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Axisymmetric (n=0) density fluctuations measured in the TCV tokamak are observed to possess
a frequency f0 which is either varying (radially dispersive oscillations) or a constant over a large
fraction of the plasma minor radius (radially global oscillations). Given that f0 scales with the
sound speed and given the poloidal structure of density fluctuations, these oscillations were inter-
preted as Geodesic Acoustic Modes, even though f0 is in fact smaller than the local linear GAM
frequency fGAM. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV
relevant conditions and investigate the nature and properties of these oscillations, in particular their
relation to the safety factor profile. Local and global simulations are carried out and a good qual-
itative agreement is observed between experiments and simulations. By varying also the plasma
temperature and density profiles, we conclude that a variation of the edge safety factor alone is not
sufficient to induce a transition from global to a dispersive oscillations, as was initially suggested by
experimental results. This transition appears instead to be the combined result of variations in the
different plasma profiles, collisionality and finite machine size effects. Simulations also show that
radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting
that they are the result of a complex nonlinear process involving also finite toroidal mode numbers
and not just linear global GAM eigenmodes.

I. INTRODUCTION

Zonal flows are collective plasma flows of particular interest in fusion research because in certain regimes they
are able to regulate turbulence [1, 2]. In the context of magnetic confinement, zonal flows indicate a plasma flow
resulting from a difference between the electrostatic potential on neighbouring poloidal magnetic flux-surfaces. The
corresponding radial electric field Er consequently leads to an E×B rotation of the plasma in the poloidal direction.
Zonal flows are non-linearly excited by turbulence, and when turbulent eddies lie radially across these flow layers, they
get distorted as a result of the different flow speeds and eventually break into smaller scale ones, thus self-regulating
turbulence [3].
The Geodesic Acoustic Mode (GAM) [4] is a finite frequency Zonal Flow resulting from the coupling of poloidal flows
to an axisymmetric pressure perturbation via the geodesic curvature of the magnetic field. They are thus associated
to an n=0, m=0 electrostatic perturbation, with n, m being the toroidal and polodial mode number, and coupled
with a dominant n=0, m=1 density fluctuation component. The frequency fGAM of this mode is predicted to scale
proportionally to the ion thermal velocity vti =

√
2Ti/mi and inversely proportionally to the major radius R0, with

a factor of order unity which depends among others on the magnetic safety factor [5], the plasma shape [5, 6] and the
presence of impurities [7].
Observations of axisymmetric oscillations in the frequency range of the Geodesic Acoustic Mode have been reported
by various authors on different machines, see e.g. Refs. [8–12] and references therein. While it is not certain that all
these observations are true GAMs, in the following we shall refer to them as “GAMs” for the sake of simplicity.
Thanks to both the very flexible set-up of the diagnostic system and the versatility of the machine in obtaining
plasmas with different shapes, which is one of the known parameters affecting the mode frequency, the GAM has also
been extensively investigated on the TCV tokamak [8, 13–15]. The most interesting observation on TCV is the fact
that the GAM is usually measured as a radially global oscillation, contrary to the predicted dependency of fGAM on
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the local sound speed provided by the local linear description of zonal flows. This latter condition, referred to in the
following as dispersive mode, has been observed only during an edge safety factor ramp-up [14, 16].
In this work, local (flux-tube)and global simulations have been performed investigating TCV relevant conditions, with
the goal of reproducing the observed behaviour of axisymmetric fluctuations and in particular the role played by the
safety factor profile. The existence of radially global GAM eigenmodes has been analytically predicted [17, 18] and
experimentally observed [9, 19–21]. When the temperature is inhomogeneous, analytic theory predicts the existence

of global GAM eigenmodes with frequency ωglobal
GAM and with a finite radial extent. In this case, the mode is predicted

to propagate in the low temperature region i.e. in the region where ωglobal
GAM > ωlocal

GAM, where ωlocal
GAM is the local GAM

frequency. For the TCV cases studied here, the observed global GAM is found, in both experiments and simulations,
to evolve at a frequency lower than the local one. Moreover, as will be discussed in the following, in our simulations
oscillations at the same frequency as the GAM can also be found in the evolution of the radial profiles of heat
and particle fluxes, suggesting a more complex nonlinear coupling between GAM-like axisymmetric oscillations and
avalanches [22], and making the distinction between them non trivial.
The remainder of this paper is organized as follows. Section II contains a summary of the experimental results observed
when varying the q profile. Section III briefly presents the numerical tool used for carrying out the simulations
discussed in this paper. The results obtained modeling actual TCV discharges are described in Secs. IV and V.
Discussion and conclusions are drawn in Section VI and VII.

II. OVERVIEW OF THE TCV EXPERIMENTAL OBSERVATIONS

Axysimmetric density fluctuations are routinely measured in the outer half of the minor radius of the TCV tokamak
[8, 13, 16, 23], in particular thanks to the Phase Contrast Imaging (PCI) diagnostic. Such oscillations are normally
observed to possess a “radially global” character, i.e. a global oscillation at constant frequency over a major fraction of
the plasma minor radius (typically ρψ ≥ 0.65, where ρψ defines the radial coordinate based on the normalized poloidal
flux), as originally reported for the first time in Ref. [13], and depicted in Figure 1. The frequency of these oscillations
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Figure 1: TCV discharge # 45353. Characterization of the electron density fluctuation in a case showing a radially global
nature. Depicted are (a) the auto power spectrum of the density fluctuation measured with the PCI and (b) its RMS amplitude.
Adapted from Ref. [13].

is in the range of tens of kHz, and is found to scale proportionally to the sound speed, the latter measured at the
location where the mode peaks [8], thus they are interpreted as Geodesic Acoustic Modes (GAMs). This interpretation
is furthermore corroborated by the fact that GAM-like coherent oscillations were also observed in the E×B flow (with
an m=0 dominant poloidal harmonic), in the electron density (dominated by m=1), in the electron temperature and
in the poloidal magnetic fluctuation (with a leading m=2 component). As already pointed out in Refs. [13, 16], even
though the mode frequency scales according to the analytic predictions with respect to e.g. electron temperature and
plasma elongation, it is observed to be significantly smaller than expected from these estimates.
In the last TCV experimental campaign, several discharges have been performed investigating the behaviour of
axisymmetric modes and GAM oscillations, aiming at addressing among others their dependence on the magnetic
geometry, basic plasma parameters as well as differences between limited and diverted plasmas. For a detailed
description of the experimental set-ups and the most recent results, the reader is referred to Ref. [16]. The most
relevant observation for the current study was the existence of a “radially dispersive” GAM regime, i.e. with a
frequency f varying with radius for large values of the edge safety factor q95. Then, when q95 was lowered, a
transition to a “radially global” mode was observed, as illustrated in Figure 2.
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Figure 2: Measured frequency of electron density fluctuation during a safety factor ramp-down (TCV discharge #48068). One
observes the transition from a “radially dispersive GAM” for large edge safety factor (left plot) to a “radially global” mode for
small values of q95 (rightmost plot). Dashed line indicate the local linear GAM frequency. From Ref. [16].

