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Iterative solvers for elliptic problems with arbitrary
anisotropy strengths.

C. Yang†, J. Claustre‡, F. Deluzet‡∗

January 25, 2017

Abstract

This paper is devoted to the introduction of iterative methods for the Asymptotic-
Preserving (AP) resolution of anisotropic elliptic problems arising in magnetized plasma
simulation. The methods investigated in this paper extend the precedent realizations,
limited to the finite element framework, to finite difference discretizations. They also
overcome the resolution of a Saddle point problem for which only sparse direct solvers
have been successfully operated so far. Although very efficient for two dimensional
computations, the cost of direct methods is considerable for real scale three dimen-
sional problems hardly addressed in precedent achievements. This difficulty receives
an appropriate answer in this paper, the new methods providing system matrices with
a condition number uniformly bounded with respect to the anisotropy strength without
the resolution of a Saddle point problem. An iterative resolution of the AP scheme is
developed, offering a numerical cost comparable to the resolution of isotropic elliptic
problems. This brings a leap forward in the computational efficiency of the method,
conclusively outlined thanks to three dimensional serial computations carrying out tens
of millions of unknowns.

1 Introduction

This paper is devoted to the construction of iterative methods for the numerical resolution
of anisotropic elliptic equations which prototype writes

−∇⊥ ·
(
A⊥∇⊥φ

)
− 1

ε
∇‖ ·

(
A‖∇‖φ

)
= f , in Ω , (1a)

n · ∇‖φ = 0 , on ∂Ω‖ , (1b)

φ = 0 , on ∂Ω⊥ . (1c)

The parallel and perpendicular directions relate to a vector b, assumed to be the normalized
magnetic field B in the framework of plasma physics, b = B/‖B‖. In this paper the geometry
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will be simplified and the magnetic field will be assumed to be straight and aligned to the
z-direction (x, y and z being the Cartesian coordinates), with ∇‖ = (0, 0, ∂z)

T , ∇⊥ =
(∂x, ∂y, 0)T . More complex anisotropy topologies may be addressed thanks to dedicated
coordinate systems widely used for plasma modelling (see the references in [16]). In the
system (1) A⊥ and A‖ are positive functions of the space variables (x, y, z) ∈ Ω. The domain
boundary is decomposed into ∂Ω = ∂Ω‖∪∂Ω⊥, the anisotropy direction being perpendicular
to the outward normal n on Ω⊥, yielding to b(s) · n(s) = 0 ,∀s ∈ ∂Ω⊥. Note that the
Neumann boundary conditions considered at the magnetic field line ends, ie on ∂Ω‖, can be
substituted by periodic ones to cope with the torus geometry of tokamak. The asymptotic
parameter ε parameterizes the strength of the anisotropy.

This kind of equations is common in the context of plasma simulation under large mag-
netic fields, good example of which being ionospheric or tokamak plasmas. In particular,
this equation is verified by the electric potential in quasi-neutral fluid descriptions of the
ionospheric plasma (see [5, 27, 22, 8]) and tokamak plasma modelling [3]. It may also de-
scribe the anisotropic diffusion of the temperature [20, 29, 13], the density or the pressure
[11, 10, 14, 19] in plasmas evolving under large magnetic fields. For these applications, the
anisotropy strength ε−1 has large values, the maximum values ranging from 107 to 1010 (see
[26, appendix B], [23, 34]) for aniospheric plasmas, the objectived being ε−1 > 106 for the
tokamak simulations investigated in [21, 30]. In these applications, the physics of interest
is that of the perpendicular directions. Therefore an efficient numerical method should be
able to follow the transverse evolution without any constraints on the numerical parameter
related to the fast parallel dynamic. This problem is challenging from a numerical point
of view. Indeed, in the limit of an infinite anisotropy, the dominant operator (carried by
ε−1) does not define a well posed problem, due to the Neumann boundary conditions it is
supplemented with. Therefore, standard numerical methods give rise to a system matrix
with a bad conditionning number for large anisotropies and fail to provide an accurate ap-
proximation of the solution. The convergence of the solver is reported to fail for ε−1 > 104

in [30], while the numerical investigations are limited to moderate anisotropies (ε < 103) in
[13] and eventually performed with a refinement of the numerical parameters to offset the
anisotropy increase [20, 13].

Asymptotic-Preserving (AP) schemes have proved to be free from these constraints, pro-
viding a system matrix with a conditioning independent of the anisotropy [18, 29, 12] (see
also [24] for seminal work on AP-methods and [25, 14, 15] for reviews). The pros of these
approaches is the possibility to handle arbitrary values for ε and to choose the discretization
parameters according to the physic of interest rather than the asymptotic parameter values.
The cons of the existing realizations lie in the reformulation of the equation into a Saddle
point problem. Though the system matrix exhibits good properties with respect to the
condition number, standard iterative methods usually efficient for elliptic problems are inop-
erative for the AP formulations. To date, all the realizations proposed rely on a resolution of
the system matrix by means of direct solvers and are limited to two dimensional frameworks.
Although, very efficient for two dimensional problems, direct solvers become too much re-
source demanding for three dimensional simulations on refined meshes. This explains why
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AP methods have not been used so far for three dimensional realistic simulations.
Another bottleneck to the generalization of the use of these methods can be explaind by

the fact that they are limited to the finite element framework. While this formalism is well
suited for the analyze of Saddle point problems, it is quite cumbersome for the discretization
of the conservation laws to which the anisotropic equations are coupled in order to evolve
the other quantities describing the plasma.

These are the issues addressed in this paper. The first goal of the present work is to
provide new AP formulations derived from the Duality-Based decomposition [18, 8] that
secure the same AP property but without the resolution of the Saddle point problem of the
precedent realizations. A rigorous analysis is conducted to demonstrate that the system
matrices issued from these AP reformulations have a condition number uniformly bounded
with respect to the anisotropy strength. The new formulations introduced here allow for the
resolution by preconditioned Krylov (or multigrid methods) available in classical scientific
libraries. Although the first goal of the AP methods is to derive system matrices with
good conditioning, this is the first time this linear systems are solved by iterative methods
and take advantage of this property. The gains in term of efficiency compared to the sparse
direct solvers used so far are substantial for three dimensional computations, making possible
to tackle three dimensional simulations with tens of millions of unknowns on a sequential
computer, a task that remained totally out of reach thanks to precedent achievements. The
second goal is to provide a discretization of the AP formulation in the frame of finite difference
methods which are more in line with the numerical methods routinely implemented for the
conservation laws coupled to the anisotropic equation.

The singular nature of the problem (1) is first recalled in Sec 2. The outlines of the
duality based method are then precised and new AP formulations are introduced. These
approaches avoid the introduction of a Saddle point problem and are discretized in the finite
difference framework. The iterative solver strategy is finally defined. The properties of these
schemes are investigated in Sec. 3, in particular we demonstrate that the AP formulations
share the interesting properties of the precedent achievements. The considerable gains in
the efficiency are then demonstrated thanks to three dimensional computations with an
application to ionospheric plasma simulation.

2 An elliptic problem characteristic of magnetized plasma

simulations

2.1 The issue raised by the model problem

Let us simplify the problem to a two dimensional configuration assuming that the quanti-
ties only depend on the aligned coordinate z and one transverse coordinate x, yielding the
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Singular Perturbation problem

(SP)


− ∂

∂x

(
A⊥

∂φε

∂x

)
− 1

ε

∂

∂z

(
A‖
∂φε

∂z

)
= f ε , in [0, Lx]× [0, Lz] ,

∂φε

∂z
= 0 , for z ∈ {0, Lz} ,

φε = 0 , for x ∈ {0, Lx} .

