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New intermediate asymptotic kinetics for a precipitate cluster

growth in ODS steels: kinetic Monte Carlo studies

G. Zvejnieks∗, A. Anspoks, E.A. Kotomin, V.N. Kuzovkov

Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia

Abstract

We have studied the cluster nucleation and growth kinetics in a simple oxide nano-sized
aggregate formation model in oxide dispersion strengthened (ODS) steels using kinetic
Monte Carlo (KMC) simulations. The KMC simulation results are extended to the expe-
rimentally relevant time range using autoregressive integrated moving average forecasting.
We have simulated three prototypical (weak, medium and strong) interactions and defect
concentration limits that are relevant for oxide nano-sized aggregate formation regimes
and compared modeling with experimental results. In the long-time limit, we have obser-
ved the average defect cluster radius growth, R ∼ t1/p with p = 3, for a weak and (after
a transition interval) for medium attractions predicted by the Lifshitz-Slyozov-Wagner
(LSW) theory. However, the respective cluster growth rates in KMC simulations are
overestimated as compared to the experimental rates. The best agreement with experi-
ment is obtained for the strong interaction case, when nano-cluster growth occurs in a
new intermediate asymptotic time scale regime without actually reaching the long-time
limit predicted by the LSW theory. The strong interaction slows down the cluster growth
rate, leading to a better agreement with experiment. Thus, our homogeneous nucleation
model demonstrates that (i) the average interaction between defects in a real system is in
between medium and strong interactions, and (ii) the oxide nano-clusters grow according
to R ∼ t1/p in an intermediate asymptotic regime, during the typical experimental time
scale, even up to several hundred of hours, with parameter p dependent on the average
defect interaction and temperature.

Keywords: Oxide dispersion strengthened (ODS) steels, Nano-clusters, Coarsening,
Ostwald ripening, kinetic Monte Carlo

1. Introduction

New alloy materials with improved radiation damage resistance at elevated tempera-
tures are required for future fission and fusion reactors [1]. In particular, Fe-Cr based
ferritic steels with ultra high concentration of Y-O (or Y-Ti-O) nano-clusters are pro-
mising candidates for such materials [2]. However, it is a technological challenge to
produce an alloy with an uniform distribution of oxide nano-sized clusters. One of the
possibilities is to perform the mechanical alloying (of steel and yttria) with the following
thermo-mechanical treatment [3, 4]. There is a number of conditions in alloy proces-
sing that affect the final nano-cluster distribution, including: chemical composition of
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the alloyed materials (in particular, the amount of Ti adatoms [5, 6]), temperature and
duration of the annealing stage [7–12].

In recent years there was a growing interest to establish experimentally the oxide
nano-cluster size kinetics. The time dependence of average cluster radius in the form,
R ∼ t1/p, with various power orders (p = 3 – LSW regime, 5 – pipe diffusion or ≈6) was
proposed to interpret the experiments [7–12].

To understand the underlying processes, oxide nano-cluster formation and growth
experimental studies where accompanied by extensive theoretical studies using ab initio,
first principle KMC methods as well as thermodynamic approach, see e.g. [13–16]. KMC
simulations were used to study Y2O3 precipitation kinetics in α-iron as well as the effect
of supersaturation [13]. The effect of vacancies on mobility of Y, Zr, Ti atoms was
also studied from first principles [14]. The dislocation pipe diffusion was proposed as a
dominant mechanism in the semi-empirical thermodynamic and kinetic studies of oxide
precipitation [15].

In this paper, using KMC simulations we study the precipitation process, starting
from defect nano-cluster homogeneous nucleation till the cluster growth via Ostwald
ripening mechanism, with a particular emphasis on the cluster growth kinetics. We use
simplified Y2O3 formation model that allows us to make a direct quantitative comparison
of an average cluster radii, cluster growth rate and cluster density with both available
experimental data and other theoretical predictions. In the KMC simulations, we use
the standard model and the pair algorithm approach [17] that was successfully applied
earlier for studying complex kinetics both in 2D catalytic systems [18–20] and void self-
organization in 3D [21]. In order to forecast aggregate growth kinetic results beyond
the scope of KMC calculation limits, we complement the KMC simulations with the
autoregressive integrated moving average (ARIMA) method [22].

2. Physical basis of the model

Let us summarize the experimental observations. The cluster structures arising in the
ODS steels depend on the initial chemical composition of the material. On one hand,
from the microscopic point of view the structures are determined by the defect types
involved in the cluster formation and their interaction potentials. On the other hand, we
are interested in the formation kinetics of non-equilibrium structures in a system of mobile
and interacting defects. Formally, the kinetics of the microscopic model can be studied
using KMC method. However, there are principal difficulties: The underlying physical
process of defect aggregate formation is the Ostwald ripening. This phenomenon describes
the time evolution of an inhomogeneous structure: small aggregates of defects dissolve
and redeposit onto larger ones. The characterization of this process is of a particular
interest in this study by approaching the long–time limit reflecting the fundamental laws
of kinetics.