III. NUMERICAL SIMULATION TOOL

All the simulations that we will discuss in this paper have been carried out with the Eulerian gyrokinetic code GENE
[24–26]. GENE allows us to perform microturbulence simulations considering gyrokinetic multi-species dynamics,
including electrostatic and electromagnetic fluctuations, as well as Intra- and inter-species collisions (both pitch angle
and energy scattering). Realistic magnetic geometries can be used via interfaces to MHD equilibrium codes. A
detailed description of the code is outside the scope of this paper and the reader is referred to e.g. Ref. [25]. We shall
nonetheless briefly recall its essential features.

GENE adopts a field-aligned coordinate system (x, y, z) to represent the fluctuation fields in configuration space.
For a tokamak, these coordinates are constructed from the magnetic coordinates (ψ, χ, ϕ), with ψ being the poloidal
magnetic flux, χ the straight-field-line poloidal angle and ϕ the toroidal angle. One defines the radial coordinate x
as a function of the toroidal flux. Throughout all this paper we consider x = ρtora =

√
Φtor/πB0, with Φtor the

toroidal flux, B0 the magnetic field on axis and a the plasma minor radius. The binormal direction is defined by
y = Cy(qχ − ϕ), where q is the safety factor and Cy = x0/q(x0) is a constant chosen such that y acquires the units
of a length. x0 is a reference position corresponding to the location of the flux-tube in local simulations and to the
center of the simulation domain in global runs. Finally, z = χ parametrizes a field line and is thus usually referred to
as the “parallel” direction. Parallel velocity v‖ and magnetic moment µ are the velocity space variables. Resolution
requirements are different for each specific simulation and will be discussed in the following.

For this work, both the radially local and global (gradient-driven) versions of the code have been used. The
binormal direction is in both cases Fourier-transformed, and each ky mode corresponds to a given toroidal mode
number n = kyCy. In the local (flux-tube) limit of the code, the radial direction x is also Fourier transformed
and periodic boundary conditions are applied. In the global version , the x−direction is not Fourier transformed and
Dirichlet boundary conditions are instead applied on both the perturbed distribution function and the electromagnetic
fields. In the latter case radial buffer regions are employed to smoothly damp the fluctuations when approaching the
limits of the simulation domain, therefore avoiding numerical instabilities. For all global simulations discussed here,
10% of the main simulation region is devoted to such buffers at both radial sides. Global simulations also require
sources in order to maintain temperature and density profiles. Global gradient-driven runs are performed using a
Krook-type operator which acts as a spatially varying source term of both heat and particles. A Krook relaxation
rate of the order of a tenth of the maximum linear growth rate is used. For details regarding the heating operator we
refer the reader to e.g. Ref. [27].

Two different experimental TCV discharges have been modeled: #45886, where a “radially coherent GAM” has
been measured, and #49032 where the mode is found to possess a “radially dispersive” nature. Both discharges
are deuterium L-mode limited plasmas. All simulations have been performed assuming heavy electrons (mD/me =
400), with the main goal of reducing the overall computational cost, especially of global runs, and allowing us to
investigate different experimental conditions. The focus of this paper is indeed on qualitatively reproducing the
experimental observations regarding the spatial nature of axisymmetric fluctuations. A quantitative investigation,
aiming at reproducing both the experimental transport and fluctuation level, will likely require not only to adopt the
realistic deuterium-to-electron mass ratio but also to include impurities which are known to potentially strongly affect
the turbulence level [28] as well as the linear GAM frequency [7]. These significantly more expensive investigations
are left for future work.
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IV. EXPERIMENTAL CONDITIONS FOR “RADIALLY COHERENT GAM”

A. TCV experimental discharge

In order to investigate the experimental TCV conditions corresponding to the “radially coherent GAM”, we consider
discharge # 45886. This L-mode limited plasma corresponds to a power ramp-up, with the external EC heating
increased from 0.4 MW to 0.9 MW. For our investigation we focus on time t=1.1s, when 0.6 MW external heating
power is applied. The radial profiles of electron density and temperature (for main ions and electrons) are depicted in
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Figure 3: (a) Reconstructed magnetic equilibrium (shown are contours of constant poloidal flux), (b) safety factor q profile, (c)
electron density ne and (d) electron and ion temperature profiles as a function of ρtor (Te, in blue, and Ti, in red, respectively).
Profiles measured for TCV discharge # 45886 at time t=1.1s presenting “radially coherent GAM”.

Figure 3, together with the safety factor profile q. Impurities are not accounted for, thus their concentration profile
is not shown. We remark that the effective charge, defined as Zeff =

∑
i niZ

2
i /ne summed over all ion species, takes

on the value Zeff = 3.4, with carbon (ZC = 6) the dominant impurity (the corresponding ratio of carbon to main ion
concentration is nC/nD = 15%).

B. Local simulation results

We first carry out a series of flux-tube simulations at different radial locations, in order to investigate the local
properties of turbulence and the behaviour of axisymmetric fluctuations. We look at ρtor =0.6, 0.7 and 0.85. The
experimental magnetic equilibrium, reconstructed with the CHEASE code [29], has been used as well as the measured
plasma profiles. The plasma parameters used for the simulations are detailed in Table I.

ρtor = 0.6 ρtor = 0.7 ρtor = 0.85

R0/LTe 9.32 10.47 12.82

R0/LTi 3.40 3.48 3.85

R0/Ln 1.48 2.92 8.62

Ti/Te 0.35 0.44 0.65

q0 1.51 1.83 2.61

ŝ 1.07 1.46 2.27

β 0.19 10−2 0.13 10−2 0.56 10−3

νei [R0/cs] 0.064 0.110 0.261

Table I: Local parameters used for carrying out flux-tube simulations investigating the “radially coherent GAM” conditions of
TCV discharge # 45886.

Normalized logarithmic gradients R0/L(n, T ) are defined according to the following relation:

R0/L(n,T) = −R0/a d log(n,T)/dρtor (1)

where R0 is the major and minor radius of the machine, R0=0.88 m, and a =
√

ΦLCFS/πB0 provides a measure
of the plasma minor radius. q0 is the local value of the safety factor and ŝ = x/qdq/dx the local magnetic shear.
Electromagnetic effects are accounted for using the experimental value of βe = 2µ0pe/B

2
0 ; here pe is the local electron
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pressure. For the simulations in which finite collisionality is accounted for, it is evaluated based on the experimental
values . Inter- and intra-species collisions are retained and modelled with a linearized Landau collision operator. All
collision frequencies are consistently derived from the values of νei and local values of temperature and density. In

particular, νei = 3
√
π/4τe,i, where τe,i is the ion-electron collision time τe,i = 3(2π)3/2ε20T

3/2
e m

1/2
e /niZ

4
i e

2 log Λ, me

is the electron mass and log Λ is the Coulomb logarithm.
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Figure 4: Growth rates γ of the most unstable mode as a function of the wave number kyρs evaluated at the radial locations
ρtor=0.6, 0.7 and 0.85. All modes possess a negative real frequency, i.e. they propagate in the electron diamagnetic direction.
Results obtained neglecting (resp. retaining) finite collisionality are depicted in blue (resp. red).