(2a)

(2b)

(2c)

Multiplying Eq. (2a) by ε and letting formally ε→ 0 yields the Degenerate problem

(D)


− ∂

∂z

(
A‖
∂φ0

∂z

)
= 0 , in [0, Lx]× [0, Lz] ,

∂φ0

∂z
= 0 , z ∈ {0, Lz} ,

φ0 = 0 , x ∈ {0, Lx} .

(3)

This set of equations is ill posed. It is reduced to an operator whose kernel contains all the
functions that do not depend on the aligned coordinate z. However, this shows that, in the
limit, the solution of the problem is a function of the only coordinate x (see [17]). A well
posed problem for φ0 can be recovered by integrating the equation (2a) along the anisotropy
direction. This yields to the following definition of the Limit problem

(L)


∂

∂x

(
Ā⊥

∂φ0

∂x

)
= f̄ 0 , in [0, Lx] ,

φ0 = 0 , x ∈ {0, Lx} ,
(4a)

with the mean value f̄ of a function defined as

f̄(x) =
1

Lz

∫ Lz

0

f(x, z) dz . (4b)

The purpose of AP schemes is to capture this limit system (4) preventing by this means the
degeneracy of the problem for vanishing ε.

2.2 Asymptotic preserving methods in the finite difference frame-
work

The starting point of these investigations consists of the Duality Based reformulation intro-
duced in [17] and reworked in [16, 8]. The outline are recalled in the next lines and we refer to
these references for the details. The Duality Based reformulation operates a decomposition
of the functions into a mean value along the anisotropy direction corrected by a fluctuating
part accordingly to

φ(x, z) = φ̄(x) + φ′(x, z) , ∀(x, z) ∈ [0, Lx]× [0, Lz] , with φ̄′ = 0 .
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This ansatz is inserted into the system (2) to provide a set of coupled equations providing
the two components of the solution, thanks to −

∂

∂x

(
Ā⊥

∂φ̄

∂x

)
= f̄ +

∂

∂x

(
A⊥

∂φ′

∂x

)
, in [0, Lx], ,

φ̄ = 0 , x ∈ {0, Lx} ,
(5a)


−ε ∂

∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖
∂φ′

∂z

)
= εf + ε

∂

∂x

(
A⊥

∂φ̄

∂x

)
, in [0, Lx]× [0, Lz] ,

∂zφ
′ = 0 , z ∈ {0, Lz} ,

φ′ = 0 , x ∈ {0, Lx} ,
φ′ = 0 , in [0, Lx] .

(5b)

Note that in the limit ε → 0 the degenerated problem (3) is recovered from the equation
(5b). However this system is satisfied by the fluctuation φ′ with a zero mean constraint
which restores the well posedness of the system regardless to ε. The unique solution of the
system (5b) in the limit ε→ 0 is φ′ = 0, which inserted into (5a) yields to the limit problem
(4). This demonstrates, that in the reformulated system (5), the limit ε → 0 is a regular
perturbation.

An asymptotic Preserving method is obtained by a standard discretization of this refor-
mulated system. Since this set of equations unifies the two regimes with a smooth transition
to the well posed limit problem, the condition number of the matrix should not deteriorate
with vanishing ε. This property is conclusively demonstrated by the preceding realizations
[18, 16, 8]. The main difficulty to overcome in deriving the numerical scheme lies in the
discretization of the fluctuation zero mean constraint supplementing the equation (5b). In
the precedent achievements, a weak formulation is introduced along with a finite element
method. Since the discretization of a functional space with zero mean value functions is
not straightforward, this property is penalized thanks to the introduction of a Lagrangian
multiplier λ. The system in thus turned into is a Saddle point problem for (φ′, λ) avoided
by the discretization introduced here.

The new fomulation of the AP system relies on the property that one of the boundary
conditions used at the magnetic field line extremities is already included in the system.

Proposition 2.1. The system providing the fluctuation φ′ can be equivalently stated as

− ε ∂
∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖
∂φ′

∂z

)
= εf + ε

∂

∂x

(
A⊥

∂φ̄

∂x

)
, in [0, Lx]× [0, Lz] ,

∂φ′

∂z
= 0 , on z = 0 ,

φ′ = 0 , x ∈ {0, Lx} ,
φ′ = 0 , in [0, Lx] .

(6a)

(6b)

(6c)

(6d)

Proof. Computing the mean of the equation (6a) we get

− 1

Lz

[
A‖
∂φ′

∂z

]z=Lz

z=0

= ε

(
f̄ +

∂

∂x

(
Ā⊥

∂φ̄

∂x

)
+

∂

∂x

(
A⊥

∂φ′

∂x

))
.
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Thanks to (5a), the right hand side of this equation vanishes. On the other hand, the
homogeneous Neumann boundary condition (6b) implies that ∂zφ

′|z=Nz = 0.

Another AP formulation may be proposed as stated in the following proposition.

Proposition 2.2. The problem (2) can be equivalently reformulated into −
∂

∂x

(
Ā⊥

∂p

∂x

)
= f̄ +

∂

∂x

(
A⊥

∂q

∂x

)
, in [0, Lx] ,

p = 0 , x ∈ {0, Lx} ,
(7a)


−ε ∂

∂x

(
A⊥

∂q

∂x

)
− ∂

∂z

(
A‖
∂q

∂z

)
= εf + ε

∂

∂x

(
A⊥

∂p

∂x

)
, in [0, Lx]× [0, Lz] ,

q = 0 , x ∈ {0, Lx} ,
q = 0 , on z = 0 ,
∂q

∂z
= 0 , on z = Lz ;

(7b)

with
φ(x, z) = p(x) + q(x, z) . (7c)

We wish to point out that a similar idea is developed in a very recent work [33] im-
plementing a mean of the equation along the magnetic field lines in substitution of one of
the boundary conditions at one magnetic field ends. This integrated equation bare some
analogies with the equation providing the mean component of the solution in (5). This offers
the advantage to avoid the decomposition of the solution and to solve a system with two
unknowns. However, the system matrix obtained by this means is much more filled with non
zeros elements. Indeed, after discretization, the stencil of the discrete operator involves at
least five unknowns for two dimensional computations, nine for three dimensional problems.
This may be increased for higher methods with wider stencils. In the approach proposed
here, the only unknowns carried by a field line are involved in the mean constraint which
reduces significantly the fill in of the system matrix. Moreover, one of the component of
the solution is two dimensional which amounts to a cost related to the computation of this
part completely offset by that of the three dimensional component. The resolution of a three
dimensional elliptic problem is much more resources demanding than a two dimensional one,
hence the importance to reduce the cost as much as possible of the three dimensional system
resolution. This will be outlined further by the numerical investigations proposed in the
sequel.

The decomposition (7c) shares some analogies with the micro-macro decomposition (see
for instance [28, 29]) however the re-scaling of q is not implemented here and the reformula-
tion of the system is also completely different.
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Remark 2.1. For non-homogeneous anisotropies, the system (6) is recast into
− ∂

∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖
ε

∂φ′

∂z

)
= f +

∂

∂x

(
A⊥

∂φ̄

∂x

)
, in [0, Lx]× [0, Lz] ,

∂zφ
′ = 0 , z ∈ {0, Lz} ,

φ′ = 0 , x ∈ {0, Lx} ,
φ′ = 0 , in [0, Lx] .

(8)

Now, let us consider a monotonic asymptotic parameter, for instance a non-increasing func-
tion, with very strong variations along the z-coordinate, i.e.

ε(0)� ε(Lz).

Integrating the fluctuation equation along z and by using the mean equation, we obtain

−
A‖
ε

∂φ′

∂z

∣∣∣∣
z=Lz

+
A‖
ε

∂φ′

∂z

∣∣∣∣
z=0

= 0 .