The studies of such asymptotics by KMC method is far from trivial. Ostwald ripe-
ning process is characterized by the time power law of R ∼ t1/p type, where R is the
average aggregate radius, t - time and p - the power parameter. Therefore, to obtain
the non-redundant information, the time interval of data sampling should increase ex-
ponentially and simulation time should cover several orders of magnitude. With such
a sampling, the number of large aggregates, that are the primary objects of interest,
is decreasing approximately exponentially in the systems with Ostwald ripening in the
long–time limit, the statistics is respectively worsening. For example, in order to extend
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the simulations with a few large clusters left for approximately three (exponential) steps,
one needs to increase twice the lattice size. As the result, the computer time required for
simulations increases 23 times. One can propose naively to extrapolate to the long–time
limit of KMC simulations using LSW theory [23, 24]. This approach, however, has some
shortcomings. On one hand, the LSW theory operates with two competitive concepts of
diffusion and reaction. Defect interactions are incorporated in the theory indirectly by
using macroscopic surface tension and reaction rate. (In general a surface tension might
depend on the size of the clusters and position of parameters in the phase diagram [25]).
Then, the theory predicts different Ostwald ripening behavior in the long–time limit for
either diffusion, R ∼ t1/3, or reaction limited, R ∼ t1/2, cases, respectively. It is predicted
that the proportionality coefficients depend on solubility concentration and thus the rates
are independent of total defect concentration in the system.

On the other hand, the KMC simulations are based on the microscopic model with a
given defect interaction, concentration and temperature. The surface tension originates
from attractive defect interactions that lead to formation of clusters and is not intro-
duced directly in the model. Moreover, no assumption is made regarding the slowest
process and the KMC simulations allow to study the defect concentration effects. The
topmost advantage is that KMC allows us to explore the whole process of defect aggre-
gate formation, starting from nucleation till Ostwald ripening regime, and determine the
intermediate asymptotic kinetics that might arise before reaching the LSW long–time
limit. In such the case, the asymptotics corresponds to the auto-model solution between
two limiting parameter values (for certainty – two times tmin and tmax). In other words,
when observation time, t, is larger than tmin but shorter than tmax, the characteristic
distributions are obtained using similarity transform. Correspondingly, the kinetics of
the process is characterized by fundamental time power laws [26, 27].

Importance of the intermediate asymptotic is due to the following specific features
of the ODS steel experiments: a few nanometer large aggregates typically grow during
a few hours (or a few hundred of hours in dedicated kinetics studies) and at the same
time, the aggregates grow with time follows a power order, t1/5 or t1/6.28 [11] that was
interpreted as the result of pipe diffusion. However, as shown in this paper, similar power
orders could arise also as an intermediate asymptotic before reaching the LSW regime.
These results hold for a simple 3D model with defect diffusion and interaction, without
any other (e.g., pipe) diffusion mechanism.

In the KMC simulations of intermediate asymptotics, developement of the detailed
microscopic model could cause substantial difficulties. Such a model requires knowledge
of all the elementary microscopic processes including all types of relevant defects, their
interactions and mobility parameters and is actively developed during last years, see [13–
16].

On the one hand, such an approach with interactions estimated from the first-principle
calculations [28, 29] when used in KMC simulations [20] might lead within the uncertainty
of parameters to a wide variety of system behaviors. On the other, precise interaction
energies between defects determine mainly the short-range order or defects within the
aggregates rather than the asymptotic time dependence of average aggregate radius.
Therefore, in this paper, we simplify the process of detailed Y2O3 aggregate formation
in ODS steels and study the fundamental aggregate growth laws, depending on defect
interaction, temperature and concentration. Our model is complementary to traditio-
nal studies of detailed microscopical treatments but is focused on the cluster formation
kinetics.
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3. Model

The detailed models that take into account different types of defects (Y, Ti, O and
Fe vacancies), their microscopic interactions and diffusion where used in previous KMC
simulations [13, 30–32]. In this paper we focus on the intermediate– and long–time
kinetics of the aggregate growth.

Our simplified model is based on the following assumptions. (i) Inter-defects inte-
raction energies affect mainly the short-range order in clusters. However, we are interested
in the kinetics of aggregate growth that is governed by the defect transport. Therefore,
in the present study we consider the yttria nano-clusters as an object without the inner
structure, that is formed by the effective defects which are indistinguishable and can be
characterized by an effective interaction. Formally, we treat Y, O atoms and Fe vacancy
each as a single defect A with all interactions reduced to the average NN interactions
with energy ε.

Let us estimate the concentration of effective defects A that are required to create an
Y2O3 bixbyite structure (lattice constant 1.06 nm [33] and atomic weight AY2O3 = 226 u)
within the α-iron lattice (lattice constant a0=0.286 nm [34] and AFe = 56 u). Formally,
this step requires additional Fe vacancies [35], to be built-in nano-cluster, that finally
leads to Y2O3VacFe3 complex (unit) that occupies 8 Fe body-centered cubic (bcc) lattice
sites in α-iron.

A typical Y2O3 concentration in ODS steels is 0.3 wt % that could be transformed to
Y2O3 unit concentration per site (occupancy) according to

cY2O3 =
0.3wt%/AY2O3

0.3wt%/AY2O3 + 99.7wt%/AFe
. (1)

In our KMC we assume that A defect concentration cA = 8 cY2O3 since Y2O3 occupies
8 sites in the bcc lattice. For a typical experimental Y2O3 concentrations of 0.3 wt %
mentioned above this corresponds to occupied site concentration cA = 0.006. Additional
impurity atoms have negligible effect on site concentration. (For example, when 0.1Ti is
added to the system, the concentration per site might increase till cA ∼ 0.007 if Ti doesn’t
build into Y2O3 structure and each Ti atom requires additional bcc Fe site. Contrary,
if Ti builds into the Y2O3 structure, the concentration per site remains unchanged.)
For a completeness of definition, let us introduce also a monomer concentration, c′0, by
excluding the volume of all clusters (where number of defects ≥ 2).

