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Abstract. In this article we introduce a novel method for improving the accuracy of density recon-
structions based on markers pushed forward by some available particle code. The method relies on
the backward Lagrangian representation of the transported density, and it evaluates the backward flow
using the current position of point particles seen as flow markers. Compared to existing smooth particle
methods with either fixed or transformed shapes, the proposed reconstruction achieves higher locality
and accuracy. This is confirmed by our error analysis which shows a theoretical gain of one conver-
gence order compared to the LTP/QTP methods introduced in [8], and by numerical experiments that
demonstrate significative CPU gains and an improved robustness relative to the remapping period.

1. Introduction

Particle methods are a popular and efficient tool for the approximation of transport problems. Unfor-
tunately they suffer from weak convergence properties which often prevent an accurate representation
of the transported density.

To formalize the problem we consider an abstract transport equation

∂tf(t, x) + u(t, x) · ∇f(t, x) = 0, t ∈ [0, T ], x ∈ Rd (1.1)

associated with an initial data f0 : Rd → R, a final time T and a velocity field u : [0, T ] × Rd → Rd.
In most cases of interest, the velocity u depends on f through some self-consistent coupling and the
problem is non-linear. Here we shall leave this issue aside and assume that u is given and smooth, e.g.
L∞(0, T ;W 1;∞(Rd)), [28], so that there exist characteristic trajectories X(t) = X(t; s, x) solutions to

X ′(t) = u(t,X(t)), X(s) = x (1.2)

on [0, T ], for all x ∈ Rd and s ∈ [0, T ]. The corresponding flow Fs,t : x 7→ X(t) is then invertible and
satisfies (Fs,t)

−1 = Ft,s. In particular, the solution to (1.1) reads

f(t, x) = f0((F0,t)
−1(x)) for t ∈ [0, T ], x ∈ Rd. (1.3)

Specifically, as reliable particle solvers do exist for many specific problems, see e.g. [14, 6], we may
place ourself in the situation where we are given an accurate solver to push forward arbitrary sets of
markers along the forward flow. For simplicity we will assume that the computed flow is exact, and
we consider particles centers initially arranged on a cartesian grid of resolution h,

x0k = hk, k ∈ Zd. (1.4)

Thus, at time tn = n∆t, n ∈ N, we have at our disposal an unstructured set of particles of the form

xnk = F 0,n
ex (x0k), k ∈ Zd, with F 0,n

ex = F0,tn
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and we consider the problem of designing an accurate representation of the transported density f(tn).
In the standard approach [18, 3, 28], the initial density is first approximated by a weighted collection
of smooth “shape functions” centered on the particle positions, of the form

f0h,ε(x) =
∑
k∈Zd

w0
kϕε(x− x0k). (1.5)

Here ϕε(x) := ε−dϕ(ε−1x) is a smooth function with compact support (such as a B-spline or some
convolution kernel with vanishing moments [25]) and ε is a smoothing scale which may or may not
coincide with h. The weights are defined so that f0h,ε approximates f0 in a measure sense, for instance

with w0
k = hdf0(x0k), see [28, Sec. I.4], and they evolve according to the differential equation

w′k(t)− (∇ · u)
(
t, F0,t(x

0
k)
)
wk(t) = 0, wk(0) = w0

k.

The smooth particle approximation to fn is then given by

fnh,ε(x) =
∑
k∈Zd

wnkϕε(x− xnk) (1.6)

with wnk = wk(t
n). Provided some r-th order moment condition on the smoothing kernel ϕ, the classical

error estimate [28, Th. I.5.1] reads

‖f(tn)− fnh,ε‖Lq . εr‖f0‖W r,q + (h/ε)m‖f0‖Wm,q , 1 ≤ q ≤ ∞. (1.7)

Here we have assumed h . ε (meaning that h ≤ Cε for some constant independent of the expressed
quantities), and we have denoted

‖v‖W r,q(ω) := ‖v‖Lq(ω) +
r∑
s=1

|v|W s,q(ω) |v|W r,q(ω) := max
i

{ d∑
l1=1

· · ·
d∑

lr=1

‖∂l1 · · · ∂lrvi‖Lq(ω)

}
(1.8)

for functions in Sobolev spaces W r,q(ω) with ω ⊂ Rd, an for conciseness we drop the domain when
ω = Rd. For vectors it will be convenient to use the maximum norm ‖x‖∞ := maxi|xi| and the
associated ‖A‖∞ := maxi

∑
j |Ai,j | for matrices.