For large variations of ε, due to the computer finite precision arithmetic, this equation de-
generate into

−
A‖
ε

∂φ′

∂z

∣∣∣∣
z=Lz

= 0.

This means the choice of the boundary condition substituted by the well posedness condition
(either the zero mean constraint or the Dirichlet boundary condition) should be made with
care. The asymptotic preserving property is preserved by keeping the Neumann condition on
the boundary where the anisotropy is the weakest (largest value of ε).

2.3 A finite difference space discretization

The Cartesian mesh is defined by the nodes at position (xi, zk) with

xi = (i− 1/2)∆x , zk = (k − 1/2)∆z , ∀(i, k) ∈ [1,Nx]× [1,Nz] ,

and ∆x = Lx/(Nx − 2), ∆z = Lz/(Nz − 2). Let Φ′h = ((φ′h)i,k) be the vector containing
(φ′h)i,k the approximation of φ′(xi, zk) for (i, k) ∈ [1,Nx] × [1,Nz] and Φ̄h = (φ̄h)i with
(φ̄h)i ≈ φ̄(xi), i ∈ [1,Nx]. The discrete projector onto the mean functions is defined for any
vector (Φh) = (φh)i,k as

Πh(Φh)i =
1

Lz

Nz−1∑
k=2

∆z (φh)i,k . (9)

Finally, we introduce the bijection I: (i, k) ∈ [1,Nx] × [1,Nz] → I(i, k) ∈ [1,Nx · Nz].
This numerotation will be defined in the next sections. With these notations, the discrete
operators can be defined.
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Definition 2.1. We denote Ā⊥ and A⊥ the RNx×Nx and R(NxNz)×(Nx) matrices defined as

(
Ā⊥Φ̄h

)
i

=



1

2

(
(φ̄h)i + (φ̄h)i+1

)
i = 1 ,

(Ā⊥)i+1/2

∆x
(∂hxΦ̄h)i+1/2 −

(Ā⊥)i−1/2
∆x

(∂hxΦ̄h)i−1/2 , i ∈ [2,Nx − 1] ,

1

2

(
(φ̄h)i−1 + (φ̄h)i

)
i = Nx ;

(10a)

(
A⊥Φ̄h

)
I(i,k)

=


0 i ∈ {1,Nx},
(A⊥)i+1/2,k

∆x
(∂hxΦ̄h)i+1/2

−
(A⊥)i−1/2,k

∆x
(∂hxΦ̄h)i−1/2 ,

(i, k) ∈ [2,Nx − 1]× [1,Nz] ;
(10b)

with

(∂hxΦ̄h)i+1/2 =
1

∆x

(
(φ̄h)i+1 − (φ̄h)i

)
. (10c)

A similar definition is proposed for the discrete operators applied to the component of
the solution with non vanishing aligned gradient.

Definition 2.2. We denote by Ā⊥ ∈ R(Nx)×(NxNz), A⊥ ∈ R(NxNz)×(NxNz) and A‖ ∈ R(NxNz)×(NxNz)

the matrices verifying(
Ā⊥Φ′h

)
i

=

{
0 , i ∈ {1,Nx} ,
(Πh(Ψh))i , i ∈ [2,Nx − 1] ;

(11a)

where Ψh = (ψh)i,k is the vector defined by

(ψh)i,k =
(A⊥)i+1/2,k

∆x
(∂hxΦ′h)i+1/2,k −

(A⊥)i−1/2,k
∆x

(∂hxΦ′h)i−1/2,k , (i, k) ∈ [2,Nx − 1]× [1,Nz] ;

(A⊥Φ′h)I(i,k) =



1

2

(
(φ′h)i,k + (φ′h)i+1,k

)
, (i, k) ∈ {1} × [1,Nz] ,

(A⊥)i+1/2,k

∆x
(∂hxφ

′
h)i+1/2,k

−
(A⊥)i−1/2,k

∆x
(∂hxφ

′
h)i−1/2,k ,

(i, k) ∈ [2,Nx − 1]× [1,Nz] ,

1

2

(
(φ′h)i−1,k + (φ′h)i,k

)
, (i, k) ∈ {Nx} × [1,Nz] ,

(11b)

(
A‖Φ′h

)
I(i,k)

=



(∂hz φ
′
h)i,k+1/2 , (i, k) ∈ [2,Nx − 1]× {1} ,

(∂hz φ
′
h)i,k−1/2 , (i, k) ∈ [2,Nx − 1]× {Nz} ,

0 , (i, k) ∈ {1,Nx} × [1,Nz] ,

(A‖)i,k+1/2

∆z
(∂hz φ

′
h)i,k+1/2

−
(A‖)i,k−1/2

∆z
(∂hz φ

′
h)i,k−1/2 ,

(i, k) ∈ [2,Nx − 1]× [2,Nz − 1] ;

(11c)
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(
AM
‖ Φ′h

)
I(i,k)

=



(∂hz φ
′
h)i,k+1/2 , (i, k) ∈ [2,Nx − 1]× {1} ,

(Πh(Φ
′
h))i , (i, k) ∈ [2,Nx − 1]× {Nz} ,

0 , (i, k) ∈ {1,Nx} × [1,Nz] ,

(A‖)i,k+1/2

∆z
(∂hz φ

′
h)i,k+1/2

−
(A‖)i,k−1/2

∆z
(∂hz φ

′
h)i,k−1/2 ,

(i, k) ∈ [2,Nx − 1]× [2,Nz − 1] ;

(11d)

(
AD
‖ Φ′h

)
I(i,k)

=



(∂hz φ
′
h)i,k+1/2 , (i, k) ∈ [2,Nx − 1]× {1} ,

1

2

(
(Φ′h)i,k−1 + (Φ′h)i,k

)
, (i, k) ∈ [2,Nx − 1]× {Nz} ,

0 , (i, k) ∈ {1,Nx} × [1,Nz] ,

(A‖)i,k+1/2

∆z
(∂hz φ

′
h)i,k+1/2

−
(A‖)i,k−1/2

∆z
(∂hz φ

′
h)i,k−1/2 ,

(i, k) ∈ [2,Nx − 1]× [2,Nz − 1] ;

(11e)

with

(∂hxΦ′h)i+1/2,k =
1

∆x

(
(φ′h)i+1,k − (φ′h)i,k

)
,

(∂hzΦ′h)i,k+1/2 =
1

∆z

(
(φ′h)i,k+1 − (φ′h)i,k

)
.

(11f)

With these definitions we can state the finite differenced system with a discrete analog
of the proposition 2.1

Proposition 2.3. Using the definitions 2.1 and 2.2, the set of equations (5a–6) and (7) are
discretized by the linear system(

Ā⊥ Ā⊥
εA⊥ εA⊥ + Aα

‖

)(
Φ̄h

Φ′h

)
=

(
F̄h
εFh

)
(12a)

where Aα
‖ stands for AM

‖ or AD
‖ , and

(Fh)I(i,k) =

{
0 , i ∈ {1,Nx} or k = Nz ,

f(xi, zk) , (i, k) ∈ [2,Nx − 1]× [1,Nz − 1] .
(12b)

(F̄h)i =

{
0 , i ∈ {1,Nx} ,
(Πh(Fh))i , i ∈ [2,Nx − 1] ;

(12c)

The solution (Φ̄h,Φ
′
h) of the linear system (12) verifies

(∂hzΦ′h)i,Nz−1/2 = 0, i ∈ [2,Nx − 1]. (13)

The Singular Perturbation problem (2) is discretized thanks to(
εA⊥ + A‖

)
Φh = εFh . (14)

9



Proof. The consistency follows from the definition of the discrete operators. To establish the
property (13), the equation providing Φ′h is operated to write

Aα
‖Φ
′
h = ε

(
Fh −A⊥Φ̄h − A⊥Φ′h

)
.