(ii) The model is complemented by the kinetic part. The aggregation kinetics is
governed by both – defect interactions and the transport of defects to and from the
aggregates. Various defects have distinct mobilities and they affect aggregation kinetics
in different ways. For example, it is known that Y defect diffusion is the slowest while
mobilities of Fe vacancies, Ti and O are much faster. Thus Y defect transport and two Y
defect en-counting is a limiting step for Y2O3 cluster nucleation and growth in the α-iron
matrix. Contrary, Fe vacancies, Ti or O defects are incorporated into nano-clusters much
faster due to their higher mobility, that in turn has no effect on nano-cluster growth
kinetics. Therefore, we set the effective defect A diffusion equal to that of Y atoms.

Defect A jumps to the NN empty lattice site are characterized by the diffusion coef-
ficient

D = D0 exp[−Eact/(kBT )] = l2ν/z = l2ν0/z exp[−Eact/(kBT )] , (2)

where l is jump length, z number of NN and ν0 attempt frequency. In the bcc lattice
with eight nearest neighboring sites (z = 8) the jump length is l =

√
3a0/2, where a0 is

the α-iron lattice constant.
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D0 [m2/s] Eact [eV] ν0 [s−1]c ν(1100◦C) [s−1]

10−5 3.10a 1015 4×103

8.0×10−7 2.26b 1014 5×105

Table 1: Experimentala [13, 36] and calculatedb [14] mobility parameters for Y defects in α-iron.
cEstimates of attempt frequencies are obtained from Eq. (2) using D0 and Eact.

Experimental and theoretical Y defect diffusion coefficient estimates (and the hopping
rate) in α-iron matrix, Table 1, differ by two orders of magnitude at the experimentally
relevant temperature 1100 ◦C of oxide nano-cluster formation regime. In KMC simulati-
ons the hopping rate only rescales time, see the simulation algorithm below, thus in this
paper for certainty we use the hopping rate estimate by Alinger and Hin [13, 36].

In computer simulations, we consider bcc lattice of size L×L×L = V (where L is
lattice side length which varies from L = 80 till 240a0) with N = 2V/a3

0 sites and
periodic boundary conditions. Defects A are distributed randomly within the lattice at
the beginning of simulations. Defects are mobile and can hop to the nearest free site.
This step is implemented in KMC simulations using the pair algorithm and the standard
model dynamics [17]. The pair algorithm contains the following steps:

• A NN pair is randomly selected from all possible pairs in the bcc lattice.

• If the pair contains a single vacancy and A defect (OA or AO), the hoping step
(exchange of positions AO or OA, respectively) is performed, if a random number
(RN) normalized to unity is less that step rate, ναβ,

ναβ =
2ν

1 + exp (−(nα − nβ)ε/(kBT ))
, (3)

where α and β are the first and second site of the pair. The jump rate of a single
free defect, ν, from Eq. (2) is modified in Eq. (3) to take into account the interaction
between defects. The standard model dynamics [17] allows us to introduce the step
rate symmetrically (irrespective of the direction of the jump, e.g, OA
AO) unlike
to, e.g., the Metropolis dynamics [37]. The negative interaction energy used for a
pair of defects in NN positions, ε, corresponds to their mutual attraction; nα and
nβ are the numbers of occupied NN positions in the initial and final configurations,
respectively. Here it is convinient to introduce a dimensionless interaction energy
ε = ε/(kBT ).

• Time is updated by a fixed increment

∆t =
1

Nν
(4)

and the algorithm returns to the first step, until the final simulation time is rea-
ched. In the KMC simulations, we use dimensionless time τ = tν and return to
dimensional time, t, only when we make a comparison with experimental results.

The long-time behavior (LSW-type power laws) are examined in KMC at the temperature
1100 ◦C for three particle concentrations, cA (0.2, 0.1, and 0.005), and three interaction
energies, ε: weak (−0.1), medium (−0.3), and strong (−0.5 eV) that correspond to the
dimensionless interactions ε = −0.85, −2.54, and −4.23, respectively. In order to increase
the accuracy of KMC simulations, we repeat and average results of 10 calculations, unless
specified otherwise.
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4. KMC simulation analysis

4.1. Phase diagram

In order to analyze the spatial defect structures, we define a defect cluster as a con-
nected (in nearest neighbor (NN) sense) group of A defects in the bcc lattice. Cluster
formation strongly depends on both, A defect concentration, cA, and dimensionless in-
teraction energy, ε, as shown in the solubility-supersolubility diagram, Fig. 1. Similarly
to Ref. [38], we find here three zones: (i) the stable (unsaturated) zone where sponta-
neous nucleation and cluster growth is impossible; (ii) The metastable (supersaturated)
zone, where spontaneous nucleation is improbable, but a cluster seed placed in the me-
tastable zone would experience growth; (iii) The unstable (supersaturated) zone, where
spontaneous nucleation is probable, but not inevitable.

0.5 1 2 3 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(i)

(ii)

(iii)

(a)

(b)

(c) (d)

Figure 1: Solubility–supersolubility phase diagram (a). Three zones could be distinguished: (i) the stable,
(ii) the metastable and (iii) the unstable. KMC simulations demonstrate defect aggregation (full circles),
single large cluster growth (open circles), and no cluster growth regimes (down triangles), respectively.
Solubility estimates from KMC, cGT

∞ , are given by squares. A solubility, cA∞(ε), and two supersolubility,
cnuc(ε), fit to the Arrhenius equations are shown by solid and dashed/dotted lines, respectively. Snapshots
of average cluster size, rn, Eq. (7), for (b) weak (ε = −0.85) r105866 = 6.7 nm, (c) medium (ε = −2.54)
r1801 = 1.7 nm and (d) strong (ε = −4.23) r123 = 0.7 nm interactions at time τ = 3.3×106 and defect
concentration cA=0.1. Each data point is obtained from a single KMC calculation.