Two sets of linear runs have been performed, switching on and off collisionality. In both scenarios, for the parameters
being considered here, the dominant linear instabilities are Trapped Electron Modes (TEM) which, as can be seen
in Figure 4, are only weakly stabilized by the inclusion of collisions. This stabilization is mainly affecting the low
ky modes and is weaker as one considers more radially outward positions. As an example, the growth-rate of the
kyρs = 0.3 mode is lowered by ∼ 50% at ρtor=0.6, by ∼ 20% at ρtor=0.7 and only ∼ 5% at ρtor = 0.85. At higher
wave numbers Electron Temperature Gradient (ETG) modes are unstable. Their contribution will be neglected in all
nonlinear simulations which are limited to the ion scale.

Nonlinear simulations have been performed at each of the three aforementioned locations; a typical grid size for
these runs is nkx × nky × nz × nv‖ × nµ= 256 × 64 × 36 × 64 × 16. The minimum ky mode retained is adapted
such that it corresponds at each location to the toroidal mode number n=2, thus simualting a toroidal wedge of
half-torus and matching the one used for global runs. The velocity space grids of each j−species are set from −3
to 3 for v‖/vth,j and from 0 to 9 for µB0/Tj , vth,j =

√
2Tj/mj being the thermal velocity and B0 the magnetic

field on axis. Even though the aim of this paper is not to reproduce the experimental transport level, the simulated
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Figure 5: Time traces of the simulated heat fluxes Qe of electrons (upper plots) and Qi of ions (lower plots). From left to
right shown are the results obtained considering the radial locations ρtor=0.6, 0.7 and 0.85. When plotting the heat flux (in
red for collisional and in blue for collisionless simulations), only the electrostatic component is shown, as the corresponding
electromagnetic part is smaller by at least an order of magnitude in all cases. The experimental electron heat flux, determined
via power balance, is shown with dashed black lines.

time traces of nonlinear heat powers Q · S in MW obtained at the different radial locations are depicted in Figure 5
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together with the experimental value of 0.8 MW estimated via power balance analysis. The heat flux Q is evaluated
from simulations as Q = 〈Q · ∇x〉S , where 〈·〉S indicates the surface average 〈·〉S = (1/S)

∫
s
· dΣ, with S =

∫
dΣ

the area of the flux-surface of interest. Here, Q is the heat flux, defined as Q =
∫

(1/2mv2δfvE×B)d3v, where δf is
the fluctuating part of the distribution function and vE×B the E × B velocity. Concerning the experimental power
balance, it is shown only for the electron channel, since in these TCV discharges there was no external ion heating
and the equipartition power can be neglected. Furthermore, when plotting simulation results, we only show the
electrostatic component as the electromagnetic counterpart is smaller by at least one order of magnitude at all radii.
As expected, transport is dominated by the electron channel with fluxes significantly larger than the experimental
heating powers. The difference between simulation and experiments is increasing from core to edge: at ρtor = 0.6
the simulated electron heat flux is ∼ 4 MW, i.e. five times the experimental heating power, while at ρtor=0.85
the ratio simulated-to-experiments increases to almost 8. Similarly, the ion heat flux increases significantly as well,
approximately by a factor of 10 in the collisional case, when comparing the innermost to the outermost position
being simulated. Besides invoking finite machine size stabilization effects [30], this discrepancy is largely due to the
heavy electron assumption. Preliminary simulations (not shown here) reveal that using the experimental mass ratio
mD/me = 3670 lowers the nonlinear fluxes by more than a factor of two, bringing simulations closer to experiments.
In addition, including impurity is also expected to help matching the measured transport level due to the increased
collisionality which stabilizes TEMs and to the dilution of the main ions.

With the aim of investigating the behaviour of axisymmetric fluctuations, we study the spatial and temporal
behaviour of the poloidal E×B velocity, associated to the flux-surface-averaged electrostatic potential defined as

vE×B =
1

B0

∂〈φ〉FS

∂x
, (2)

where 〈·〉FS stands for the flux surface average 〈·〉FS=
∫
·Jxyzdydz/

∫
Jxyzdydz, Jxyz being the Jacobian of the (x, y, z)

coordinate system. As an example, the results relative to the collisionless simulation at ρtor = 0.7 is depicted in Figure
6.

Figure 6: Simulated flux-surface-averaged E × B velocity as a function of radial coordinate x and time t. Simulation carried
out assuming TCV conditions for the “radially coherent GAM” at ρtor=0.7 and neglecting collisions.

In order to isolate any dominant frequency, we evaluate the power spectral density of the simulated signals at each
radial position using Welch’s algorithm [31]. The time traces are divided into overlapping intervals approximately
∼ 40R0/cs long and a Hamming window is applied to each interval. We have verified that varying by ±20R0/cs the
length of the intervals does not significantly affect the results. The results obtained in this way are shown in Figure
7. We furthermore plot in Figure 8 the corresponding radially averaged quantities, to facilitate the evaluation of
the leading frequency and the comparison between collisional and collisionless results. The linear GAM frequency,
estimated by carrying out the Rosenbluth-Hinton test [32], is shown for completeness with a dashed white line.

Depending on the position being analyzed, we observe a different behavior of the E×B velocity and a different effect
of collisions. Considering the collisionless results first, at the innermost position considered (ρtor = 0.6) there is not a
clear frequency dominating the spectra of vE×B, which shows a broad contribution from all modes with a frequency
below ∼ 60 kHz. At ρtor=0.75 and 0.8 we instead observe a clear peak at a finite frequency, of approximately 32
kHz for both positions. The inclusion of collisions is found to significantly affect the results, and consistently with
linear growth rates and nonlinear flux results, the effect is strongest at the innermost positions. At ρtor=0.6 retaining
collisionality is found to strongly damp the contribution from all finite frequencies. A “knee” remains at around
∼50 kHz but it is too weak to be clearly identified as a finite frequency oscillation. At ρtor = 0.7 collisions are
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Figure 7: Power spectra densities of the simulated E×B velocity as a function of radius and frequency. Shown from left to right
are the results obtained at ρtor=0.6, 0.7 and 0.85. In each column the upper plot presents collisionless results while the lower
plot shows collisional results. The color coding is the same for each position. The linear GAM frequency measured performing
the Rosenbluth-Hinton test is shown with a white dashed line. Simulations consider TCV conditions for the “radially coherent
GAM”.
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as in Fig. 7. Collisionless (resp. collisional) results are shown in blue (resp. red) while the linear GAM frequency is plotted
with a black dashed line. Simulations consider TCV conditions of the “radially coherent GAM”.