One can improve (1.7) by changing the initial weights w0
k to yield better quadrature formulas [11],

but in any case such kind of estimates show a weakness of the reconstruction (1.6), namely the need
to set ε � h as ε, h → 0, to guarantee the strong convergence of the approximated densities. As this
would lead to a computationally expensive overlapping of particles, in practice many particle codes
implement limited values of ε that appear to suffice for the accuracy of the trajectories. In the case
where the particles trajectories are exact, the theory indeed guarantees the weak convergence of the
approximated densities, independent of ε. Thus in the codes the lack of a sufficient particle overlapping
typically translates into strong oscillations in the numerical approximations.

To mitigate these oscillations many authors have proposed to use remapping techniques where new
weighted particles are periodically computed to approximate the transported density (1.6). The re-
sulting schemes are often referred to as forward semi-Lagrangian [16, 21, 26, 12, 15, 24] and they
have shown improved convergence rates based essentially on the fact that the frequent reinitializations
prevent the particles to become too irregularly distributed. However this has a cost. On the compu-
tational level, reinitializing the particles can be expensive and it may introduce numerical diffusion,
which conflicts with the conservative essence of the particle method. Advanced techniques have been
used to reduce this diffusion, such as high-order non-oscillatory remeshing schemes [24] or multiscale
methods, see e.g. [4, 5, 31].

In this article we take a different route and following a series of previous works [8, 10, 9] we introduce
a new lagrangian method to compute non-oscillatory density reconstructions, based on forward particle
methods.
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FROM PARTICLE METHODS TO FORWARD-BACKWARD LAGRANGIAN SCHEMES

The outline is as follows. In Section 2 we remind how transforming the smooth particle shapes to
better follow the characteristic flow allows to reconstruct accurate approximations to the density, at
the price of extended particle supports. In Section 3 we then present our new method, for which we
provide a priori error estimates in Section 4, and numerical results in Section 5.

2. Accurate particle transport with LTP and QTP approximations

2.1. Using particle shapes with polynomial transformations

Following a natural idea investigated by several authors [20, 2, 11, 13, 1] who considered transform-
ing the smooth particle shapes according to the local variations of the flow, a numerical method to
improve the accuracy of the density reconstruction has been proposed and analysed in [8]. Again, the
approximated density is obtained as a superposition of weighted particles (now with ε = h),

fnh (x) =
∑
k∈Zd

wkϕ
n
h,k(x), x ∈ Rd, (2.1)

but here each particle shape ϕnh,k is transported from the initial one in (1.5) using a polynomial flow
defined as a local expansion of the exact backward flow

B0,n
ex = (F0,tn)−1.

Thus, at the first order the method uses a linearization of B0,n
ex around the k-th particle,

B0,n
h,k,(1) : x 7→ x0k +Dn

k (x− xnk)

with Dn
k an approximation to the (d× d) Jacobian matrix

J
B0,n

ex
(xnk) =

(
∂j(B

0,n
ex )i(x

n
k)
)
1≤i,j≤d, (2.2)

that is computed from the current position of the neighboring particles xnk′ , |k′− k| ≤ 1, as recalled in
Appendix A. The particle shapes are then defined accordingly, as

ϕnh,k(x) = ϕh(B0,n
h,k(x)− x0k) = ϕh(Dn

k (x− xnk)) (2.3)

which correspond to translating and linearly transforming the particle shapes to better represent the
local shear and rotation parts of the flow.

At the second order the local expansion of the backward flow B0,n
h,k,(2) takes the form(

B0,n
h,k,(2)(x)

)
i

= (x0k)i + (Dn
k (x− xnk))i + (x− xnk)tQnk,i(x− xnk)

with Qnk,i an approximation to the (d×d) Hessian matrix of the i-th component of the backward flow,

H
(B0,n

ex )i
(xnk) =

(
∂j1∂j2(B0,n

ex )i(x
n
k)
)
1≤j1,j2≤d, 1 ≤ i ≤ d, (2.4)

Again these matrices can be computed using only the current position of the neighboring particles,
xnk′ , |k′− k| ≤ 1, see Appendix B. The quadratically transported particle shapes are then defined with
the same principle. However it is necessary to define an a priori support for these particles: because
the quadratic mapping x 7→ B0,n

h,k,(2)(x) − x0k may vanish far away from xnk , the simple expression

ϕh(B0,n
h,k,(2)(x) − x0k) has a support that may contain some far away parts, which is obviously not

desired since the quadratic expansion B0,n
h,k,(2) ≈ B0,n

ex is only accurate close to xnk . For this reason it

is necessary to restrict a-priori the support of the quadratically transformed particles. In [8] a specific
choice has been made, which allows to prove second-order convergence estimates for the resulting
approximations. This approach results in a robust numerical method, and several L∞ convergence
estimates have been derived for the transported densities [8, 9]. However it also has the downside that
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transported particles undergo a stretching of their support which leads to an important loss in the
locality of the computations. Specifically, we see that as time increases the diameter of the particle
supports grows like

diam
(
supp(ϕnh,k)

)
= diam

(
F 0,n
ex (supp(ϕ0

h,k))
)
∼ h|F 0,n

ex |W 1,∞

in the LTP case, which may represent an exponential growth in n. In the QTP method the supports
grow even faster, to account for the additional deformations caused by the quadratic terms.