The solubility concentration, c∞(ε), that separate the stable-(i) and the metastable-(ii)
zone can be found from KMC simulations that lead to an equilibrium configuration with
a single spherical cluster with a radius, r, surrounded by single defects (flow of defects to
and from the cluster are equal). KMC simulations that give such a configuration, might
bypass the Ostwald ripening stage when just a single nucleus (and thus a single cluster) is
created in the lattice often after a prolonged incubation period, see empty circles in Fig. 1.
The solubility concentration, cGT∞ (ε), can be estimated using the equilibrium monomer
concentration, c′0(τ → ∞), at a single spherical cluster by excluding the volume of the
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cluster and the well-known Gibbs–Thomson relation [39]

c′0(τ →∞) = cGT∞ (ε) exp

(
lc
r

)
, where (5a)

lc =
2γv1

kBT
, (5b)

γ =
(zs − zb)ε

2s1

, (5c)

cA∞(ε) = c0
∞ exp(−k∞|ε|) , (5d)

where lc is the capillarity length and v1 volume of a single defect. The specific interfacial
energy, γ, using a simplified bond-counting model could be estimated from Eq. (5c),
where s1 is a single-defect exposed surface area, zs and zb are numbers of occupied bonds
for a defect at the surface and in the bulk of the cluster, respectively. For compact
clusters formed by {110}–facets (Fig. 1c,d) the number of bonds can be estimated as
zs = 6 and zb = 8, respectively, that, in turn, leads to a surface area, s1 = πr2

1. The
solubility cGT∞ (ε) estimates obtained using Eqs. (5a–5c) are shown by square symbols in
Fig. 1. On the other hand, the solubility concentration, c∞(ε), can be estimated in the
Arrhenius form Eq. (5d) [40], where c0

∞ = 1.0 and k∞ = 4.0, see solid line in Fig. 1.
(The c0

∞ coincides with the bulk concentration in the T → ∞ limit, while k∞ = 4.0
corresponds to half of the bcc lattice coordination number [40].) Both estimates agrees
well, c∞(ε) ≡ cGT∞ (ε) = cA∞(ε), indicating that Eqs. (5) are self-consistent, except for weak
interactions, |ε| < 1. In the latter case the defect cluster is loose, see Fig. 1b, and the
simple interfacial energy estimates Eq. (5c) are no longer applicable, since for diffuse
clusters there exist no simple estimate of the occupied surface bound number, zs, and
exposed defect surface, s1.

Determination of metastable-(ii) and the unstable-(iii) zone separation (the superso-
lubility curve) is more challenging, since its position, among other things, is affected by
the history of the sample [38]. In KMC simulations we find that weak attraction and
small concentration strongly suppress cluster nucleation and thus hinder the reaching of
the critical cluster size, see down-triangles in Fig. 1. Moreover, there is a region in the
unstable zone where just a single defect cluster is formed in the lattice after a certain
incubation time, see open circles in Fig. 1. The incubation time increases either by ap-
proaching the supersolubility curve in the phase diagram and/or by decreasing the lattice
size. The supersolubility curve, cnuc(ε), can be estimated in the Arrhenius form

cnuc(ε) = c0
nuc exp(−knuc|ε|) , (6)

however, with some uncertainty. Here we define that there is no spontaneous nucleation
in a KMC simulation run, when for a 3D lattice of size, L = 120a0, nothing happens
during τ = 4×106 (16 min at 1100 ◦C). It should be noted, that larger lattice sizes or
longer waiting times can still initiate nucleation. Then for the supersolubility approxi-
mation Eq. (6) there are two extremes: (i) a more conservative approach – when cnuc(ε)
is proportional to c∞(ε) with c0

nuc = 2.5 and knuc = 4.0 (dashed line in Fig. 1), (ii)
less conservative approach, that is based on our definition of absent-nucleation in KMC
simulations, then leads to the parameters c0

nuc = 1.5 and knuc = 3.5 (dotted line in Fig. 1).
Defect nucleation and growth takes place in the KMC simulations when the starting

random distribution of A defects exceeds the supersolubility curve, cA ≈ c′0(τ = 0) >
cnuc(ε), for a given interaction energy, ε, and temperature, T , see phase diagram (full
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Figure 2: Cluster density analysis in the limit of weak attraction, ε = −0.85: (a) PDF, (b) average
cluster radius dependence on nmin (nmin independent average cluster radius, R(τ), marked as dotted
gray lines), and (c) accuracy of average cluster radius estimates. R(τ) accuracy estimate marked by
down triangles in (c) and plotted as a horyzontal lines in (b). Data are obtained from a single KMC
simulation with parameters: L = 240a0, cA = 0.1, ε = −0.1 eV, T = 1100 ◦C.

circles) in Fig. 1. It should be noted that the largest concentration that could be randomly
distributed in the bcc lattice without formation of percolating cluster, cA . 0.18 (the
bond percolation threshold [41]). For subpercolation concentrations two scenarios are
possible with the advance of time – nucleation still continues if the remaining monomer
concentration (taking into account the cluster excluded volume) is sufficient, c′0(τ) >
cnuc(ε). However, if the monomer concentration decreases below the supersolubility limit,
c′0(τ) < cnuc(ε), the nucleation is suppressed. In the latter regime, the existing clusters
could grow on the expense of either other clusters (Ostwald ripening) or, in a case of a
single cluster, on other monomers if c′0(τ) > c′0(τ →∞).