observed to up-shift the dominant frequency, by almost 25%, from ∼33 kHz to ∼40 kHz. We note that in fact a peak
at ∼ 40 kHz was already present in the collisionless spectra, but much weaker than the dominant, lower frequency
one. Finally, at ρtor = 0.85 the effect of collisionality is weak, visible only as a damping of the amplitudes of the
low-frequency components. The dominant nonlinear frequencies are summarized in Table II. These results are not
obvious to interpret and compare to the experiments, especially in relation to the radially global structure of the
observed fluctuations. For instance, the collisionless results seem to indicate that the two locations ρtor=0.7 ad 0.85
are characterized by nearly the same frequency, which would agree with a global mode as experimentally observed.
The collisional results on the other hand provide a very different result, with frequencies varying as a function of



8

ρtor = 0.6 ρtor = 0.7 ρtor = 0.85

flin,GAM [kHz] 60.6 49.9 39.56

f [kHz], w/o coll. - 32.8 31.7

f [kHz], w/ coll. - 40.2 31.1

Table II: Dominant frequency, in kHz, of axisymmetric oscillations obtained from analyzing the E × B velocity in nonlinear
local simulations. Results at ρtor = 0.6 are not listed as a clear peak is not found. The linear estimate obtained from the
Rosenbluth-Hinton test is listed as well as flin,GAM.

the radial position. Global simulations are therefore necessary in order to understand how these modes coexist and
interact with each other.

C. Global simulation results

We discuss below the results obtained with global simulations, still modeling the “radially coherent GAM” scenario.
In this case, the simulation radial domain has been centered at ρtor=0.7 and covers the annulus 0.42 < ρtor < 0.98.
For the profiles being simulated (see Fig. 3) the finite machine size parameter ρ∗ = ρs/a takes the value ρ∗ =∼ 1/122
at the center of the simulation domain. The radial domain thus corresponds to Lx ∼ 69ρs and it is discretized
using 256 radial grid points. As already mentioned, 10% of the simulation domain at both radial sides is devoted
to numerical buffer regions, which will be ignored in all the following plots. We consider 48 toroidal mode numbers
(the minimum toroidal mode number retained is set to nmin=2), while 32 nz points are used to represent the parallel
direction z. Finally, we consider the velocity space domain Lv‖ × Lµ = 4.14 × 18 (normalized with respect to the

reference values at the center of the simulation domain), discretized with nv‖ × nµ=110× 48 points.
Similarly to the flux tube results, a pair of simulations, with and without collisions, has been carried out. Both

gradient driven simulations are run up to ∼ 230 R0/cs, in order to collect sufficient statistics. The simulated heat
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Figure 9: Global simulations results for the “radially coherent GAM” case. Heat fluxes in MW as a function of the minor
radius for (a) the electron and (b) the ion channel. Collisional results are depicted in red, while collisionless in blue. Local
results are reported with stars following the same color coding, while the experimental heating power is indicated with a black
dashed line.

transfer rates as a function of the minor radius are shown in Figure 9 (red solid lines for collisional results and blue
collisionless, while the black dashed line indicates the experimental value). For completeness the flux tube results
are also plotted with colored stars using the same color coding to distinguish between collisional and collisionless
simulations. We first point out the strong difference between local and global simulation results. The latter provide at
all positions a flux which is significantly lower than the estimates obtained with flux-tube runs, confirming, as expected
from the small machine size, the necessity of carrying out global simulation in order to reproduce the actual transport
level of TCV. A different overestimation by the local results can nonetheless be observed depending on which channel
and position one considers. For the transport through the electron channel, one observes that at ρtor=0.6 and 0.7 the
overestimation is approximately twofold, while at ρtor=0.85 local predictions are larger by almost a factor of 2.5. For
the ion channel similar local-to-global ratios are observed at the two innermost radii, but at the outermost position
the difference increases, with flux-tube transport estimation more than four time larger than the global ones. We also
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note a lower effect of collisionality in global simulation compare to local ones. Global simulations results remain in
any case significantly higher than the experimental value, and this, as already discussed before is understood mainly
as a consequence of the heavy electrons assumption. We also remark that the simulated heat flux is increasing with
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Figure 10: Same simulations as in Figure 9. Time averaged profiles of (a) electron temperature Te, (b) ion temperature Ti

and (c) density n. Results from collisional simulations are shown in red, collisionless in blue, while the background profiles are
shown with black dashed lines.

radius (peaking at ρtor ∼ 0.8 for the electron channel and close to the outermost simulated radial location for the
ions), which is in disagreement with the results obtained from the experimental power balance.

The time-averaged effective temperature and density profiles are shown in Figure 10. We observe a small relaxation
of the profiles from the imposed background, larger for the electron temperature compared to the ion. This relaxation
is however small, less than 5%, and therefore is not expected to affect the results. The same relaxation is found for
collisional and collisionless runs, with the corresponding profiles in Figure 10 essentially overlapping each other.

We have repeated the same analysis of the axisymmetric modes by inspecting the associated E×B velocity, whose
contours as function of the radial variable and time are shown in Figure 11. In both the collisionless and collisional
simulations one observes the presence of mainly outward propagating structures, dominantly in the outer part of the
plasma, i.e. from ρtor ∼ 0.65 up to the upper end of the simulation domain. To characterize the frequency of these
obscillations, we performed a Fourier time analysis in the same way as already done for local simulations. The results
are depicted in Figure 12 where the power spectra of vE×B are compared to the local nonlinear results and the local
linear GAM frequency flin,GAM. The latter is obtained by carrying out the Rosenbluth-Hinton test for conditions
relative to different radial positions and from applying analytic estimates. In particular, we use the dispersion relation
provided in Ref. [5], which accounts for plasma shaping, elongation κ and inverse aspect ratio ε = ρ/R0:

flin,GAM =
vti

2πR0

√
7 + 4τ

2

√
2

κ2 + 1

(
1− ε2 9κ2 + 3

8κ2 + 8

)[
1 +

κ2 + 1

4q2

(
23

8
+ 2τ +

1

2
τ2

)(
7

4
+ τ

)−2
]

(3)

where τ = Te/Ti and, for simplicity, we have neglected all other plasma shaping factors (e.g. the Shafranov shift
∆ and the radial derivative of elongation κ′) which lead to minor corrections in our cases. Finite radial wavelength
effects have also been neglected.

One notes the almost perfect agreement between GENE local linear results (black diamonds) and the analytic
estimates provided by Eq. (3) (magenta dashed lines). Both local and global nonlinear numerical results are, however,
lower than the linear estimates, in agreement with the experimental measurements. The nonlinear global spectra,
in particular the one obtained for the collisionless case, appear to be dominated by a single frequency oscillation,
around ∼30 kHz and covering the radial domain ρtor ≥ 0.65. This dominant frequency is somewhat lower in the
collisional simulation, 28.6 kHz, compared to the collisionless case, where ∼32 kHz. We also note that when collisions
are neglected, the dominant mode appears to be broader in frequency compared to the results obtained with collisions
active.

In both cases, the amplitude of the leading mode increases with radius, reaches a peak at ρtor ' 0.8 and then
decreases towards the LCFS, as shown in Figure 13. We observe the collisional case to be more radially strongly
peaked and outward shifted with respect to the collisionless case. Finally, other modes at different frequencies are
also present. Clearly visible in both simulations is a component at approximately 40 kHz at ρtor ' 0.7, which in
the collisionless run can be observed also at ρtor ' 0.85. A lower frequency oscillation, at ' 25 kHz, is also found,
stronger in the collisionless case.