This effect has been experienced in the numerical simulations of high-dimensional problems such as
the 2D2V Vlasov-Poisson system actually implemented in the Selalib platform [29], and it is already
visible in the 2D simulations presented in this article, especially with second order methods.

2.2. Notations

Here we summarize the notations used in the article for the different flows and their derivatives:

F 0,n
ex : exact forward flow on the time interval [0, tn]

B0,n
ex : exact backward flow on the time interval [0, tn]

J
B0,n

ex
(xnk) : Jacobian matrix of B0,n

ex evaluated at xnk , the position of the particle k at time tn

H
(B0,n

ex )i
(xnk) : Hessian matrix of the component i of B0,n

ex at xnk

B0,n
k,(1) : linear expansion of B0,n

ex around xnk (using the exact flow derivatives)

B0,n
k,(2) : quadratic expansion of B0,n

ex around xnk (using the exact flow derivatives)

Dn
k : particle-based approximation of J

B0,n
ex

(xnk)

Qnk,i : particle-based approximation of H
(B0,n

ex )i
(xnk)

B0,n
h,k,(1) : linear expansion of B0,n

ex around xnk , using the matrix Dn
k

B0,n
h,k,(2) : quadratic expansion of B0,n

ex around xnk , using the matrices Dn
k and Qnk,i, 1 ≤ i ≤ d

B0,n
h : global approximation of B0,n

ex used in the FBL reconstruction.

In the remapped version of the methods, the above notations will be extended to time intervals of
the form [tm, tn] with m the last remapping time step preceeding n (see, e.g. Section 3.2).

3. The Forward-Backward Lagrangian (FBL) approximation

Since it is the accurate transport of the smooth particle shapes that causes a loss of locality in
the computation of the approximated density, a simple option to restore locality is to abandon the
forward description of f . We shall, however, recycle one central step of the method described above,
and continue using the local approximations to the backward flow that can be computed locally from
the current particle positions. Instead of computing directly an accurate approximation to f under
the form of transported particles, we thus propose to combine a pointwise particle approximation of
the flow with a backward Lagrangian approximation to f .

The resulting method combines a forward part where pointwise particles are pushed along a standard
numerical flow, and a backward step where the transported density is reconstructed with a Lagrangian
point of view thanks to a approximation of the backward flow.
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3.1. Description of the method

The FBL approximation to the exact solution f(tn, x) = f0(B0,n
ex (x)) consists of the following steps.

(i) To every particle xnk we associate a polynomial backward flow B0,n
h,k which approximates the

exact one close to xnk , as in the LTP and QTP methods. We remind that at the first order this
flow reads

B0,n
h,k = B0,n

h,k,(1) : x 7→ x0k +Dn
k (x− xnk) with Dn

k ≈ JB0,n
ex

(xnk) (3.1)

see Appendix A, and at the second order it takes the form

B0,n
h,k = B0,n

h,k,(2) : x 7→ x0k +Dn
k (x− xnk) +

1

2

(
(x− xnk)tQnk,i(x− xnk)

)
1≤i≤d (3.2)

with Qnk,i ≈ H(B0,n
ex )i

(xnk), 1 ≤ i ≤ d, see Appendix B.

(ii) To smoothly patch these local flows together we then consider a partition of unity∑
i∈Zd

S(x− i) = 1, x ∈ Rd (3.3)

involving a compactly supported, non-negative shape function S (for instance a B-spline), and
a grid of step size h. Writing the corresponding nodes as ξi = ih to avoid a confusion with the
particle positions, the scaled formula reads

∑
i∈Zd Sh,i(x) = 1 where Sh,i(x) = S

(
(x − ξi)/h

)
.

A global approximation to the backward flow is then defined as

B0,n
h (x) :=

∑
i∈Zd

B0,n
h,k∗(n,i)(x)Sh,i(x) (3.4)

where k∗(n, i) is the index of the closest marker to the node ξi,

k∗(n, i) := argmink∈Zd‖xnk − ξi‖∞.