4.2. Defect distribution function

Let us now quantitatively analyze the cluster growth in the unstable-(iii) zone. By
performing the cluster analysis we find sizes, n, of each cluster in the lattice at time, τ .
Due to two atoms in the bcc unit cell, we can estimate the cluster volume as vn = n a3

0/2.
Then assuming that a cluster of n defects has a spherical shape, the corresponding cluster
radius could be found as

rn =

(
3n

8π

)1/3

a0 . (7)

The number of clusters is examined using the defect distribution function, f(r, τ),
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(PDF) [24]. The PDF is a discrete function due to an integer number of defects in a
cluster, n, see Eq. (7):

f(r, τ) = {f(r1, τ), f(r2, τ), . . . , f(rnmax , τ)} , where (8a)

f(rn, τ) =
1

V
lim

∆rn→0

M (rn, rn + ∆rn, τ)

∆rn
, (8b)

and M (rn, rn + ∆rn, τ) is the number of clusters in volume, V , having radii, r, between
rn and rn + ∆rn at time τ . For the PDF calculation the bin sizes ∆rn in Eq. (8b)
on the one hand should be as small as possible, while on the other hand they should
contain a sufficiently large number of clusters, to reduce the statistical error. In our
PDF estimate, each individual bin size is increased adaptively, till it contains at least two
clusters, M ≥ 2, that ensures the PDF continuity and smoothness, Fig. 2a, especially for
large radius values.

The average cluster size can be defined as the first momentum, using Eqs. (7,8b)

rnmin
(τ) =

∫
rf(r, τ)dr∫
f(r, τ)dr

=

(
3

8π

)1/3

a0

nmax∑
n=nmin

n1/3M (rn, τ)

nmax∑
n=nmin

M (rn, τ)

, (9)

where the last term here is independent on the bin size ∆r. Radius at nmax should
account for the largest cluster in the lattice, but selection of nmin is a non-trivial task [25]
and will be discussed below. The classical rate theories that estimate time dependence
of average cluster radius neglect the cluster nucleation and coalescence [42]. However,
nucleation is intrinsic process in KMC simulations that is observed in PDF as a number
of small-radii clusters, see, Fig. 2a, when scaled monomer concentration, c′0, exceeds the
supersolubility concentration, cnuc(ε), in Fig. 1. The shape of PDF remains qualitatively
the same, untill τ = 3×103, when only PDF width increases with time, indicating that
the average cluster radius increases. However, after this incubation time, the shape of
PDF qualitatively changes, from τ = 2.2×104 in Fig. 2a, when the group of large clusters
emerges and is observed as a second maximum in the PDF. These clusters grow further
according to the Ostwald ripening rules and will be in the focus of our further analysis.
The contribution of small clusters in the PDF thus should be ignored. We achieve this
goal by neglecting the cluster sizes smaller that nmin.

In order to set the nmin, let us first determine the rnmin
(τ) dependence on rnmin

. The
average cluster radius increases as clusters with sizes smaller than nmin are excluded
from averaging in Eq. (9), Fig. 2b. Finally, the plateau regions (if present) in rnmin

(τ)
figure correlate with the minima of PDF function, Fig. 2a, and can be used as the nmin
independent average cluster radius estimates by excluding the nucleation contribution

R(τ) = lim
nmin

rnmin
(τ) ≈ const . (10)

When no such plateau region exists, e.g., during the incubation time, we assume that no
characteristic cluster size exists in the system. The accuracy of the average cluster radius
for each rnmin

can be estimated using the standard deviation, S, and Student’s two–sided
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Figure 3: PDF for attractive: (a) medium, ε = −2.54, and (b) strong, ε = −4.23, interactions. Long
living stable clusters of magic numbers n = 15 and 22 corresponding to the maxima of PSD functions at
r15 = 0.35 and r22 = 0.39 nm at τ = 1.6×105 and 3.3×106, respectively are shown in insets of (b). Data
are obtained as average over 10 independent KMC simulation with parameters: L = 80a0, cA = 0.1,
ε = −0.3 (a) and −0.5 eV (b), T = 1100 ◦C.

t-distribution [43],

S =

√√√√ 1

nmax − nmin

nmax∑
n=nmin

(rn(τ)− rnmin
(τ))2 , (11a)

∆rnmin
(τ) =

S√
nmax − nmin + 1

t1−α/2,nmax−nmin
(11b)

with significance level α = 0.05 and nmax − nmin degrees of freedom, Fig. 2c. From here
the accuracy of the nmin independent average cluster radius, R(τ), can be estimated using
the corresponding rnmin

(down-triangles and horizontal lines in Fig. 2c-b, respectively).
The shape of PDF function changes qualitatively for a medium, ε = −2.54, and

strong, ε = −4.23, interactions, Fig. 3, comparing to the weak one. Namely, with an
increase of time, the number of small clusters decreases in PDF, indicating that defects
for the medium and strong interactions tend to be bound to clusters rather than remain
as monomers. The peculiar PDF behavior is observed in the limit of a strong attraction
and times larger than τ = 1.6×105. Despite the repeating calculations, ten times with
the following averaging, the PDF function contains several long-living maxima for certain
r values, e.g., r15 = 0.35 and r22 = 0.39 nm, Fig. 3b. These radii correspond to the stable
clusters formed by magic defect cluster numbers n = 15 and n = 22, respectively. These
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Figure 4: Average cluster radius (a) and LSW power law (b-d) asymptotic behavior. KMC simulations
and the corresponding ARIMA(0,2,0) model forecasts are given with and without the solid lines, re-
spectively. Defect concentration and dimensionless interactions are given as pairs (cA, ε = ε/(kBT )). All
data are obtained as average over 10 independent KMC simulations except (0.1,-0.85) case where a single
calculation is performed. We use L = 80a0 for (0.1,-4.23) and (0.1,-2.54); L = 140a0 for (0.005,-4.23)
and (0.005,-2.54); L = 180a0 for (0.2,-0.85) and L = 240a0 for (0.1,-0.85).

clusters are formed by the {110}–facets where each surface defect has six NN (and four
NN at edges), that require more time to be disassembled, see insets in Fig. 3b.