10

Figure 11: Same simulations as in Figure 9. Simulated E × B velocity as a function of radial coordinate ρtor and time t. The
upper plots shows collisionless results, the lower collisional.

Figure 12: Same simulations as in Figure 9. Power spectra density of the E × B velocity for the (left) collisionless and (right)
collisional simulations, dB scale with the same color coding for the two cases. The magenta dashed line indicates the analytic
linear GAM frequency estimate (Eq. (3), obtained from Ref. [5]), while black diamonds correspond to the frequency simulated
in flux-tube via the Rosenbluth-Hinton test. Nonlinear local results discussed in the previous section are reported with blue
crosses.

Comparing global with local results discussed in the previous section (reported in Figure 12 with blue crosses), one
observes that at the outermost position considered with local simulations, ρtor = 0.85, a good agreement is obtained
between local and global results, with a difference ' 10%. At ρtor = 0.7 the comparison is instead more complex. It
appears that local simulations “select” among the different frequencies that contribute to the global spectra at that
particular position the one with largest amplitude. In order to further clarify this point, we have carried out one extra
local simulation considering the plasma parameters of ρtor = 0.78. We observe that in the collisionless simulation the
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Figure 13: Spectral power density of the simulated vE×B taken at the dominant frequency as a function of the radial location.
Collisionless results are shown in blue and for the frequency f =32 kHz, while collisional in red and taken at 28.6 kHz.

local nonlinear frequency remains approximately 32 kHz, whereas in the collisional case the results from the flux-tube
run show a higher frequency, ∼ 35kHz. While this latter frequency corresponds to a local peak in the corresponding
global results, it is not the frequency with the largest amplitude at this radial position. It therefore appears that
local nonlinear simulations provide a local nonlinear frequency estimate, smaller than the corresponding linear local
one, but not necessarily related to the largest magnitude that can be obtained at that radial location from global
simulations. The apparent agreement between local and global results for the collisionless case can thus also be partly
coincidental, and our results indicate how local simulations are, as expected, not suited for reproducing features that
possess a “radially global” nature, as the one observed in TCV. Moreover, they are more sensitive in terms of the
result they provide, to the physical model used, in particular in this case to the effect of collisions.

As already mentioned, all these E×B oscillations are found at a frequency well below the local linear GAM one,
and the dominant nonlinear frequency appears to approach the corresponding local linear estimate only close to the
LCFS. This is in disagreement with the prediction of the existence of global linear GAM oscillations with finite radial
extent due to the presence of temperature gradients, see e.g. Ref. [2]. These modes are expected to propagate in
regions where their frequency is larger than the local GAM one, whereas we clearly observe in our simulation the
opposite behaviour with an outward propagation at fGAM < flin,GAM

Finally, we also remark a very good agreement of the dominant axisymmetric mode frequency with the experimental
observations. Despite the strongly simplified model, the heavy electron assumption and neglecting impurities, the
simualted mode frequency agrees within 10% with the measurements.

V. EXPERIMENTAL CONDITIONS FOR “RADIALLY DISPERSIVE GAM”

A. Plasma experimental profiles

The same analysis carried out considering the experimental conditions for the “radially coherent GAM” and dis-
cussed in the previous section has been repeated for the “radially dispersive” one, observed in the TCV discharge
#49032. This discharge is a safety factor ramp-up, where the edge value of the safety factor is increased and, as
already discussed, the observed axisymmetric oscillations have lost their radial coherence, presenting a dispersive
character. The safety factor profile, as well as the measured temperature and density profiles, used for carrying out
the simulations are plotted in Figure 14. Comparing with the profiles shown in Figure 3, besides the difference in
the safety factor profile, one observes that the electron density is significantly larger at all radial locations, and more
than a factor of two in the core. At the same time the electron temperature is lower by up to 40% in the core. The
ion temperature profile is also different, but with smaller relative variations. As a result, the ions are hotter than the
electrons at almost all locations in the outer half of the plasma minor radius, with a ratio Ti/Te exceeding two as
one approaches the LCFS. These differences in the profiles strongly impact also the logarithmic gradients (not shown
here), which are significantly larger in the “dispersive GAM” conditions compared to the “coherent” case, especially
for the electron temperature and density. Even though impurities are not accounted for in the simulations, we observe
also a large difference in the carbon concentration, significantly smaller in this discharge as reflected by the value of
the effective charge Zeff= 1.54 instead of Zeff= 3.4 in discharge #45886.
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Figure 14: (a) Reconstructed magnetic equilibrium (shown are contours of constant poloidal flux), (b) safety factor q profile, (c)
electron density ne and (d) electron and ion temperature profiles as a function of ρtor (Te, in blue, and Ti, in red, respectively).
Profiles measured for TCV discharge # 49032 at time t=0.6s presenting a “radially dispersive GAM”.

B. Local simulation results

Similarly to what was discussed in Section IV B, local simulations at different radial locations are carried out as
a first step. Again, we look at the positions ρtor=0.6, 0.7 and 0.85. Experimental plasma parameters used for the
simulations are listed in Table III. As already pointed out, the plasma conditions are significantly different compared

ρtor = 0.6 ρtor = 0.7 ρtor = 0.85

R0/LTe 12.36 13.27 21.62

R0/LTi 7.94 6.90 5.43

R0/Ln 8.18 9.32 10.61

Ti/Te 1.01 1.21 2.13

q0 2.44 3.20 5.15

ŝ 1.53 2.01 3.08

β 0.63 10−3 0.29 10−3 0.69 10−4

νei 1.35 2.36 7.92

Table III: Local parameters used for carrying out flux-tube simulations investigating the radially dispersive GAM conditions of
TCV discharge #49032.

to the ones considered in the previous section and summarized in Table I. The lower electron temperature and higher
density translate into a larger collisionality, by almost a factor 20-30 everywhere. As will be further discussed when
presenting global results, the different temperature results also in a different value of ρ∗, potentially leading to a
different magnitude of global effects. Looking first at the electron parameters, logarithmic temperature gradients are
at all positions larger for this discharge in comparison to #45886 (see Table I), by approximately 30 to 40%. Much
larger is however the logarithmic density gradient, which at ρtor = 0.6 is almost six times the one considered when
simulating the “radially coherent GAM”. A somewhat smaller ratio is observed at ρtor = 0.7, further reduced to
∼ 15% at ρtor = 0.85. As for the main ion parameters, once more we observe a nearly two times larger value of R/LTi

everywhere.
All these large disparities make the two considered experimental conditions significantly different, thus any dis-

similarity in the results cannot be attributed solely to the different value of the safety factor, as variations of other
parameters can also play a relevant, if not major, role.