(iii) The approximate solution is finally obtained by a standard Lagrangian formula involving the
initial density

fn,fblh (x) := f0
(
B0,n
h (x)

)
. (3.5)

Remark 3.1 (conservative transport). The FBL approximation can be extended with little extra cost
to the case of a transport equation in conservation form

∂tf(t, x) +∇ · (uf) (t, x) = 0. (3.6)

In the case of an incompressible flow (∇ · u = 0), this form is equivalent with (1.1). Otherwise the
exact solution to (3.6) reads

f(t, x) = f0((B0,n
ex (x)) det(J

B0,n
ex

(x)).

Consistent with the spirit of the reconstruction (3.5), an approximation j0,nh (x) to det(J
B0,n

ex
(x)) is

defined by

j0,nh,i = det(Dk∗(n,i)), j0,nh (x) =
∑
i∈Zd

j0,nh,i Sh,i(x)

and we define the corresponding FBL approximation to the transported density by

jn,fblh (x) := f0
(
B0,n
h (x)

)
j0,nh (x). (3.7)
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3.2. Remapped FBL method

Because the regularity of the characteristic flow deteriorates over time, it is important to remap the
particles before the approximated flow becomes too inaccurate. Remapping essentially consists of using
the density transported up to some time tm as the initial data of a new transport problem, so that the
relevant flow map is reset to the identity. Specifically we replace the approximate density (3.5) given
by the FBL method with a new nodal representation on the grid,

fmh (x) =
∑
k

wmk ϕh(x− x0k) ≈ f
m,fbl
h (x) (3.8)

and for the subsequent time steps we follow a new set of particles arranged on the cartesian grid (1.4).
To project on the grid we may use tensor products of univariate B-splines defined recursively by

Bp(x) =
´ x+1

2

x−1
2

Bp−1, B0 := χ
[−1

2 ,
1
2 ]

. The approximation reads then

Ahg(x) :=
∑
k∈Zd

ah,k(g)ϕh(x− x0k), ϕh(x) =
∏

1≤i≤d

1

h
Bp
(xi
h

)
where ah,k(g) is a coefficient that depends on the values of g on a local stencil around x0k, such that
polynomials of degree ≥ p are exactly reproduced by Ah, see [30, 8], but many other approximations
are possible. Here we simply assume that Ah satisfies

‖Ahg − g‖W s,∞ ≤ CAhq−s|g|W q,∞ , for 0 ≤ s ≤ q ≤ p+ 1 (3.9)

for some constant cA.
Thus, if we denote the remapping steps by m1, . . .mR and let m0 = 0 be the initial step where the

initial data f0 is also projected, the remapped-FBL approximation reads

fn,fblh (x) = fmh
(
Bm,n
h (x)

)
, m = max

{
mr < n : r ∈ {0, . . . , R}

}
(3.10)

with

• a numerical flow

Bm,n
h =

∑
i∈Zd

Bm,n
h,k∗(n,i)Sh,i (3.11)

computed with the FBL method (3.4), using the current particles xnk = Fm,nex (x0k),

• a numerical density fmh which is either the approximation of the initial data, or that of an
approximated solution transported with the FBL method if m is a remapping step, that is,

fmh =

{
Ahf

0 if m = m0 = 0

Ahf
m,fbl
h if m = mr > 0.

(3.12)

We note that if we only consider the remapping time steps the proposed method is formally a backward
semi-Lagrangian scheme

f
mr+1

h = Ah

(
fmr
h ◦Bmr,mr+1

h

)
(3.13)

where the approximated backward flow is computed using the forward-pushed markers.

6



FROM PARTICLE METHODS TO FORWARD-BACKWARD LAGRANGIAN SCHEMES

4. A priori error analysis

Following the error analysis established in [8] for the LTP and QTP methods, it is possible to derive
a priori convergence rates for the proposed method. Here we take into account the error induced by
the particle-based approximation of the Jacobian matrices, and estimates are available provided h is
small enough to guarantee that these matrices are invertible, see Appendix. We first consider the case
where no remappings are performed.

4.1. A priori estimates for the FBL method without remappings

Theorem 4.1. Let h ≤ h∗(F 0,n
ex ) as in (A.6) and assume B0,n

ex and F 0,n
ex ∈W 2,∞(Rd). The first order

FBL approximation (3.5) satisfies

‖fn,fblh − f(tn)‖ ≤ Ch2

with a constant independent of h that is specified in the proof.

Remark 4.2. Compared to the a priori error estimates established for the LTP method [8], this result
represents a gain of one order.