4.3. Power laws

Let us now analyse quantitatively the cluster growth kinetic. Earlier different kinetic
laws, R(τ) ∼ t1/p, have been proposed for different limiting cases: viscous flow (p = 1),
interfacial control (p = 2), volume diffusion (p = 3), interfacial diffusion (p = 4), and pipe
diffusion (p = 5) [44], respectively. Our KMC simulations correspond to the volume (3D,
p = 3) diffusion case and thus the long-time behavior of the Ostwald ripening process is
predicted by three power laws of the LSW theory

R(τ) ∝ k1τ
1/3 = k′1t

1/3 , (12a)

c′0(τ)− c∞(ε) ∝ k2τ
−1/3 = k′2t

−1/3 , (12b)

ρcl(τ) ∝ k3τ
−1 = k′3t

−1 , (12c)

for average cluster radius, degree of supersaturation and cluster density [23, 39, 42], re-
spectively. Equations (12) are valid for R(τ) � Rc0, where the initial critical radius
for coalescence corresponding to the starting supersaturation is Rc0 = lcc∞(ε)/(c′0(0) −
c∞(ε)) [23]. This condition is fulfiled in our simulations and we neglect the Rc0 contribu-
tion in Eq. (12).

The increase of average cluster radius, R(τ), with time in KMC simulations demon-
strates strong dependence on defect interaction energy, ε, Fig. 4a. The errors of the
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KMC estimates are of the order of figure symbols and therefore not shown on the plot.
A weak attraction leads to a faster growth of clusters than a strong one, due to shorter
time needed for defects to detach from existing clusters, leading to a faster disappearance
of small clusters and growth of the large ones. Contrary, a strong attraction increases
time needed for defect detachment and thus slows down the large cluster growth at the
expense of the small ones.

The KMC simulations show that cluster growth kinetics approaches the LSW long-
time limit faster (τ > 106) for weak interaction while for medium and strong interactions
the long-time limit lies beyond our simulation times and could be estimated only from
below using forecasting results τ > 108 and > 1010, respectively, Fig. 4b–d. By comparing
the average cluster radius, rate of cluster growth and cluster concentration, Fig. 4a,b,d,
one can conclude that the weak interaction leads to a small number of fast growing large
clusters (Fig. 1b), while medium and strong interactions produce larger number of slower
growing smaller clusters (Fig. 1c,d).

Defect concentration, cA, plays a principal role in kinetics along with dimensionless
interaction, ε, that determines the conditions for a cluster formation, Fig. 1. Thus, for
a weak attraction and small concentration, cA = 0.005, the cluster formation is absent.
When cluster formation is possible, the defect concentration most strongly affects the
cluster density in simulations, cA ∝ ρcl, Fig. 4d, while the average cluster radius and the
radius growth rate are only slightly affected, Fig. 4a,b. The degree of supersaturation,
Fig. 4c, for medium and strong interactions demonstrate the tendency towards saturation.
It also implies that in the long-time limit the disparities arising for different concentrations
disappear and monomer concentration (taking into account the cluster excluded volume),
c′0, tends to the solubility concentration, c∞(ε), according to the LSW theory predictions.
Unfortunately, the degree of supersaturation for a weak attraction remains undetermined
(leading to unphysical result c′0 < c∞(ε)) due to simplified bond counting model used
in the interfacial energy, γ, estimate Eq. (5c), that is not applicable for loose clusters,
Fig 1b.

Since the KMC simulations are limited by our computing capabilities, we performed
the power law forecasting untill times τ = 109, see symbols without line in Fig. 4a,b,d.
The autoregressive moving average model has been applied earlier for analysis and simu-
lation of time series containing noise, that arise, e.g., in tokamak experiments [45, 46].
In this paper, we use autoregressive integrated moving average ARIMA(p,d,q) model [22]
that is well suited for nonstationary series. We found that the ARIMA(0,2,0) is the
simplest parameter-free model that describe the KMC data,

yθ = 2yθ−1 − yθ−2 + ζθ, (13)

where y and θ are the corresponding KMC simulation data in the logarithmic form
and logarithmic time step index, respectively, and ζθ is the noise term at step θ. The
forecasting, ŷθ+h, for h steps ahead can be done using Eq. (13), see Fig. 4, with the
following accuracy estimate [22]

∆ŷθ+h = uα/2

(
1 +

h−1∑
k=1

k2

)1/2

sζ , (14)

where sζ is the standard deviation of the white noise process ζθ and uα/2 is the deviate
exceeded by a proportion α/2 of the unit normal distribution.
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Figure 5: Average cluster radius scaling with different dimensionless time powers: (a) p = 5 (pipe
diffusion) and (b) p = 7.6 (obtained from KMC results as an intermediate kinetics exponent for a strong
interaction). The symbols in curves are the same as in Fig. 4.