Summing the lines of this equation over k = 2, . . . ,Nz−1 for any i ∈ [2,Nx−1] yields, owing
to the conservative discretization of Aα

‖

(A‖)i,Nz−1/2(∂
h
zΦ′h)i,Nz−1/2 − (A‖)i,3/2(∂

h
zΦ′h)i,3/2 = Lz

(
Ā⊥Φ̄h + Ā⊥Φ′h − F̄h

)
i
.

The right hand side of this equation is the i-th line of the linear system providing Φ̄h in
(12a) and therefore vanishes.

We can now state that the AP discretizations give rise to linear systems with a condition
number uniformly bounded with respect to ε while the matrix of the standard discretization
has a condition number which grows linearly with ε−1.

Proposition 2.4. Assuming A⊥ = A‖ = 1 the matrices
(
εA⊥ + Aα

‖

)
have a condition

number uniformly bounded with respect to ε,

Cond2

(
A⊥ + Aα

‖
)

=
max
i

(λi) +
1

ε
max
k

(`αk )

min
i

(λi) +
1

ε
min
k

(`αk )
. (15a)

The condition number of the matrix
(
εA⊥ + A‖

)
is an increasing linear function of ε−1 with

Cond2

(
εA⊥ + A‖

)
=

max
i

(λi) +
1

ε
max
k

(`k)

min
i

(λi)
, (15b)

with

λi =
4

(∆x)2
sin2

(
πk

2(Nx − 2)

)
, i = 1, . . . ,Nx − 2

`k =
4

(∆z)2
sin2

(
π (k − 1)

Nz − 2

)
, `Dk =

4

(∆z)2
sin2

(
π (k − 1/2)

2(Nz − 1)

)
, k = 1, . . . ,Nz − 2 ,

`Mk =
4

(∆z)2
sin2

(
π k

2(Nz − 2)

)
, k = 1, . . . ,Nz − 3 , `MNz−2 =

1

∆z2
.

(15c)

The proof of this proposition is deferred to appendix A.
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2.4 Strategy for an efficient Asymptotic-Preserving iterative res-
olution

2.4.1 Iterative resolution process

The main advantage of the AP formulations introduced in this paper is to avoid a Saddle
point problem. Incorporating the zero mean constraint in the system matrix brings to main
advantages. This is beneficial for the efficiency of the method, since it reduces the size
of matrix, the unknowns associated to the Lagrangian being dropped. However, the gain
remains marginal. Indeed the size of the Lagragian block counts Nx lines when the one
associated to solution component is Nx · Nz. The second advantage of these formulations is
related to the property of the matrix εA⊥ + Aα

‖ which is invertible for ε ≥ 0. Moreover the
numerical methods used for standard elliptic problem should be efficient for the resolution
of this problem. This is a property we wish to exploit in order to improve the efficiency of
the AP method. The two components of the solution are thus iteratively updated , until
convergence, thanks to the external iterations

Ā⊥Φ̄
(k+1)
h = F̄h − A⊥(Φ′h)

(k), (16a)(
εA⊥ + Aα

‖
)

(Φ′h)
(k+1) = εFh − εA⊥Φ̄

(k+1)
h . (16b)

A similar iterative resolution was considered in the first developments of the method [18, 8]
however, with the Saddle point problem formulation solved by sparse direct solvers. The sys-
tems providing both components of the solution in the new formulations have the properties
common to regular elliptic problems for which preconditioners can easily be constructed.
Other numerical methods classically efficient for elliptic problems, for instance multigrid
methods, should provide efficient resolution. We also aim to take advantage of one impor-
tant property of the solution decomposition. One of the component only depends on the
perpendicular coordinates. Therefore, the computational cost of this part of the solution
is negligible compared to that of the three dimensional part. The strategy developed here,
consists therefore in performing few internal iterations, in order to update the three dimen-
sional component with a poor precision, then to compute a precise iterate of the less resource
demanding two dimensional one. The purpose of such a procedure is to offset the overhead
characteristic of AP formulations, which requires the resolution of the system for two un-
knowns. By this mean, we wish to reduce the computational requirements of the AP method
to that of the system providing the component with non vanishing aligned gradient, which
should be close to the computational effort required to solve a standard elliptic problem.

Remark 2.2. Note that the iterative resolution (16) does not carry out iterates compliant
with the boundary conditions along the z-coordinate, i.e. with (∂hz φ

′k)i,Nz = 0. Indeed,
summing the lines of the discrete fluctuation equation (16b) yields

(A‖)i,Nz−1/2

Lz

(
∂hzΦ′h

)
i,Nz−1/2

−
(A‖)i,3/2
Lz

(
∂hzΦ′h

)
i,3/2

= −ε
(
Ā⊥Φ̄

(k+1)
h + Ā⊥Φ

′(k+1)
h − F̄h

)
i

= −εĀ⊥(Φ
′(k+1)
h − Φ

′(k)
h )i.

11



However, the right hand side of this equation vanishnig at convergence, the consistency with
the set of boundary conditions is thus recovered.

2.4.2 Control of the internal iterations

In the sequel the internal iterations refer to the update of (Φ′h)
(k+1) thanks to Φ̄

(k+1)
h by solving

(16b). The convergence of the iterative method implemented to this end (a preconditionned
Krylov method) is classically controlled by means of a backward error analysis which is
reworked in order to enslave the convergence of the internal iterations with that of the
external iterations alternating (16a) and (16b)).

Two controls are defined for the resolution of the problem (16b)

τ
(k+1,I)
R := ‖εA⊥Φ̄

(k+1)
h − εFh‖1/‖r(k+1,I))‖1 , (17a)

τ
(k+1,I)
A := ‖r(k+1,0‖1/‖r(k+1,I))‖1 ,

r(k+1,I) :=
(
εA⊥ + AM

‖
)

(Φ′h)
(k,I) + εA⊥Φ̄

(k+1)
h − εFh ;

(17b)

where k and I denote respectively the current external and internal iteration count. The
new iterate (Φ′h)

(k+1) := (Φ′h)
(k+1,I) is obtained for an internal iteration count I verifying

one of these two conditions

τ
(k+1,I)
R < ER , (18a)

τ
(k+1,I)
A < α , (18b)

where ER and α are parameters defining the precision required for the iterative solver.
The criterion τ

(k+1,I)
R controls the precision of the computations relative to the norm of

the right hand side of the system (16b). It is classically referred to as the relative residual

control. The parameter τ
(k+1,I)
A evaluates the initial residual associated to the computation

of (Φ′h)
(k+1), α < 1 being the decreasing factor which defines a convergence criterion more

and more stringent with the increase of the external iteration count. This is related to the
absolute residual norm tolerance classically implemented to monitor iterative solvers based
on Krylov subspace methods [31, 32].

During the first external iterations k ∼ 1, ‖r(k+1,0)‖1 is large, therefore a coarse precision
is required for the internal iterations. Note that a tight convergence of the internal iterations
would be ineffective since the initial estimates of Φ̄h are not precise either. Conversely, for
large values of k the precision imposed to the internal iterations is more demanding since
the ‖r(k+1,0)‖1 → 0 with k → +∞. By this means, the convergence of the more demanding
iterative solver, the one carrying out the iterates of the three dimensional component Φh, is
more and more severe with the precision of Φ̄

(k+1)
h improved with the external iterations.

2.4.3 Control of the external iterations

Two types of criteria are combined to control the external iterations. The first one is the
number of internal iterations I required to achieve convergence. The convergence of the

12



external iterations are assumed when the convergence of the internal ones is stopped by the
criterion (18a). This is diagnosed by I = 1 since the value of α is small enough to assume
that the residual norm can not be decreased by a factor α in a single iteration. This means
that the computation of the three dimensional component has reached the required precision
and that the other component will not be improved either.