Proof. By direct application of a Taylor expansion we see that the (exact) linearization of the
backward flow around some particle xnk , namely

B0,n
k,(1) : x 7→ x0k +

(
J
B0,n

ex (xnk )

)
(x− xnk)

satisfies an priori estimate

‖B0,n
k,(1)(x)−B0,n

ex (x)‖∞ ≤
1

2
|B0,n

ex |W 2,∞‖x− xnk‖2∞. (4.1)

Thanks to the assumption h ≤ h∗(F 0,n
ex ) we can next use Lemma A.1 (specifically, estimate (A.7)

with q = 1) to estimate the FD approximation on the backward flow Jacobian matrix. For the local
numerical flow (3.1), we thus have

‖B0,n
h,k,(1)(x)−B0,n

ex (x)‖∞ ≤ ‖(Dn
k − JB0,n

ex (xnk )
)(x− xnk)‖∞ + ‖B0,n

k,(1)(x)−B0,n
ex (x)‖∞

≤ CF ‖x− xnk‖∞
(
d2|F 0,n

ex |
2(d−1)
1 h+

1

2
‖x− xnk‖∞

) (4.2)

with CF = max
(
|B0,n

ex |W 2,∞ , |F 0,n
ex |W 2,∞

)
. Our estimate for the global flow B0,n

h will gather bounds of

this form for k = k∗(n, i) with i ∈ Zd, and x ∈ supp(Sh,i) where Sh,i(x) := S
(
1
h(x− ξi)

)
. In particular,

we need to evaluate the distance between a node ξi and its associated particle xnk∗(n,i), and to this end

we note that for an arbitrary k ∈ Zd we have

‖xnk − ξi‖∞ = ‖F 0,n
ex (x0k)− F 0,n

ex (B0,n
ex (ξi))‖∞ ≤ |F 0,n

ex |W 1,∞‖x0k −B0,n
ex (ξi)‖∞.

By definition of k∗(n, i) and using the fact that the markers x0k are on a grid of step h, this yields

‖xnk∗(n,i) − ξi‖∞ ≤ |F
0,n
ex |W 1,∞ min

k∈Zd
‖x0k −B0,n

ex (ξi)‖∞ ≤
h

2
|F 0,n

ex |W 1,∞ .

Writing then ρS = 1
2 diam(supp(S)) we see that the support of Sh,i is an `∞ ball of center ξi and

radius hρS . Thus,

x ∈ supp(Sh,i) =⇒ ‖x− xnk∗(n,i)‖∞ ≤ ‖x− ξi‖∞ + ‖ξi − xnk∗(n,i)‖∞ ≤ hρ(S, n)

with

ρ(S, n) := ρS +
1

2
|F 0,n

ex |W 1,∞ . (4.3)

In particular, the bound (4.2) evaluated for k = k∗(n, i) gives

‖B0,n
h,k∗(n,i),(1) −B

0,n
ex ‖L∞(supp(Sh,i)) ≤ C1h

2, i ∈ Zd (4.4)
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with

C1 = CFρ(S, n)
(
d2|F 0,n

ex |
2(d−1)
1 +

1

2
ρ(S, n)

)
. (4.5)

Using the partition unity properties of the shape function S, we then write for the global flow

(B0,n
h −B0,n

ex )(x) =
∑
i∈Zd

(B0,n
h,k∗(n,i),(1) −B

0,n
ex )(x)Sh,i(x) ≤ C1h

2
∑
i∈Zd

Sh,i(x) = C1h
2, x ∈ Rd. (4.6)

Using the smoothness of f0 completes the proof, with C = C1|f0|W 1,∞ .

Theorem 4.3. Let h ≤ h∗(F 0,n
ex ) as in (A.6) and assume B0,n

ex and F 0,n
ex ∈ W 3,∞(Rd). The second

order FBL approximation (3.5) satisfies

‖fn,fblh − f(tn)‖ ≤ Ch3

with a constant that depends on the exact flow F 0,n
ex and its inverse B0,n

ex , but is independent of h.

Remark 4.4. Compared to the error estimates established for the QTP method [8], this result rep-
resents a gain of one order. Moreover this scheme is simpler as it does not require to estimate a priori
supports for transformed particles.

Proof. The proof is similar to that of Theorem 4.3. Applying a Taylor expansion we first observe
that the (exact) quadratic approximation of the backward flow around some particle xnk , namely

B0,n
k,(2) : x 7→ x0k +

(
J
B0,n

ex
(xnk)

)
(x− xnk) +

1

2

(
(x− xnk)t

(
H

(B0,n
ex )i

(xnk)
)
(x− xnk)

)
1≤i≤d

satisfies an priori estimate

‖B0,n
k,(2)(x)−B0,n

ex (x)‖∞ ≤
1

6
|B0,n

ex |W 3,∞‖x− xnk‖3∞. (4.7)

Thanks to the assumption h ≤ h∗(F 0,n
ex ) we can next use Lemma A.1 (specifically, estimate (A.7)

with q = 2) and B.1 to estimate the FD approximations for the backward flow Jacobian and Hessian
matrices. For the local numerical flow (3.2), we thus have

‖B0,n
h,k,(2)(x)−B0,n

ex (x)‖∞ ≤ ‖B0,n
k,(2)(x)−B0,n

ex (x)‖∞ + ‖Dn
k − JB0,n

ex
(xnk)‖∞‖(x− xnk)‖∞

+ C max
i
‖Qnk,i −H(B0,n

ex )i
(xnk)‖∞‖(x− xnk)‖2∞

≤ C(F 0,n
ex )

(
‖x− xnk‖3∞ + h‖x− xnk‖2∞ + ‖x− xnk‖∞h2

) (4.8)

with a constant depending on the exact flow. The rest of the proof is the same.