Finally, we note that determination of the kinetics order p from the experimental
data may be hindered by the transition (intermediate) type kinetics to the long-time
limit. This is especially crucial in the limit of medium and strong interactions, when
the intermediate kinetics may be observed at least untill times τ = 108 and τ = 1010,
respectively. When such data are scaled to the pipe diffusion order p = 5, they could
demonstrate plateau-like behavior, Fig. 5a. Similarly to Eq. (12a), we can define

R(τ) ∝ k′′1t
1/5 , (15)

and estimate the corresponding cluster growth rate, k′′1 , that are given below in Table 2.
For a strong interaction, we estimate the intermediate kinetics order p = 7.6 from

KMC data and rescale the data in Fig. 5b to obtain the horizontal plateau for a strong
interaction as expected. When comparing the intermediate kinetics regime (before rea-
ching the LSW long-time limit with p = 3) for medium (p = 5 and τ ∼ 106) and strong
(p = 7.6 and τ ∼ 108) interactions the ratio

R(τ)

τ 1/p
≈ 0.1[nm] , (16)

is approximately constant and independent on the order p, defect interaction or concen-
tration. Thus, the R(τ) growth kinetics (order p) during the intermediate stage depends
on the defect interaction – a stronger interaction leads to both larger exponent p and
longer intermediate stage region.
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5. A comparison of computer simulation results with LSW theory and expe-
riments

Let us relate the dimensionless time τ to the typical physical (real) time of ODS
steel processing, ranging from a few till several hundred of hours, Table 2. We find
that τ = 107 and τ = 1.3×109 (where for conversion we have used Y defect jump rate
ν = 4×103 s−1 at temperature 1100 ◦C, see Table 1), lead to the estimates of 40 min and
90 h, respectively. The time of the order of 40 min is reached in KMC simulations, while
90 h limit is forecasted using ARIMA.

ARIMA forecasting allows us to estimate the system parameters on the order of several
hundred hours, however the accuracy of the estimates are quickly reducing, Eq. (14). We
can still observe that the medium attraction (ε = −2.54) leads to the saturation behavior
(long-time limit) for τ > 108, whereas the strong interaction (ε = −4.23) is unsaturated
until τ < 109.

The ARIMA forecast demonstrates that in the long-time limit the reaction rate, k′1
approaches the LSW theory for medium and strong interactions, Table 2.

The characteristic data of a cluster formation and growth (average cluster radius, clus-
ter density and cluster growth rate) from the KMC simulation at experimentally relevant
time and temperature limits from Fig. 4 are collected in Table 2. These characteristics
can also be estimated from Eq. (12) in a long-time limit using coefficients predicted by
the LSW theory [23]

(k′1)
3

= k3
1ν =

4

9
Dlcc∞(ε) , (17a)

(k′2)
3/2

= k
3/2
2 ν−1/2 =

3lcc∞(ε)

2
√
D

, (17b)

k′3 = k3ν
−1 = (2Dlcc∞(ε))−1 . (17c)

The average radius, R(τ), and growth rate, k′1, predicted by the LSW theory agree well
with the KMC data for a weak attraction (ε = −0.85) (except the cluster density that
is overestimated by two orders of magnitude), since simulations at times τ = 106 have
reached a long-time limit, Table 2. For medium and strong interactions the long-time
limit is still unreached at τ = 107, see Fig. 4a,b,d, that leads to an increasing disagreement
between KMC simulation and predictions of the LSW theory, respectively. At the same
time, the LSW theory supersaturation estimates, k2 = 7.4×10−3 and 1.2×10−4, agree
well with the simulation data for medium and strong attractions, respectively, Fig. 4c.

The typical Y–O nano-clusters observed experimentally in ODS alloys have radii are a
few nm and density of clusters around 1021−1023 m−3, see Table 2. The recipes of sample
preparations vary greatly. Alloys are obtained during a few hour processing, when the
highest temperature achieved in the preparation stage is 1150 ◦C or 1050 ◦C, depending
on the system, [5, 7]. The duration of HIPing stage is 4h [7]. Therefore, for a comparison
with experimental values we scaled our KMC simulation results for temperature 1100
◦C. Then, we can relate the dimensionless simulation time τ = 3×106 − 107 to the
experimentally relevant time interval, of an order of an hour (t = 13− 40 min).

There were also dedicated experiments [7, 9, 11, 12, 36] exceeding by several orders the
typical annealing times of ≈ 2 h, performed at different temperatures, see Table 2. They
were aimed at a study of cluster growth kinetics. It was shown that higher temperatures
lead to larger clusters with smaller cluster density at increasing reaction rates.
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Our KMC simulation results (radius 1.5 nm, density 7×1023 m−3, rate 0.25 nm/h1/3)
at strong interaction (−4.23) and small defect concentration (0.005) with ARIMA fore-
casting to 90 h at T = 1100 C agree quantitatively well with experimental values (radius
2.8 nm, density 5.8×1022 m−3, rate 0.53 nm/h1/3) at T = 1150 C. One should note here
that experimental temperature is by 50 C higher and annealing time is five times lon-
ger, 480 h that correspondingly increase the average cluster radius and decrease cluster
density of the KMC simulations.

We have simulated concentration range in the KMC simulations from cA = 0.005
up to 0.2, with maximum vs minimum ratio 40. Such system characteristics as cluster
radius and growth rate are independent on concentration, Table 2. We observe that only
the cluster density is highly sensitive to concentration, and then the KMC concentration
cA = 0.005, see Chapter 3, can be used for a comparison of results with experiments.

There is a general trend in experimental results that with a decrease of cluster average
radii the cluster density increases, see Table 2 and earlier KMC simulations [13]. In our
simulations decrease of cluster radius and increase of cluster density corresponds to an
increase of attraction energies (or decrease of temperature). Alternatively, change of
alloy composition by defects (e.g. Ti, Cr, and W) correspondingly affect the average
interaction energy and thus corresponds to different KMC simulations with different
average interactions.

In order to estimate the cluster growth rate in the Fe–14Cr–2W–0.1Ti–0.5%Fe2Y and
Fe–14Cr–2W–0.3Ti–0.3Y2O3 alloys annealing were performed up to 100 h at 1200 ◦C [7],
see Table 2. It is found that the both growth rates are time independent (k′1 = 0.22 and
0.19 nm/h1/3, respectively) and higher Ti concentration leads to smaller aggregate radius
and larger density. Our interpretation, that the average defect interaction is increased
with the higher Ti concentration (e.g., by comparing ARIMA forecasts for average (ε =
−2.54) and strong (−4.23) interactions in Table 2), allows to understand qualitatively
these results.

