,1

X xk � ξ + s+k

−X xk � ξ + s−k

U uk � ζ

−U uk � ζ ,

where

X =

[
0 1 0 0
0 0 0 1

]
, U =

[
1 0
0 1

]
, ξ =

[
0.5
100

]
, ζ =

[
25
25

]
.

We label

sk =

[
s+k
s−k

]
.

The cost function is defined as

J =
1
2
(xN−xref)

T Q(xN−xref)+
1
2

N−1

∑
k=0

(
(xk−xref)

T Q(xk−xref)

+(uk−uref)
T R(uk−uref)+ sT

k WQPsk +2w T
QP sk

)
1 The same system state and input components are bound from above and from below, as is often the

case. Some solvers, including QPgen and its version augmented with the quadratic cost on constraint
violation, assume upper and lower bounds on the same signals and substitute the constraints of the QP (5b)
with the form bl − s � C̃x � bu + s and similar for (5c). The QP modified in this way is mathematically
equivalent to (5) and more efficient in resource usage.
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where Q, R, and WQP are symmetric positive semidefinite cost matrices

Q = diag(10−4,102,10−3,102),

R = diag(10−2,10−2),

WQP = diag(103,103,103,103).

(24)

Constant vectors xref, uref are setpoints and the linear cost on the slack variables is

wQP =


1300
1300
1300
1300

 .
The prediction horizon is chosen to be N = 10.

We derive a condensed QP of the form (5) from the MPC problem the same way
as it is done in (Ullmann and Richter, 2012). First we choose the optimization vectors

z =

 u0
...

uN−1

 , s =

 s0
...

sN−1

 .
We define

χ =

x1
...

xN


and express its dependence on x0 and z as

χ = A x0 +Bz

From the dynamics (1), we get the expressions for A and B that are

A =


A
A2

...
AN

 , B =


B

AB B
...

. . . . . .
AN−1B . . . AB B

 .
We define

Q =

Q
. . .

Q

 , R =

R
. . .

R

 , C =



X
. . .

X
−X

. . .
−X
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and express the remaining elements of the QP (5)

H = BTQB+R

c = BTQ

A x0 +

xref
...

xref


+R

uref
...

uref


W =

WQP
. . .

WQP


w =

wQP
...

wQP


Cx = C B

bx =



ξ

...
ξ

−C A x0ξ

...
ξ

+C A x0



Cu =



U
. . .

U
−U

. . .
−U


bu =

ζ

...
ζ

 .
In Fig. 1 we see that the simulated control response of the AFTI-16 system with

the proposed method (23) in 105 iterations closely resembles the response obtained
with the reference approach with slack variables (7) using the MATLAB Optimization
Toolbox function quadprog solver with default parameters. 100 samples are simulated
starting from x0 = x c

0 ; the setpoints in the first 50 samples are xref = x c1
ref , uref =

u c
ref , and in the following 50 samples xref = x c2

ref , uref = u c
ref , respectively. The

numerical values of the parameters are

x c
0 =


0
0
0
0

 , x c1
ref =


0
0
0

10

 , x c2
ref =


0
0
0
0

 , u c
ref =

[
0
0

]
.
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In this and all the other dual FGM calculations, restarting is used. As soon as the
scalar product

(
νk−vk+1

)
·
(
vk+1−vk

)
is positive, the acceleration step (23a) would

oppose the gradient. This is prevented by setting vk+1 = vk instead of following (23c)
in a single iteration cycle.

We inspect a sample point along the simulated state trajectory at

xref =


0
0
0

10

 , x0 =


−13.8575

0.37
19.405

0.485

 , (25)

where a soft constraint is violated. The solution of the QP for this sample point,
obtained with either the proposed algorithm (23) or the reference approach, is

z∗ =



11.2934
25.0000
3.96299
25.0000
−5.51605

25.0000
−0.25038

25.0000
−1.83887

25.0000
−1.17691

25.0000
−1.45277

25.0000
−1.33781

25.0000
−1.38572

25.0000
−1.36575

25.0000



.

The solution obtained after 104 iterations of the algorithm (23) has the value of
the quadratic norm equal to 80.2259. The quadratic norm of the difference between it
and the reference approach solution is equal to 1.52484×10−9. This shows that the
algorithm with the modified proximity operator is giving correct results.

The constraint violation is verified to be strong enough that the quadratic cost on
the constraint violation has an influence. The quadratic norm of the slack vector in
the reference solution is 0.1081. The quadratic norm of the difference between the
solution obtained with the scheme (23) and the one obtained with the same method
but with W = 0 in (5a) is 25.0892. The original hard-constrained QP is feasible at
this system state, and the norm of the difference between our solution and hard-
constrained QP solution is 10.529.
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Fig. 1 Comparison of the control response in AFTI-16 MPC simulation using either MATLAB Optimiza-
tion Toolbox function quadprog (solid black line) or QPgen (dashed green line) to solve the QPs. Two
components of the system state and two components of the system input are shown; it can be seen that
quadprog and QPgen results overlap. The setpoints for the components are 0 except where shown in the
graphs. It can be seen that the signal x2 violates the soft constraint in certain samples. In samples 3, 4, 5
(between 0.1 and 0.25 s from the beginning of the simulation), it violates the upper constraint, while in
samples 53, 54 (between 2.6 and 2.7 s from the beginning), it violates the lower constraint