Remark 4.5. In the case of the FBL approximation (3.7) of the conservative transport equation, it

is possible to prove using the same arguments that if B0,n
ex and F 0,n

ex ∈ W 3,∞(Rd) then the first order

FBL approximation (3.5) satisfies, under a modified condition on h which could writes h ≤ h∗∗(F 0,n
ex ),

‖gn,fblh − g(tn)‖ ≤ Ch2

with a constant independent of h.

4.2. A priori estimates for the FBL method with remappings

Let us denote by ‖A‖L∞ = infg∈C
‖Ahg‖L∞
‖g‖L∞

the L∞ norm of the approximation operator Ah. We have

the following estimate for the remapped method described in Section 3.2.

8
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Theorem 4.6. Assume that f0, F 0,n
ex and B0,n

ex ∈ W 2,∞(Rd). If the remapping time steps are such
that h ≤ h∗(Fmr−1,mr) for r = 1, . . . , R, as in (A.6), then the (first order) remapped FBL scheme
(3.10)-(3.12) satisfies

‖fn,fblh − f(tn)‖ ≤ Ch2 (4.9)

with a constant specified in the proof, that may depend on the number of remappings R but not on h.

Proof. Writing m the last remapping step before n, the remapped FBL approximation reads

fn,fblh (x) = fmh (Bm,n
h (x)), whereas the exact solution fn = f(tn) satisfies fn(x) = fm(Bm,n

ex (x)).
Thus, we have

‖fn,fblh − fn‖L∞ ≤ ‖fmh (Bm,n
h )− fm(Bm,n

h )‖L∞ + ‖fm(Bm,n
h )− fm(Bm,n

ex )‖L∞
≤ ‖fmh − fm‖L∞ + |fm|W 1,∞‖Bm,n

h −Bm,n
ex ‖L∞ .

(4.10)

Since the flow Bm,n
h is obtained by applying the FBL method on the particles transported from tm to

tn, the arguments used above to establish the bound (4.6) give here

‖Bm,n
h −Bm,n

ex ‖L∞ ≤ Cm,nh2

with Cm,n = |Fm,n|W 2,∞ρ(S, n−m)
(
d2|Fm,nex |2(d−1)1 + 1

2ρ(S, n−m)
)

and ρ(S, ·) is defined in (4.3). As
for the remapped approximation error at time tm, it satisfies

‖fmh − fm‖L∞ ≤ ‖Ah(fm,fblh − fm)‖L∞ + ‖(Ah − I)fm‖L∞

≤ ‖Ah‖L∞‖fm,fblh − fm‖L∞ + CA|fm|W 2,∞h2.

Gathering the above estimates thus yields

‖fn,fblh − fn‖L∞ ≤ ‖Ah‖L∞‖fm,fblh − fm‖L∞ + h2
(
CA|fm|W 2,∞ + Cm,n|fm|W 1,∞

)
.

Denoting for convenience by mR+1 = N the last time step (where no remapping is actually performed)

we then observe that the error term defined by er := maxmr−1<n≤mr‖f
n,fbl
h − fn‖L∞ for r ≥ 1 and

e0 := 0 satisfies a recursive bound

er ≤ ‖Ah‖L∞er−1 + βh2, r = 1, . . . R+ 1,

where we have denoted

β = CA‖f‖L∞([0,T ];W 2,∞) + max
1≤r≤R+1

max
mr−1<n≤mr

(
|fmr−1 |W 1,∞Cmr−1,n

)
.

This gives er ≤ αrβh2 with αr = (‖Ah‖rL∞−1)/(‖Ah‖L∞−1) if ‖Ah‖L∞ > 1 and αr = r if ‖Ah‖L∞ = 1.
In particular this implies

‖fn,fblh − fn‖L∞ ≤ αR+1βh
2

for all n ≤ N = mR+1, which ends the proof.

Remark 4.7. For stable approximation operators (such as piecewise affine interpolations) we have
‖A‖L∞ = 1 and the constant C in (4.9) depends linearly of the number of remappings. In any case,
this number should not vary much with h when the latter is small, indeed the remapping frequency
should essentially reflect the smoothness of the exact characteristic flow.