Linear growth-rates and real frequencies as a function of the kyρs wave number are depicted in Figure 15. For
this particular parameter set, defining the kind of linear modes at play appears a less obvious exercise than in the
previously analyzed discharge. We observe how the frequency of the most unstable mode ωr, for all positions and
independently from the inclusion of collisions, continuously increases from negative (i.e. the electron diamagnetic
drift direction) to positive (the ion diamagnetic one) for the kyρs . 1 modes. For kyρs & 1, a positive frequency
branch follows at ρtor=0.6 and 0.7, while at ρtor = 0.85 the most unstable mode returns to ωr < 0. One would be
tempted to name these modes respectively TEM and ITG, given also their ballooned nature. However, when looking
at a quasi-linear estimate of the heat fluxes, the contribution to the ion and to the electron heat channels is of the
same order of magnitude for all ky modes, suggesting a more complex nature of these modes. Furthermore, the low
ky positive frequency branches are destabilized when the ion temperature gradient is reduced and their frequency
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Figure 15: Growth rates γ (top panels) and real frequencies ωr (bottom panels) as a function of the wave number kyρs evaluated
at the radial locations ρtor=0.6, 0.7 and 0.85. Different markers are used to identify the different branches. Results obtained
neglecting (resp. retaining) finite collisionality are depicted in blue (resp. red). Plasma parameters for the “radially dispersive
GAM” scenario.

becomes negative (e.g. for the kyρs = 0.5 mode at ρtor = 0.6 the frequency becomes negative for R0/LTi ≤ 6).
The high kyρs branch also remains unstable and with a positive frequency when the ion temperature gradient is set
to zero, i.e. completely suppressing the drive for ITG turbulence. This behaviour is understood as a consequence
of the particularly high density gradient. Indeed when lowering R0/Ln towards values similar to the ones used in
section IV B, one obtains a more “standard” TEM-like linear behaviour, with modes possessing a negative ωr and
a quasi-linear heat flux mainly through the electron channel. We also find that a smaller density gradient increases
the growth-rate for all ky modes analyzed here. Finally, at ρtor = 0.85. We observe that the inclusion of collisions is
destabilizing the modes, a signature typical of Resistive Ballooning Modes (RBM) [33]; RBMs are however expected
to possess a negative frequency according to GENE conventions, thus once more clearly defining the nature of the
low ky branch is non-trivial. Since part of this behaviour can potentially be caused by the extremely large density
gradient, as well as be influenced by the heavy electrons assumption, we leave a detailed investigation of the nature
of these modes to future work.

Nonlinear simulations have been carried out for the three different locations, with and without including finite
collisionality. The larger values of gradients and collisionality require a significantly smaller time step in comparison
with the one used for the local simulations of the “radially coherent GAM”. This is particularly relevant for the
outermost location, and in order to reduce the computational effort associated to these simulations somewhat shorter
statistics have been acquired, typically up to 100 R0/cs. Such statistics are nonetheless sufficient to characterize the
axisymmetric oscillations mode. The transport level obtained from these runs is, as expected, significantly larger
than the experimental one. This will be discussed in more details in the next section when comparing with local
simulations.

The temporal Fourier analysis of the simulated E×B velocity associated to the zonal flows has been repeated for
this new set of runs. For simplicity we show only the radially averaged power spectral density in Figure 16. In all
simulations a clear peak can be seen; the corresponding frequencies have been summarized in Table IV. As already
observed when discussing the “radially coherent GAM” simulations, nonlinear oscillations have a frequency below the
linear estimates, with a difference that is in this case approximately 10% for the two innermost positions and around
30% at ρtor=0.85. Collisions are once again found to affect the results by lowering the dominant frequency. This
effect is more pronounced as one compares innermost to outermost positions.
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Figure 16: Same as Figure 7 but showing the results obtained modeling the conditions for the “radially dispersive GAM”.

ρtor = 0.6 ρtor = 0.7 ρtor = 0.85

flin,GAM [kHz] 36.0 29.2 21.4

f [kHz], w/o coll. 32.5 26.0 12.7

f [kHz], w/ coll. 32.5 22.8 16.8

Table IV: Dominant frequency, in kHz, of axisymmetric oscillations obtained from analyzing the E × B velocity in nonlinear
local simulations and the linear estimate obtained from the Rosenbluth-Hinton test. Runs considered parameters of the“radially
dispersive GAM” case.

C. Global simulation results

Following the same approach as in the “global GAM” scenario, the global simulation covers the outer half of the
plasma, namely the region 0.5 ≤ ρtor ≤ 0.9 . The reference value of ρ∗ = ρs/a at the center of the simulations domain
(ρtor = 0.7) is ρ∗ ' 1/293 compared to ρ∗ ' 1/122 in the coherent GAM case. The simulation radial domain is thus
Lx ' 135ρs. In order to use a similar radial resolution as the one adopted for the previous global run, we therefore
needed in this case nx = 416 radial grid-points, which makes the simulation computationally more expensive. To
reduce the cost of the run only 32 toroidal mode numbers are considered here, while the same number of points,
nz = 32, are used for the parallel direction. The same grids have been used in velocity space (Lv‖ × Lµ = 4.14 × 18

and nv‖ × nµ=110× 48 points).
The resulting heat fluxes, together with the estimates obtained from local simulations, are shown in Figure 17.

We observe that, as in the comparison presented in Figure 9, global simulations still significantly overestimate the
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Figure 17: Global simulation results for “dispersive GAM” case. Total heat power in MW Q · S as a function of radius for (a)
electrons and (b) ions. Results obtained neglecting (resp. including) collisionality are shown in blue (resp. red). Flux-tube
estimates are indicated with stars. In order to fit within the axis limit, local results obtained at ρtor = 0.5 have been divided
by 10.
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experimentally measured transport level, by at least a factor of 5 for the innermost locations, where simulation present
the maximum heat transport. At these locations, flux-tube estimates are off by a factor of ∼ 10 compared to the
experiments. The heat transport obtained from flux-tube runs is thus again much larger than the global estimates,
with the exception of the location ρtor = 0.85, where local and global estimates coincide for both ion and electron
channels. This is understood as a consequence of the very small local value of ρ∗ at this location (ρ∗ = 1/461) such
that global effects are expected to play a negligible role.

The temporal evolution of the simulated E×B velocity associated to the zonal flows is shown in Figure 18, while
we plot in Figure 19 the corresponding Fourier time analysis. Inspecting the contours of the zonal E×B velocity, one

Figure 18: Same simulation as Fig.17. Evolution of the E × B velocity obtained from collisionless (top panel) and collisional
simulation(bottom panel).

notes, as was already the case in the “global GAM” case (see Figure 11), the presence of oscillations that extend over
most of the radial domain being simulated. The Fourier analysis however show a very different behaviour. Contrary
to the “global GAM” scenario, in this case we cannot identify the presence of a single or few localized oscillations
that dominate the power spectra, but we rather observe contributions from different frequencies at different radial
locations. In other words, we observe an axisymmetric oscillation that is radially dispersive and extends over almost
all the outer half of the plasma minor radius. This is in agreement with what it is experimentally measured.