The KMC simulations indicate that the cluster growth rate approaches the experi-
mental value with an increase of attraction energy, ε, see Table 2: Stronger attraction
decreases the cluster radius and increase the cluster density. The more so, the KMC
results imply that for strong interactions the long-time limit is unreached and the system
demonstrates the intermediate-kinetics with the specific power order p = 7.6 for a strong
interaction (ε = −4.23), Fig. 5.

6. Conclusions

We performed the KMC simulations, to model the yttrium oxide nano-cluster forma-
tion and growth in ODS steels. We have reduced the detailed microscopic oxide formation
model to a single defect representing 3 types of defects: yttrium, oxygen atoms, Fe vacan-
cies, that experience an attractive pairwise interaction. At the beginning of simulations
defects are distributed homogeneously over the whole volume and are allowed to move
with the jump rate of yttrium defects, known to be the slowest rate determining step.

Within this model, we have established the solubility–supersolubility phase diagram
that (in the defect concentration and attraction energy (temperature) space) separates
the unstable zone of a cluster formation from a stable region, where cluster formation is
suppressed. Three prototypical defect attraction energies – weak, medium and strong –
lead to formation of loose or compact {110}–faceted shape nano-clusters depending on
interaction strength.
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The methodology is developed for a defect distribution function analysis, that allows
to separate the clusters with the Ostwald ripening from contribution of small unstable
clusters. It is of a particular importance for weak attraction (high temperature) case: this
allows us to follow quantitatively the nano-cluster formation process relevant for ODS
steel production. In particular, cluster growth characteristics (cluster radius, growth
rate, degree of solubility and density) obtained from KMC well agree with the Lifshitz-
Slyozov-Wagner (LSW) theory predictions. The results for the weak attraction reach
the LSW predicted long-time behavior during the typical for ODS steel production time
of the order of an hour. However, such a weak interaction results differ strongly from
the experiments suggesting that the average interaction between defects in real materials
exceeds 0.1 eV.

Our KMC simulation model based on homogeneous nucleation is the simplest assump-
tion that mimics nano-cluster formation in ODS steels. Despite its simplicity, it could
provide quantitative estimates and experiment interpretation. KMC simulations demon-
strate that for both medium and strong attractions the long-time limit is still unreached
in a few hours (a typical ODS steel processing time). Instead, the system demonstrates
new intermediate kinetics that is characterized by different orders p depending on inte-
raction energy, for R ∼ t1/p. Thus, for a strong attraction (0.5 eV) that quantitatively
resemble the experimental results, we find that p = 7.6. The present simple model could
be useful for a wide class of systems regarded as many-particle ensembles ranging from
numerous physical applications to biological systems [47].
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R(τ) ρcl(τ) k′1 k′′1 Annealing
[nm] [m−3] [nm/h1/3] [nm/h1/5] conditions

KMC simulation results:
cA ε τ

0.100 −0.85 3×106 6 5×1022 9.7 8.1 1100C, 13min

0.100 −2.54 107 2.0
2×1024

2.4 2.2 1100C, 40min
0.005 2×1023

0.100 −4.23 107 0.7
4×1025

0.9 0.8 1100C, 40min
0.005 4×1024

ARIMA(0,2,0) forecasts:

0.100 −2.54 1.3×109 7.0
6×1022

1.5 2.7 1100C, 90h
0.005 5×1021

0.100 −4.23 1.3×109 1.5
5×1024

0.25 0.54 1100C, 90h
0.005 7×1023

LSW results:
ε zs − zb

−0.85 −2 5 1024 8 1100C, 13min
−2.54 −2 1.1 1026 1.2 1100C, 40min
−4.23 −2 0.14 1029 0.15 1100C, 40min

Experimental results:

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 9.2 2×1021 3.1 1400C, 24h

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 4.5 1022 1.4 1300C, 24h

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 2.6 1023 0.8 1200C, 24h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 6.5 5.2×1021 3.4 4.4 1400C, 9h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 4.2 2.2×1022 1.7 2.4 1300C, 27h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 3.7 1.8×1022 0.53 1.11 1200C, 480h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 2.8 5.8×1022 0.53 0.80 1150C, 480h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 1.5 4.7×1023 0.052 0.22 1000C, 21.9kh

Fe–14Cr–2W–0.1Ti–0.5Fe2Y c 3.8 ∗ 4.3×1022 ∗ 0.22 1200C, 100h
Fe–14Cr–2W–0.3Ti–0.3Y2O3

c 2.5 ∗ 7.1×1023 ∗ 0.19 1200C, 100h

Fe–0.3Y2O3
d 4.8 8×1021 950C, 2h

Fe–0.2Ti–0.3Y2O3
d 3.9 1.1×1023 950C, 2h

Fe–14Cr–0.2Ti–0.3Y2O3
d 1.9 2.6×1023 750C, 2h

Table 2: KMC simulation result estimates from Fig. 4 at times τ = 3×106 (t = 13 min) and τ = 107

(t = 40 min), respectively, where for conversion we have used Y defect jump rate ν = 4×103 s−1 at
temperature 1100 ◦C, see Table 1. The LSW theory predictions are obtained from Eq. (17). aData are
taken from Ref. [9]. bData for alloy MA957 are from Ref. [11, 12, 36]. Experimental estimatesc,d are
from Refs. [7] and [5], respectively. ∗Values are given for samples before the 100h annealing.
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