4.3. Transport of smoothness

In the above analysis we did not take advantage of the fact that the reconstructed flow was obtained
with a smooth patching procedure (3.4). Nevertheless, this feature of the FBL method allows to
estimate the smoothness of the transported solutions as time evolves, and this may yield enhanced
error bounds in the remapped version of the scheme, since remapping errors strongly depend on the
solution smoothness. We illustrate this property with the following result.

9
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Theorem 4.8. The density transported with the FBL scheme (3.5) of order r ∈ {1, 2} satisfies

‖fn,fblh ‖W q,∞ ≤ C‖f0‖W q,∞ , 1 ≤ q ≤ r + 1,

with a constant C that depends on the exact flow F 0,n
ex and its inverse B0,n

ex , but not on h.

Proof. We only give the proof in the case of the first order method (r = 1), as that of the second

order is similar. By differentiating the transported density fn,fblh = f0(B0,n
h ) one obtains

∂jf
n,fbl
h (x) =

d∑
l=1

∂lf
0(B0,n

h (x))∂j(B
0,n
h )l(x), 1 ≤ j ≤ d,

and

∂j2∂j1f
n,fbl
h (x) =

d∑
l1,l2=1

∂l2∂l1f
0(B0,n

h (x))∂j1
(
B0,n
h

)
l1

(x)∂j2
(
B0,n
h

)
l2

(x)

+
d∑
l=1

∂lf
0(B0,n

h (x))∂j2∂j1
(
B0,n
h

)
l
(x), 1 ≤ j1, j2 ≤ d.

This yields

|fn,fblh |W 1,∞ ≤ C|B0,n
h |W 1,∞ |f0|W 1,∞

and

|fn,fblh |W 2,∞ ≤ C
(
|B0,n

h |
2
W 1,∞ |f0|W 2,∞ + |B0,n

h |W 2,∞ |f0|W 1,∞
)

with constants depending only on d. We are then left to estimate the smoothness of the reconstructed
flow B0,n

h =
∑

i∈Zd B
0,n
h,k∗(n,i)Sh,i, which partial derivative reads

∂j
(
B0,n
h

)
l

=
∑
i∈Zd

(
∂j

(
B0,n
h,k∗(n,i)

)
l
Sh,i +

(
B0,n
h,k∗(n,i)

)
l
∂jSh,i

)
. (4.11)

Here the first term is easily taken care of by using the fact that the Jacobian matrix of the local
affine flow B0,n

h,k is the matrix Dn
k , see (3.1), for which an a priori bound is given in the Appendix,

see (A.13). Bounding the second term is less obvious since an 1/h factor appears in the derivative
of Sh,i(x) = S((x − ξ)/h). To handle this term we then observe that the sum

∑
i∈Zd ∂jSh,i vanishes,

thanks to the unity partition property (3.3). Hence we can write, for all x ∈ Rd,∣∣∣ ∑
i∈Zd

(
B0,n
h,k∗(n,i)

)
l
∂jSh,i

∣∣∣(x) =
∣∣∣ ∑
i∈Zd

(
B0,n
h,k∗(n,i) −B

0,n
ex

)
l
∂jSh,i

∣∣∣(x)

≤
∑
i∈Zd

‖B0,n
h,k∗(n,i) −B

0,n
ex ‖L∞(supp(Sh,i))|∂jSh,i|(x) ≤ Ch

where we have used the local flow error estimate (4.4) and the bounded overlapping of the shapes

Sh,i (here the constant depends on the shape S and the flow F 0,n
ex ). This allows us to bound the first

derivatives of B0,n
h ,

|B0,n
h |W 1,∞ ≤ C(F 0,n

ex ).

For the second derivatives we proceed similarly. Differentiating (4.11) and using the affine nature of
the local flows, we write

∂j2∂j1
(
B0,n
h

)
l

=
∑
i∈Zd

(
∂j1

(
B0,n
h,k∗(n,i)

)
l
∂j2Sh,i + ∂j2

(
B0,n
h,k∗(n,i)

)
l
∂j1Sh,i +

(
B0,n
h,k∗(n,i)

)
l
∂j2∂j1Sh,i

)
.

Again we can use the above trick and replace the local flows by local flow errors. In the last term the
estimate (4.4) gives an h2 factor that allows to take care of the 1/h2 term coming from the second
derivatives of the scaled shape Sh,i, and in the derivatives we are lead to in considering the local error

10
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on the backward Jacobian matrix, namely Dn
k∗(n,i)−JB0,n(x) for x ∈ supp(Sh,i), which is shown to be

controlled by Ch by reasonning just as in the proof of Theorem 4.1. Thus, we finally have that

|B0,n
h |W 2,∞ ≤ C

which completes the proof for the first-order method. The case of the second-order FBL method is
completely similar, using the fact that the local flow errors are estimated with one higher order of
accuracy in the proof of Theorem 4.3.