The performance of the algorithm (23) is compared to solving the augmented
problem with slack variables constructed as in (7) using algorithm (22) and the same
restarting scheme. The solution accuracy after various numbers of iterations is com-
pared with the reference quadprog solution and the results in terms of the quadratic
norm of the relative error are given in Fig. 2. The quadratic norm of the relative error
is obtained by dividing each component of the error vector by the full span between
the maximum and the minimum value, which in our case is 50 for all of the compo-
nents, and calculating the quadratic norm of the vector. We see that the results of the
proposed algorithm (23) are consistently better than the results of the standard FGM
algorithm (22). In addition, the system matrices are of different sizes in the two algo-
rithms, resulting in different computational complexities of a single iteration. For our
benchmark problem, the dimensions of the matrix C are 40 by 20 in the algorithm
(23) and 80 by 60 (though sparsely populated) after augmentation by procedure (7)
for solving with the algorithm (22).

7.1 Practical implications

On a computer running MATLAB R2015a, OS Ubuntu 16.04 LTS with Linux ker-
nel 4.4.0-83-generic, 15.1 GiB of RAM and Intel Core i7-3770K CPU @ 3.50GHz,
the proposed algorithm (23) with 104 iterations takes 24.9 ms on average in QPgen-
generated code for the sample point (25). For comparison, the standard FGM algo-
rithm (22) with slack variables requires 35.1 ms under the same conditions.
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Fig. 2 Relative error norm of the difference between the solution after a certain number of iterations and
the reference quadprog solution in the sample point described in (25)

It is known that for the poorly conditioned AFTI-16 benchmark problem, the
convergence can be improved dramatically by preconditioning (Giselsson, 2014a).2

Performance of the proposed algorithm (23) with the default QPgen preconditioning
method is presented in Fig. 3 together with algorithm (22) with preconditioning. We
investigate the convergence of the preconditioned algorithms in all the 100 sample
points of the simulation, one of which is the sample point (25). We find that 95 iter-
ations of the algorithm (23) with preconditioning are needed to get the relative error
norm less than 10−4 in all points of the simulation. The chosen relative error is small
enough for reasonable control response; when using this QP solver, the system out-
put relative error norm, compared to the full-precision simulation using quadprog,
stays within 1.3×10−6. The performance of the algorithm (22) with preconditioning
is worse; the result after 95 iterations has relative error norm of up to 5.6×10−4.

We also measure the time required by the preconditioned algorithms on the same
computer. Solving the QP and obtaining the control input using 95 iterations of (23)
with preconditioning requires 0.50 ms in the slowest one of the 100 samples. For
the same number of iterations of (22) with preconditioning, 0.55 ms are needed. For
the purpose, the algorithms are superior to the interior point algorithm of quadprog:
when quadprog tolerance is increased enough that the relative error norm of its so-
lution increases to 1.01×10−4 in the sample point (25), it requires 6.0 ms for the
computation. On another similar computer, IBM ILOG CPLEX QP solver required
around 60% of the time needed by quadprog on average, which is still much slower
than the algorithm (23) with preconditioning.

2 The comparison above is made without preconditioning because the results of the two approaches are
no longer directly comparable when preconditioning is used.
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Fig. 3 Maximum relative error norm of the difference between the solution after a certain number of
iterations and the reference quadprog solution over all 100 sample points of the MPC simulation

8 Conclusion

We derive a method for efficient handling of linear and quadratic cost on inequal-
ity constraint violation in a QP. It can be applied to the dual GM and dual FGM
for the condensed form of the MPC-derived quadratic program as used in (Gisels-
son, 2014b). The convergence of the algorithm is proved and Karush-Kuhn-Tucker
conditions are used to prove the optimality of the solution.

The method for efficient handling of soft constraints results both in smaller sys-
tem matrices compared to QP augmented with soft constraints and faster convergence
of the algorithm. Fewer iterations are needed to reach the required accuracy and each
iteration requires fewer arithmetic operations, both leading to faster computation.
This is an important advantage in construction of a MPC controller for a multivari-
able system with fast dynamics. The method can be combined with techniques for
complexity reduction of the MPC problem and for preconditioning of the QP for
faster convergence. It enables use of proven MPC features with fast processes.
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gramming, Birkhäuser, Basel, DOI 10.1007/978-3-0348-0439-4 10, reproduction
of Master Thesis, Department of Mathematics, University of Chicago, Chicago
1939



Soft Inequality Constraints in Gradient Method 17

Kerrigan EC, Maciejowski JM (2000) Soft constraints and exact penalty functions
in model predictive control. In: Proc. UKACC International Conference (Con-
trol), URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.228.1327&rep=rep1&type=pdf

Kouzoupis D (2014) Complexity of First-Order Methods for Fast Embedded Model
Predictive Control (Master Thesis). Eidgenössische Technische Hochschule,
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