The second criterion relies on the difference of two consecutive iterates i.e. with

τS := ‖(Φ′h)(k+1) − (Φ′h)
(k)‖2/‖(Φ′h)(k+1)‖2 , (19)

the convergence of the external iterations being assumed when this criterion is below a given
threshold τS < ES. The algorithm of iterative resolution is described in Algorithm 1.

Algorithm 1 Iterative resolution of the AP Schemes: controls of the internal and external
iterations.

1: Initialize the convergence tolerances ER � 1, ES � 1 and α < 1.
2: Initialize (Φ′h)

(0) and solve for (Φ̄h)
(1) and (Φ′h)

(1).
3: Initialize the internal iteration count I =∞.
4: Initialize the External Iteration count k = 1.
5: while (I > 1 and τS > ES) do
6: Compute (Φ̄h)

(k+1) by solving the equation (16a).

7: Improve (Φ′h)
(k+1,I) thanks to Eq. (16b) until τ

(k+1,I)
A < α or τ

(k+1,I)
R < ER.

8: Set (Φ′h)
(k+1) := (Φ′h)

(k+1,I).
9: Update the actual value I from the internal iteration solver.

10: Set k = k + 1.
11: end while

3 Numerical investigations

3.1 Setup definition

A manufactured solution is carried out in order to validate the numerical methods by com-
parison with analytic estimates. For two dimensional problems the following solution will
be used

φ(x, y, z) = sin

(
4πx

Lx

)
sin

(
4πy

Ly

)(
1 + ε cos

(
2πz

Lz

))
, (20a)

with the diffusion coefficients defined by

Ax(x, y, z) = 1 + xz2, Ay(x, y, z) = (1 + yz2) , A‖(x, y, z) = 1 + xz. (20b)

The two dimensional setup is derived from (20) by setting y = Ly/8 and A⊥ = Ax. The
function f is analytically computed to define the right hand side of the problem. Het-
erogeneous anisotropies will also be investigated with an asymptotic parameter undergoing
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large variations in the computational domain. To this end the following definition will be
considered

ε(z) =
1

2
(εmax(1 + tanh(R(Lz/2− z))) + εmin(1− tanh(R(Lz/2− z)))) , R = 35 . (21)

The bounds εmin and εmax are test case specific and will be detailed in the next lines.

3.2 Conditioning of the system matrix

In this section we analyze the condition number of the system matrices issued from the
discretization of the different formulations. These investigations are focused on the system
providing the component of the solution with non vanishing parallel gradient. The aim is to
provide a numerical estimation of the condition number evolution with respect to either the
mesh size or the asymptotic parameter. This analysis is carried out for a two dimensional
framework with homogeneous asymptotic parameter and diffusion coefficients (A⊥ = A‖ = 1)
which is compliant with the estimations of Prop. 2.4.

The computed estimates of the matrices condition number are compared to the analytic
estimates provided by Prop. 2.4 on Fig. 1. A linear growth is observed for the matrix defined
by Eq. (14) stemming from the discretization of the singular problem. The condition numbers
of the AP schemes remain almost uniform. The values computed are in a good agreement
with the analytic estimates.
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Figure 1: Condition number estimates for the discretization matrices of the Singular Pertur-

bation problem
(
εA⊥ + A‖

)
and the AP schemes

(
εA⊥ + Aα

‖

)
denoted AP(M) and AP(D),

computed by the MUMPS solver [1, 2]) as functions of the anisotropy ratio. The analytic
estimates (An.) derived in Prop. 2.4 are plotted against the approximation computed from
the system matrices for meshes with 100× 100 and 1000× 1000 cells.
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3.3 Convergence of the method

The investigations performed in this section are devoted to demonstrate the numerical con-
vergence of the method and that the formulations avoiding the Saddle point problem preserve
the properties of AP-schemes. The computations are limited to two dimensional simulations
in order to easily carry out numerical approximations on refined meshes. A solution is man-
ufactured in order to quantify precisely the approximation error of the numerical method
with either a uniform ε parameter or, an anisotropy ratio with spatial variations. In the
sequel, we will consider the following solution

The aim here is to investigate the convergence of the new AP formulations with either
a direct resolution of the system as stated by Eq. (12) or the iterative process (16). We
emphasize that standard preconditioners are ineffective for the resolution of the global system
(a similar conclusion was made in [8], this issue is also pointed out in [3]). Therefore the
convergence of (non-preconditionned) iterative solvers is too slow to be considered as an
alternative to sparse direct solvers. The convergence results are reported on Fig. 2. The two
AP formulations providing equivalent convergence results, only one plot is displayed for both
formulations. The MUMPS solver [1, 2] is used for direct resolution. The inner problems of
the iterative resolution are solved by standard a Krylov method, namely a flexible GEMRES
method with a Krylov subspace size equal to 10 (FGEMRES(10)) preconditionned thanks to
an incomplete LU factorization with diagonal compensation (ILUD with dropping threshold
set to 10−3) [31, 32]. From Fig. 2 we observe that the convergence rate of the methods is
unaffected by the anisotropy strength.
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Figure 2: The convergence rate for the AP schemes for homogeneous anisotropy ratios:
Error norms between the numerical approximation and the analytic solution of the solution
component with a non vanishing aligned gradient as functions of the mesh size.
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The same investigations are performed for heterogeneous anisotropy ratios, with ε defined
by Eq. (21) and εmin ranging from 1 to 10−20 εmax being set to 1. The results are plotted on
Fig. 3 with similar conclusions to that of the homogeneous case.
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Figure 3: Convergence rate for the AP schemes for heterogeneous anisotropy ratios: Er-
ror norms between the numerical approximation and the analytic solution of the solution
component with a non vanishing aligned gradient as functions of the mesh size.

3.4 Efficiency improvements

In this section a comparison of the numerical efficiency of the different solvers is conducted.
As a reference the direct sparse solver used so far is considered. The aim of this section
is to highlight the tremendous gains in efficiency the methods introduced in this paper
bring, compared to the precedent achievements. In particular, it should be pointed out that
sparse direct solvers, while competitive in term of computational efforts for two dimensional
problems, give a picture totally different for problem solved in a three dimensional space.
Hence the motivation of the present work outlined in the next lines.

3.4.1 Lexicographic orderings

The importance of the unknowns ordering on the preconditionning efficiency is outlined in
the literature [4]. For anisotropic diffusion, it is observed that an ordering along the direction
with a weak diffusion is more efficient, which is somehow counter-intuitive [9]. We provide
here a numerical investigation of different lexicographic orderings and analyze their influence
on the iterative solver efficiency.
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The ordering is identified in the precedent sections by the function I. Here we define I1
a weak-first ordering, I2 a weak-last ordering and I3 a weak-second ordering :

I1 = i+ (j − 1)× Nx + (k − 1)× Nx × Ny,

I2 = k + (j − 1)× Nz + (i− 1)× Ny × Nz,

I3 = j + (k − 1)× Ny + (i− 1)× Ny × Nz.

(22)

Note that with the ordering defined by I2 the unknowns along the anisotropy direction are
contiguous. Conversely, with definition I1 a change in the direction of the anisotropy (related
to k) is translated by a large variation (proportional to Nx × Ny) of the associated matrix
rank.

The aim here is to analyze the effectiveness of the resolution of the three dimensional
problems which represent barely the entire computational effort of the AP scheme resolution.
The exact two dimensional component of the solution is injected into the three dimensional
problem which is solved only once. The preconditionner is computed by a standard in-
complete LU factorization implementing a dropping strategy and a diagonal compensation
(ILUD with a default dropping parameter set to 10−3) complementing a GEMRES method
[31, 32]. The results relating the resolution of the three dimensional component of the AP
formulations as well as the resolution of the orginal problem are reported in Table 1.