A major role appears to be played by collisionality. The dispersive nature of the mode can be already observed
in the collisionless run, where we find that the whole region 0.6 ≤ ρtor ≤ 0.8 is characterized by oscillations with a
frequency that varies with radius. It is however when we include collisions in our simulation that we obtain the clearest
picture of radially dispersive axisymmetric oscillations, with a nearly uniform amplitude as a function of the radial
position. The frequency that we measure in our simulations appears to follow the local linear GAM frequency (dashed
lines in Figure 19). We nonetheless remark that when collisions are neglected, simulations provide a frequency that
is downshifted with respect to the corresponding linear locate estimate, as already noted when discussing the “global
GAM” scenario. The downshift appears in this case to be maximum at ρtor = 0.8, while looking at even larger radii
we observe a broader frequency spectrum. On the other hand, when collisions are included, the frequency reduction
is much smaller and the nonlinear frequency is very close to the linear GAM frequency at each radial location. A
lower nonlinear frequency with respect to the linear one is observed also in the local runs, between 10% and 20%, and
regardless of including or not collisions in the simulation model.
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Figure 19: Same simulation as Fig.17. Power spectra density of the E × B velocity for the (left) collisionless and (right)
collisional simulations, dB scale with the same color coding for the two cases. The magenta dashed line indicates the analytic
linear GAM frequency estimate (Eq. (3), obtained from Ref. [5]), while black diamonds correspond to the frequency simulated
in flux-tube via the Rosenbluth-Hinton test. Nonlinear local results discussed in the previous section are reported with blue
crosses.

VI. DISCUSSION

The experimental plasma conditions between the two discharges discussed in the previous sections are too disparate
to attribute the different properties of the oscillations solely to the effect of the safety factor profile. Changes in
temperature and density profiles lead to significant variations of all plasma parameters, in particular of the gradients,
which drive the turbulence, but also of collisionality and of the finite machine size parameter ρ∗. Since all these effects
can actively affect turbulence and in turn the behavior of n=0 oscillations, scans over these parameters should be
performed in order to measure their actual role. Such an exercise is computationally very expensive (the simulations
presented in this work have required approximately 10M CPU-hrs), in particular investigating the effect of the finite
machine size because of its obvious impact on the resolution requirements.

We have started to pursue this investigation by performing two additional simulations where the temperature and
density profile of the “radially coherent GAM” have been used with the magnetic geometry of the “radially dispersive”
case, and vice-versa. Even though we have showed that collisionality appears to be one of the key ingredients in order
to reproduce the correct behaviour of axisymmetric modes, it has been neglected in these last runs. The main
motivation was to lower the computational cost of the simulations, still capturing the effect of the safety factor profile,
as suggested by the experiments. The Fourier analysis of the E×B velocity is depicted in Figure 20. These plots
should be compared with the left panels of Figures 12 and 19. Looking first at the simulations carried out with the
profiles of the “radially coherent GAM”, we observe that even when the edge safety factor is increased the mode is
found to maintain its radially global nature, see left plot of Fig 20. The E×B velocity spectra are dominated by
a single oscillation at ∼ 33 kHz, extending from ρtor = 0.65 to the plasma edge and peaking at ρtor ' 0.7, which
is somewhat inwards compared to the results obtained with the experimental q profile. When looking at simulation
results from the run considering temperature and density profiles of the dispersive TCV conditions with the low edge
safety factor we observe a richer frequency spectra, i.e. with multiple frequency peaks at different radii. The spectra in
this latter case appear to be radially dispersive, though not as clearly as in Figure 19, with a peak at 0.7 < ρtor < 0.8.
Based on these results, we conclude that the safety factor is likely not to be the main cause for the regime transition,
which appears instead to be rather related to the temperature and density profiles. This is contrary to previous
conjectures, but has also been confirmed by more recent TCV observations [16].

One last point worth discussing concerns the nature of these fluctuations. In Figure 21 we plot the spatial and
temporal evolution of the heat flux (for both ion and electron channels), the particle flux and of the E×B velocity.
The results refer to the “radially coherent” case (same simulation as in Figure 9), but similar plots can be obtained for
all simulations previously discussed. One observes that the flux profiles are characterized by ballistically propagating
structures, so-called avalanches [22, 34]. While for the electron heat flux these structures extend over almost the whole
radial domain, they are much more localized to the edge region for both the ion heat flux Qi and the particle flux Γ.
Comparing with the E×B velocity (last panel of Fig. 21), some qualitative similarities can be observed regarding
location and frequency of axisymmetric oscillations and transport avalanches, suggesting an interplay between the
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geometry of the “radially global GAM” with low edge safety factor. The magenta dashed line indicates the analytic linear
GAM frequency estimate provided in Ref. [5].
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Figure 21: Same simulation as in Figure 9. From left to right, electron heat flux Qe, ion heat flux Qi, particle flux Γ and E × B
velocity. Simulation corresponding to the “radially coherent” GAM scenario.

n=0 mode (which itself does not drive any finite flux) and avalanches. Experimental evidence of such a complex
self-regulating mechanism has recently been obtained in TCV, where oscillations in the particle flux at the same
GAM frequency have been observed [16]. We however remark that since our simulations do not predict the correct
transport level, this can only be confirmed by repeating simulations with the correct ion-to-electron mass ratio.

VII. CONCLUSIONS

Nonlinear local and global gyrokinetic simulations have been performed with the aim of investigating the behaviour
of axisymmetric (n=0) fluctuations. Experimental TCV conditions have been considered as inputs, with the aim of
qualitatively reproducing the actual observations. Two discharges involving two different safety factor profiles, one
with moderate and one with large edge safety factor, have been investigated. Experimentally it is routinely observed
that n = 0 density fluctuations possess a global nature, i.e. a single frequency is measured over a large fraction of the
plasma minor radius. The only exception to this behaviour was observed during a safety factor ramp-up, where for
large value of the edge safety factor these oscillations were found to become radially dispersive, thus the motivation
for investigating the two different discharges. In order to reduce the computational effort, simulations were carried
out with artificially heavy electrons (mD/me = 400). This choice is known to strongly affect the turbulent flux
amplitudes, thus no particular effort was made to match the transport level between simulations and experiments, by
varying e.g. the normalized profile gradient drives within their error bars.