Regarding the resolution of the isotropic original (SP) problem, i.e. for ε = 1, none of the
orderings can be picked out as a best guess regarding the overall computational time. With
respect to the precondionner density the strong-last ordering I1 is slightly more efficient than
the strong-first orderings I2 and I3 that require more time to compute the preconditionner
and more memory storage, in return for better convergence rates. For a weak anisotropy
strength (ε = 10−3), the strong-last ordering I1 is observed to be the most efficient, the weak-
last ordering I2 being the most resource demanding which is consistent with the conclusion
in [9]. However the efficiency improvement remains moderate, lower than 10% on the overall
computational time.

For the AP schemes, the weak-last orderings I2 and I3 are more efficient than the strong-
last ordering I1. This is particularly striking for the isotropic framework and specifically for
the AP(M) formulation. This differences trail off for anisotropic configurations the weak-last
ordering I2 remaining the most efficient out of the panel, however still with a small margin
(at most 20%) regarding the computational time. In the sequel the weak-last orderings I2 is
used for all the computations.

Note that for most severe anisotropies (ε > 10−4) the convergence of the iterations can
hardly be achieved for the SP problem whatever the values of the parameter used to compute
the preconditionner. Conversely, the performance of the iterative solver remains unaffected
for both AP formulations. Another important feature should be pointed out regarding the
effectiveness of the approach developed here. Note, indeed, that the resolution of an an-
isotropic problem is less time and memory consuming than that of the isotropic problem.
The most efficient AP formulation proves to be the AP(M) formulation with a computational
time barley divided by 102 compared to the resolution of an isotropic SP problem by iterative
methods.
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Table 1: Efficiency of the preconditioner with respect to the orderings defined by Eq. (22)
on a (100× 100× 100) mesh for the matrices (εA⊥+A‖) and (εA⊥+Aα

‖ ) issued respectively

from the discretization of the Singular Perturbation problem (SP) and the AP(M) and AP(D)
formulations: preconditioner non zeros elements count relative to that of the matrix, time of
computation of the preconditioner, number of iterations to reach convergence, computational
time for the resolution and total computational time (preconditioner and iterations).

Ordering
Density
Time Prec.
Its
Time Sol.
Total Time

(a) SP problem with ε = 1

I1 I2 I3
10.68 12.43 13.04
1.18e+1 1.63e+1 1.99e+1
52 27 26
1.16e+1 7.00 7.10
2.34e+1 2.33e+1 2.70e+1

(b) SP problem with ε = 10−3

I1 I2 I3
0.48 0.47 0.47
1.04e-1 1.04e-1 1.04e-1
44 47 47
1.62 1.84 1.70
1.72 1.94 1.80

Ordering
Density
Time Prec.
Its
Time Sol.
Total Time

(c) AP(M) scheme with ε = 1

I1 I2 I3
61.91 14.19 14.74
4.74e+2 3.06e+1 4.59e+1
47 51 44
5.92e+1 1.66e+1 1.49e+1
5.33e+2 4.72e+1 6.08e+1

(d) AP(M) scheme with ε = 10−3

I1 I2 I3
0.50 0.50 0.50
1.92e-1 1.44e-1 1.48e-1
3 3 3
1.48e-1 1.44e-1 1.36e-1
3.40e-1 2.88e-1 2.84e-1

Ordering
Density
Time Prec.
Its
Time Sol.
Total Time

(e) AP(D) scheme with ε = 1

I1 I2 I3
12.85 13.31 12.86
1.96e+2 2.06e+1 1.95e+1
39 29 29
1.11e+1 8.52 8.30
3.07e+2 2.91e+1 2.78e+1

(f) AP(D) scheme with ε = 10−3

I1 I2 I3
0.57 0.55 0.57
1.08e-1 1.08e-1 1.08e-1
46 36 46
1.80 1.51 1.84
1.91 1.62 1.95
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Finally the resolution of the entire anisotropic problem is investigated. Two alternatives
are proposed, the first one consists in solving the matrix stemming from the discretization of
the Singular-Perturbation problem thanks to a sparse direct solver. This approach is effective
for moderate anisotropy ratios, however the precision of the numerical approximation can not
be preserved with the matrix conditioning deterioration at large anisotropy strengths. This
fact has already been pointed out in precedent works (see for instance [18]). The second
approach relies on the iterative resolution of the AP discretizations. The computational
time and the memory usage of both methods are presented on Fig. 4. The advantage of the
iterative AP methods are all the more effective as the anisotropy is severe. In particular the
bad scaling of the memory footprint and time consumption of the sparse direct solver for
three dimensional problems appears clearly. The resolution of the problem requires 90, 230
and 400 times more storage for the factorized matrix compared to that of the discretized
SP problem on meshes with 503, 1003 and 1503. To give some order of magnitudes, the
factorized matrix consumes 0.3, 4 and 78 Go of memory for the mesh. For iterative AP
resolutions, the memory footprint is significantly reduced for isotropic problems (ε = 1).
Due to the discretization of the mean constraints the matrix of the AP(M) scheme consumes
more memory than that of the SP model, however the preconditioner is less expensive than
the sparse factorization with a 0.01, 0.1 and 0.4 Go memory footprint for the isotropic case
and 7 · 10−4, 7 · 10−3 and 2.5 · 10−2 Go for ε = 10−3. This is 3 to 4 orders of magnitude less
compared to the sparse solver in the most favorable configurations. The time consumption
follows the same trend, with a gain for the largest mesh between 10 to 70 for the isotropic
computations and 300 to 2 · 104 for ε < 10−3. Note that none of the settings for either
the direct sparse solver or the iterative methods are optimal, significant gains may still be
expected thanks to specific tuning.

3.5 Demonstrative computations in the framework of ionospheric
plasma simulation

The purpose of this section is to outline further the advantages of an iterative resolution
of the system matrix for time evolving problems. Indeed, a good approximation of the
solution can be provided by the solution of the preceding time step which may improve the
efficiency of the method. With this aim, a real scale problem is investigated, in the frame of
ionospheric plasma simulation thanks to the so-called Dynamo-3D model [5]. In its simplest
form, this model couples a three dimensional transport equation evolving the plasma density
n to a three dimensional anisotropic elliptic equation providing the electric potential φ, the
velocity of the plasma u being deduced from the electric field thanks to a mobility relation.
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Table 2: Iterative resolution of the AP(M) and AP(D) schemes for different mesh sizes and
anisotropy ratios: external iterations and total iteration counts of the GEMRES method
for the resolution of the three dimensional problem, total computational time (precondi-
tioner construction and resolution of the coupled system) and error between the numerical
approximation and the exact solution in `1-norm.

ε α

1

Ex. It
Tot. It
Time
Error

10−2

Ex. It
Tot. It
Time
Error

10−4

Ex. It
Tot. It
Time
Error

(a) AP (M), 50× 50× 50.

10−1 10−2 10−3 10−4

6 4 4 4
14 33 53 65
6.04e-1 1.48 2.12 2.63
3.22e-3 2.14e-3 2.14e-3 2.14e-3

2 3 4 3
3 7 18 28
7.60e-2 1.68e-1 4.24e-1 6.48e-1
2.19e-3 2.14e-3 2.14e-3 2.14e-3

1 1 1 2
1 1 1 4
1.20e-2 1.20e-2 1.20e-2 3.20e-2
2.14e-3 2.14e-3 2.14e-3 2.14e-3

(b) AP (D), 50× 50× 50.

10−1 10−2 10−3 10−4

75 75 75 75
300 450 600 750
9.94 1.5e+1 2.0e+1 2.5e+1
1.86e-3 1.84e-3 1.84e-3 1.84e-3

14 10 10 10
27 48 68 86
5.88e-1 9.70e-1 1.35 1.73
2.14e-3 2.13e-3 2.13e-3 2.13e-3

1 1 4 4
1 1 8 11
1.20e-2 1.20e-2 6.00e-2 7.20e-2
2.14e-3 2.14e-3 2.14e-4 2.14e-4

ε α

1

Ex. It
Tot. It
Time
Error

10−2

Ex. It
Tot. It
Time
Error

10−4

Ex. It
Tot. It
Time
Error

(c) AP (M), 100× 100× 100.

10−1 10−2 10−3 10−4

3 6 4 4
13 69 114 142
5.20 2.6e+1 4.1e+1 5.2e+1
6.92e-3 5.35e-4 5.29e-4 5.29e-4

2 2 3 3
5 9 23 43
1.14 2.00 4.97 9.14
7.15e-4 5.35e-4 5.34e-4 5.34e-4

1 1 2 2
1 1 4 4
9.2e-2 9.2e-2 2.68e-1 3.4e-1
5.34e-4 5.34e-4 5.34e-4 5.34e-4

(d) AP (D), 100× 100× 100.

10−1 10−2 10−3 10−4

74 74 74 74
444 738 1036 1300
1.4e+2 2.3e+2 3.2e+2 4.0e+2
7.07e-4 6.90e-4 6.90e-4 6.90e-4

11 10 10 10
51 81 124 168
1.1e+1 1.7e+1 2.5e+1 3.3e+1
5.32e-4 5.31e-4 5.31e-4 5.31e-4

1 1 4 4
1 1 11 15
8.80e-2 8.80e-2 5.68e-1 7.16e-1
5.35e-4 5.35e-4 5.34e-4 5.34e-4
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Figure 4: Cpu usage (top) and memory footprint (bottom) of a sparse direct solver for
the Singular-Perturbation problem compared to the iterative resolution of the AP(M) and
AP(D) schemes on meshes with 503, 1003, and 1503 cells: (top) computational time (Sec.)
to solve the complete system (bottom) number of non zeros elements in the matrix of the
Singular-Perturbation problem (MUMPS-SP), the AP(M) and the AP(D) formulations as
well as the number of non zeros elements stored in the factorized matrix (MUMPS solver)
and the preconditionner (AP methods). For the AP-schemes two setups are reported, one
for ε = 1 the other for ε = 10−3. 21



The simplified version of the model writes

∂n

∂t
+∇ · (nu) = 0 , (23a)

−∇ ·
(
nM∇φ

)
= −∇ ·

(
nMi (κεun)− nMe (εun)

)
, (23b)

u = Mi (E + κεun) , (23c)

E = −∇φ ,

where the mobility matrices Mα, α=e,i and M are

Me =

 0 −1 0

1 0 0

0 0 1/ε

 , Mi =

 0 1 0

−1 0 0

0 0 1/κε

 , M =

 κε 0 0

0 κε 0

0 0 1/ε

 . (23d)

In these equations the velocity of the neutral particles is denoted un, κ = 102 being the
ratio of particle mobility between eletron and ion. The anisotropy variable is denoted by
ε, which is much strong in high altitude of ionosphere (ε � 1) and becomes weak in low
altitude ionosphere. Furthermore, all physical quantities in equations (23) are normalized in
following simulation.

Introducing the operator ∇⊥ denoting the derivatives with respect to the transverse
coordinates x and y, the equation providing the electric potential is recast into

−∇⊥ · (nκε∇⊥φ)− ∂

∂z

(
n

ε

∂φ

∂z

)
= f, (24)

with the source term f defined as

f = − ∂

∂x
(nun,y) +

∂

∂y
(nun,x).

This simplified model is implemented in a computational domain Ω which consists of a
magnetic field tube. For these computations the curvature of the magnetic field lines are also
disregarded, the magnetic field being assumed aligned to the z-direction. The computational
domain is decomposed into Ωx × Ωy × Ωz = [−Lx, Lx]× [−Ly, Ly]× [0, Lz].

As a test case the development of the so-called Striation instability [6, 7] is reproduced
for the first time thanks to a model that carry out a three dimensional electric potential.
A uniform plasma density background (n = 1) is perturbed by an initial plasma bubble
(n = 2) submitted to a neutral wind un = (1, 0, 0)T , which initiates the developments of the
instability on the side of the bubble unexposed to the neutral wind, as depicted on Fig. 5.
Two frameworks are considered, defined by

CASE I: Uniform strong anisotropy, ε = 10−5 which prevails at the highest altitudes. In this
case the Dynamo model can be regarded as its asymptotic limit, the Striation model
[5], derived under the assumption of infinite parallel mobilities.
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Case I: t = 0. Case I: t = 2.4. Case I: t = 3.4.

CASE II: t = 0. CASE II: t = 6.4. CASE II: t = 10.

Figure 5: Striation simulation with the parameters defined by Case I (homogeneous
anisotropy) and Case II (heterogeneous ansitropy) carried on a mesh with (Nx,Ny,Nz) =
(300, 300, 300). Top: plasma density as a function of the space variables in a plane orthog-
onal to the magnetic field; Bottom: plasma density in the three dimensional magnetic flux
tube.
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CASE II: Variable anisotropy, ε ∈ [10−1, 10−5] which relates a larger range of altitudes, the
anisotropy being weaker at the lowest altitudes where the limit model is not valid.

The elliptic equation (23b) is discretized by the AP(M) scheme described in Sec. 2.3. For the
continuity equation (23a), we use the anti-dissipative advection scheme introduced in [35].
Finally, the advection velocities, depending on the potential, are computed thanks to stan-
dard second order finite difference methods.

The time evolution of the plasma density carried out on a mesh with 3003 (27 millions)
cells is reported on Fig. 5. The computations are in a good agreement with that of [7]
computed with the Striation model in which the anisotropic elliptic equation is substituted
by the limit problem verified by φ̄. However, this asymptotic limit of the Dynamo model is
not valid for intermediate anisotropy ratios as the ones considered in the CASE II.

The purpose here is also to outline the gains that are possible regarding the efficiency of
the computations taking advantage of the resolution of a time dependent problem. Indeed,
the solution φ at time tm defines a good guess to initiate the iterations providing the solution
at time tm+1. Furthermore, the same preconditionner can be carried out over multiple time
steps before being updated. This is experienced in this framework as reported on Fig. 6
and 7. Substantial savings are obtained in the computational time required to carry out
the solution. The number of internal iteration for the computation of the fluctuation (three
dimensional component) is roughly divided by two. Note that the number of iterations
required for the computation of φ̄ is also significantly reduced. The gains that follow a less
frequent preconditionner update is quite marginal with a decrease of the computational time
at best equal to 10%. The computational time required for the preconditionner update is
partially offset by an altered rate of convergence.
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(b) Computation of φ′.

Figure 6: Comparison of total iteration counts for the resolution of solution two components
fore the CASE I (CI) and CASE II configurations (CII) with (or without) the solution at
the precedent time step to initiate the iterative solver on mesh with 503, 1003 and 2003 cells.
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Figure 7: Computational time as a function of the preconditionner update frequency for
simulations carried out on a 1003 mesh with the setup CASE II. The reference (100%) is the
simulation computational time for a preconditionner update each time step.