Local simulations have been carried out at the radial locations ρtor=0.6, 0.7 and 0.85, whereas global runs have
been used to simulate the outer half of the plasma minor radius. Two series of nonlinear simulations, either neglecting
or including the effect of collisionality, have been performed for both local and global runs. Axisymmetric oscillations
have been investigated by studying the temporal and spatial behaviour of the E×B velocity. In global simulations,
oscillations of vE×B are observed in the outer half of the plasma minor radius, mainly with an outward propagation,
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as shown in Figure 11. In local simulations however, periodic boundary conditions don’t allow to identify a preferred
direction of propagation and a criss-cross pattern is then observed (Figure 6). An up-down asymmetry of the plasma
is expected to induce a preferred direction of propagation also in the flux-tube simulations, [35]. The TCV discharges
considered here are only weakly asymmetric, thus this effect is negligible here. In addition, aiming at understanding
the role played by the safety factor, two extra simulations have been performed which interchange the experimental
geometry and temperature and density profiles from the two experimental discharges with different magnetic geome-
tries. For simplicity collisions have been neglected in these additional runs. The main findings can be summarized as
follows:

(i) The “radially coherent GAM” discharge is characterized by unstable TEM and ETG modes. A more complex
situation is observed for the “radially dispersive” case, where we observe also the presence of modes rotating in
the ion diamagnetic direction. While this is the typical signature of ITG modes, we notice that these modes are
able to drive, according to both quasi-linear and nonlinear estimates an almost equal heat flux through the ion
and the electron channels. Furthermore the linear frequency remains positive even when zero ion temperature
gradient is considered, and a standard TEM picture is recovered only when the density gradient is reduced.

(ii) The simulated fluxes strongly overestimate the actual measured transport level. This is understood mainly as a
consequence of the heavy electron assumption. Strong global effects are observed on both discharges, with global
simulations providing a significantly lower transport level compared to local results. It is however not obvious
how to define an effective ρ∗eff in order to relate the magnitude of global effects to the actual temperature profile.
The local and global results obtained modeling the “radially dispersive GAM” conditions can be reconciled by
assuming that global effects are directly related to the local value of ρ∗. For the “radially coherent GAM”
parameters, however, global effects provide the opposite trend. Local fluxes are more strongly overestimating
the global ones at the outermost radial positions.

(iii) In agreement with the experimental observations, when modelling the “radially coherent GAM” a well-defined
frequency peak in the radially-averaged E×B power spectra is seen, while when the “radially dispersive GAM”
conditions are modeled, n=0 oscillations appear instead to be radially dispersive, with similar contribution from
different radial locations. A good qualitative agreement with experimental measurements is obtained for both
the magnitude of the frequency and the spatial location of these oscillations. Contrary to the experiments
we however observe the existence of other axisymmetric components with lower amplitude and typically at a
higher frequency. Finally, the nonlinear frequency of the n=0 mode is found in both local and global results
to be significantly lower than the linear GAM frequency, with the exception of the “radially dispersive GAM”
conditions, where the global nonlinear results seem to agree with local linear estimates.

(iv) The safety factor is observed to cause changes in the axisymmetric fluctuations, but it appears that the radial
extent of the mode is not significantly affected by modifying the safety factor profile. The origin of the regime
transition therefore has to be found in the different temperature and density profiles, either directly through the
different local gradients driving the turbulence, or indirectly i.e. via the effect of collisionality or finite machine
size.

(v) Similarities between the behavior of axisymmetric oscillations and transport avalanches are observed, in agree-
ment with recent experimental observations. This suggests a complex interplay between n=0 and n6= 0 fluc-
tuations and questions the interpretation of the experimentally measured frequency as the nonlinear GAM
frequency in favour of a characteristic avalanche frequency.

Further invetigations are required to complement the present study. In particular, given the non-linear nature
of the axisymmetric fluctuations, reproducing the experimental amplitude levels appears as an essential prerequisite
before investigating their dynamics and the relation between linear GAMs, transport avalanches and turbulence
self-organization. High realism global simuations, considering e.g. the realistic ion-to-electron mass ratio, are thus
expected to be necessary. Such an effort is currently ongoing.
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[15] S. Coda, Z. Huang, G. Merlo, L. Porte, S. Brunner, M. Fontana, and L. Villard, in US-EU Joint Transport Task Force

Workshop (2011).
[16] Z. Huang, S. Coda, G. Merlo, S. Brunner, L. Villard, B. Labit, and C. Theiler, (2017), submitted to Plasma Physics and

Controlled Fusion.
[17] K. Itoh, S.-I. Itoh, P. H. Diamond, A. Fujisawa, M. Yagi, T. Watari, Y. Nagashima, and A. Fukuyama, Plasma and Fusion

Research 1, 037 (2006).
[18] Z. Gao, K. Itoh, H. Sanuki, and J. Q. Dong, Physics of Plasmas 15, 072511 (2008).
[19] G. Wang, W. A. Peebles, T. L. Rhodes, M. E. Austin, Z. Yan, G. R. McKee, R. J. L. Haye, K. H. Burrell, E. J. Doyle,

J. C. Hillesheim, M. J. Lanctot, R. Nazikian, C. C. Petty, L. Schmitz, S. Smith, E. J. Strait, M. V. Zeeland, and L. Zeng,
Physics of Plasmas 20, 092501 (2013).

[20] T. Ido, Y. Miura, K. Kamiya, Y. Hamada, K. Hoshino, A. Fujisawa, K. Itoh, S.-I. Itoh, A. Nishizawa, H. Ogawa, Y. Kusama,
and J.-M. group, Plasma Physics and Controlled Fusion 48, S41 (2006).

[21] A. Melnikov, L. Eliseev, S. Perfilov, S. Lysenko, R. Shurygin, V. Zenin, S. Grashin, L. Krupnik, A. Kozachek, R. Solomatin,
A. Elfimov, A. Smolyakov, M. Ufimtsev, and T. H. Team, Nuclear Fusion 55, 063001.

[22] B. F. McMillan, S. Jolliet, T. M. Tran, L. Villard, A. Bottino, and P. Angelino, Physics of Plasmas 16, 022310 (2009).
[23] Z. Huang, Ph.D. thesis, EPFL Lausanne (2017).
[24] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Physics of Plasmas 7, 1904 (2000).
[25] T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told, Journal of Computational Physics

230, 7053 (2011).
[26] See http://genecode.org/ for a description of the GENE code.
[27] X. Lapillonne, Local and global eulerian gyrokinetic simulations of microturbulence in realistic geometry with applications

to the TCV tokamak, Ph.D. thesis, EPFL Lausanne (2010).
[28] G. Merlo, S. Brunner, O. Sauter, Y. Camenen, T. Görler, F. Jenko, A. Marinoni, D. Told, and L. Villard, Plasma Physics

and Controlled Fusion 57, 054010 (2015).
[29] H. Lütjens, A. Bondeson, and O. Sauter, Computer Physics Communications 97, 219 (1996).
[30] B. F. McMillan, X. Lapillonne, S. Brunner, L. Villard, S. Jolliet, A. Bottino, T. Görler, and F. Jenko, Phys. Rev. Lett.

105, 155001 (2010).
[31] P. Welch, IEEE Transactions on Audio and Electroacoustics 15, 70 (1967).
[32] M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
[33] C. Bourdelle, X. Garbet, R. Singh, and L. Schmitz, Plasma Physics and Controlled Fusion 54, 115003 (2012).
[34] T. Görler, X. Lapillonne, S. Brunner, J. Chowdhury, T. Dannert, F. Jenko, B. F. McMillan, F. Merz, D. Told, and

L. Villard, Journal of Physics: Conference Series 260, 012011 (2010).
[35] R. Hager, Radial propagation of geodesic acoustic modes, Ph.D. thesis, Technische Universität München (2011).