4 Conclusions

This paper is devoted to the development of Asymptotic-Preserving methods for the efficient
three dimensional resolution of anisotropic elliptic problems. Precedent AP methods rely on
a reformulation of the equation into a Saddle point problem for which only sparse direct
solvers have been successfully operated and are limited to finite element discretizations. The
development of these AP methods to the finite difference framework is addressed in the
present paper. Two new Asympotic-Preserving formulations are also introduced with the
advantage to be free from the resolution of a Saddle point problem. In contrast to standard
methods, the condition number of the system matrices derived form these AP methods are
demonstrated to be uniformly bounded with respect to the anisotropy ratio. To this end,
we operate a decomposition of the solution into a component independent of the coordinate
aligned with magnetic field complemented with a three dimensional component. These two
functions verify elliptic problems for which classical solver can be efficiently implemented.
The resolution of the coupled system proposed here consists thus of a fixed point iteration
between the two components. We propose an enslavement of the internal iterations carried
out for the three dimensional component computation with that of the outer iterations
in order to preserve a computation cost of the AP methods comparable to that of the
resolution of an isotropic problem. These developments bring significant gains in comparisons
to precedent achievements with respect to memory and time consumption that are reduced
by many orders of magnitude. This makes possible to address more physically relevant
models on the required time and space scales addressed in a future work.
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A Estimations of the matrix condition numbers

An estimation of the condition number for different matrices stemming from the discretiza-
tion of the AP reformulations as well as the singular perturbation problem is provided in
this section. To this end, the diffusion coefficients are assumed to be equal to one, the pur-
pose being to outline the property of the different methods with respect to the asymptotic
parameter. In this simplified framework, the linear system associated with the discretization
of the singular perturbation problem (2) is recast into

1

(∆x)2
Mdd

N Φh +
1

ε

1

(∆z)2
ΦhMnn

N = Fh ,

with Φh = (φi,k)i,k=1,...,N , Fh = (fi,k)i,k=1,...,N , Md and MN four matrices of RN×N where

Mdd
N :=


2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2

 , Mnn
N :=


1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1

 .

The eigenvalues of the system matrix discretizing the problem (2) are denoted Λi,k , (i, k) =
1, . . . , N , they can be expressed thanks to (λi)i=1,...,N and (`nnk )k=1,...,N the eigenvalues of
respectively the matrices Mdd

N and Mnn
N , with

Λi,k =
1

(∆x)2
λi +

1

ε

1

(∆z)2
`nnk , (i, k) = 1, . . . , N . (25)

Similarly the AP system providing the component of the solution with non vanishing aligned
gradients can be stated as

1

(∆x)2
Mdd

N Φh +
1

ε

1

(∆z)2
ΦhMnm

N = Fh , (26a)

1

(∆x)2
Mdd

N Φh +
1

ε

1

(∆z)2
ΦhMnd

N = Gh , (26b)
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the matrices Mnm
N and Mnd

N being defined and analyzed thanks to the following lemma.

Lemma A.1. Let Mnd
N and Mnm

N be the matrices defined by

Mnd
N :=



1 −1 0 . . . . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . . . .

...
...

. . . −1 2 −1 0
0 . . . 0 −1 3 0
0 . . . 0 0 1 1


, Mnm

N :=


1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

1 . . . 1 0 2

 , (27a)

the eigenvalues of these matrices are

`ndk =

4 sin2

(
π(k − 1/2)

2(N − 1)

)
, k = 1, . . . , N − 1 ,

1 k = 1 ,
(27b)

`nmk =

4 sin2

(
π k

2N

)
, k = 1, . . . , N − 1 ,

1 k = 1 .
(27c)

The eigenvalues (λi)i=1,N and (`nnk )k=1,N of the matrices Mdd
N and Mnn

N are defined by

λi = 4 sin2

(
πi

2(N + 1)

)
, i = 1, . . . , N , (27d)

`nnk = 4 sin2

(
π(k − 1)

2N

)
, k = 1, . . . , N . (27e)

Proof. We prove that the matrix B := Mdm
N has the same eigenvalues as the matrix A ∈

RN×N , where

A :=



2 −1 0 . . . 0 0

−1 2 −1
. . .

...
...

0
. . . . . . . . . 0 0

...
. . . −1 2 −1 0

0 . . . 0 −1 2 0
0 . . . 0 0 0 1


, B :=


1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

1 . . . 1 0 2

 .

This is equivalent to prove that they have the same charateristic polynomial |A − λI| =
|B − λI|. By summing the first (N − 1) first rows to the last one, we obtain

|A− λI| = (1− λ)|AN−1| , |B − λI| = (1− λ)|BN | ,
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where AN−1 ∈ RN−1×N−1 and BN ∈ RN×N are defined as follows

AN−1 =


2− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

0 . . . 0 −1 2− λ

 , BN =


1− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

1 . . . 1 1 1

 .

The next step consists in stating that

|AN−1| = |BN |, (28)

which will be proved recursively. For N = 3, it is straightforward to obtain

|A2| = |B3| = (2− λ)2 − 1.

Then, we assume that the property (28) holds true until N ≤ m and prove it for m + 1.
Developing |Bm+1| with respect to the last column yields

|Bm+1| = |B′m|+ |Bm| ,

with B′m and Bm two matrices of Rm×m defined by

B′m =


1− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

0 . . . 0 −1 2− λ

 , Bm =


1− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

1 . . . 1 1 1

 .

From (28) we get |Am−1| = |Bm| which provides |Bm+1| = |B′m|+ |Am−1|. Finally, we note

|Am−1| =

∣∣∣∣∣∣∣∣∣∣∣∣

2− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

0 . . . 0 −1 2− λ

∣∣∣∣∣∣∣∣∣∣∣∣
m−1×m−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

0 . . . 0 −1 2− λ

∣∣∣∣∣∣∣∣∣∣∣∣
m×m

which gives

|Bm+1| = |B′m|+ |Am−1| =

∣∣∣∣∣∣∣∣∣∣∣∣

2− λ −1 0 . . . 0

−1 2− λ −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2− λ −1

0 . . . 0 −1 2− λ

∣∣∣∣∣∣∣∣∣∣∣∣
m×m

= |Am| .

The other results are demonstrated using similar arguments.
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B Derivation of the simplified Dynamo model

The Dynamo model originally derived in [5] consists of the set of equations (23) but with
the following mobility matrices

Me =


µPe −µHe 0

µHe µPe 0

0 0 µ‖e

 , Mi =


µPi µHi 0

−µHi µPi 0

0 0 µ
‖
i

 , M =


µP −µH 0

µH µP 0

0 0 µ‖

 ,

the so-called field aligned, Pedersen and Hall mobilities for the species α, namely µ
‖
α, µPα and

µHα , together with the total mobilities, are defined by

µPα =
κα

κ2α + |B|2
, µHα =

|B|
κ2α + |B|2

, µ‖α =
1

κα
,

µP = µPe + µPi , µH = κeµ
H
e + κiµ

H
i , µ‖ = µ‖e + µ

‖
i ,

(29)

with κα the reciprocal of the particle mobility

κα =
mανα
e

,

where e is the elementary charge, να being the collision frequency of the particles of species
α against the neutral which verifies

νe
νi

=

√
mi

me

. (30)

Under the assumption

κe
|B|
∼ ε,

κi
|B|
∼ κε , with ε� 1 , (31)

the following scaling relations for the Pedersen, Hall and field aligned mobilities hold true

µP ∼ 1

|B|2
(κe + κi) ∼ κε , µH ∼ 1

|B|2
(
κ2e − κ2i

)
∼ κ2ε2 ,

µPi κi − µPe κe ∼
1

|B|2
κ2e − κ2i
|B|2

∼ κ2ε2 , µHi κi + µHe κe ∼
κi + κe
|B|

∼ κε ,

µ
‖
iκi − µ‖eκe = 0 .

This demonstrates that µH can be neglected in front of µP in M while the contribution of
µPα may be omitted in Mα, hence the simplified system (23).
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