5. Numerical results

In previous works [8, 10] the performances of the LTP and QTP schemes have been assessed by
comparing them with existing methods such as standard smooth particle reconstructions (1.6) or, in
the case of a non-linear Vlasov-Poisson problem, with modern semi-Lagrangian schemes.

Here we investigate the numerical efficiency of the proposed FBL approximation by comparing it
with the LTP and QTP method, using either passive problems with given velocity fields, or non-linear
transport problems.

5.1. Passive transport problems

As in [8] we consider several passive transport problems in 2d. The corresponding velocity fields are

• the reversible “swirling” velocity field proposed by LeVeque [23] to study the accuracy of
high-resolution schemes for multidimensional advection problems,

uSW(t, x;T ) := cos
(πt
T

)
curlφSW(x) with φSW(x) := −sin2(πx1) sin2(πx2)

π

• another reversible velocity field emulating a Raylegh-Benard convection cell,

uRB(t, x;T ) := cos
(πt
T

)
curlφRB(x)

with φRB(x) :=
(
x1 − 1

2

)
(x1 − x21)(x2 − x22) ;

• and finally a constant non-linear rotation field derived from Example 2 in [7],

uNLR(x) := α(x)

(1
2 − x2
x1 − 1

2

)
with α(x) :=

(
1−
‖x− (12 ,

1
2)‖2

0.4

)3
+
.

Here the form of uSW and uRB yields reversible problems: at t = T/2 the solutions reach a maximum
stretching, and they revert to their initial value at t = T . As for the non-linear rotation field uNLR, it
is associated with the exact backward flow

B0,n(x) =

(1
2
1
2

)
+

(
cos(α(x)tn) sin(α(x)tn)

− sin(α(x)tn) cos(α(x)tn)

)(
x1 − 1

2

x2 − 1
2

)
, (5.1)

and the exact solutions are given by f(tn, x) = f0(B0,n(x)). In addition to the above velocity fields
we consider the following initial data:

• smooth humps of approximate radius 0.2 given by

f0hump(x; x̄) :=
1

2

(
1 + erf

(
1
3(11− 100‖x− x̄‖2)

))
and centered on x̄ = (0.5, 0.4) or (0.5, 0.7), depending on the cases ;

11
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• and for the non-linear rotation field uNLR we take an initial data corresponding to Example 2
from [7], i.e.,

f0(x) := x2 − 1
2 .

By combining the above values we obtain the three test-cases in Table 1, and accurate solutions are
shown in Figures 1-3 for the purpose of illustration. In Table 1 we also give the respective time steps
∆t used in the time integration of the particle trajectories. In every case indeed, the numerical flow
Fn is computed with a RK4 scheme, and the time steps have been taken small enough to have no
significant effect on the final accuracy. It happens that in every case we have ∆t = T/100, but this is
unintended.

Table 1. Definition of the benchmark test-cases

name u(t, x) f0(x) T ∆t

SW uSW(t, x;T ) f0hump(x; x̄) with x̄ = (0.5, 0.7) 5 0.05

RB uRB(t, x;T ) f0hump(x; x̄) with x̄ = (0.5, 0.4) 3 0.03

NLR uNLR(x) x2 − 1
2 50 0.5

From the convergence curves shown in Figures 1 to 4 we can draw the following observations:

• Overall, the two approaches (LTP/QTP and L/Q-FBL) reach similar accuracies, as there are
no striking differences in the global behavior of the top and bottom curves in Figures 1 to 3.

• A look at the cpu numbers displayed in parenthesis, however, provides a important assessment:
whereas the computational cost of the second order QTP scheme increases dramatically for
growing remapping periods (which is caused by the stretching of the particle supports), for
Q-FBL scheme it remains virtually equal to that of the first order methods (LTP and L-FBL).
Thus the main objective of the new scheme is achieved.

• The theoretical gain of one convergence order of the FBL method noticed in Remarks 4.2
and 4.4 is better seen in Figure 4 where the errors are measured in the less stringent L2.
By increasing the remapping period one observes that the accuracy of the LTP simulations
deteriorate from second to first order, whereas that of the L-FBL ones remain essentially of
second order.

5.2. Application to the 1D1V Vlasov-Poisson system

In this section and the following one, we show some preliminary results obtained by applying our
Forward-Backward Lagrangian approximation method to a couple of non-linear problems. As we aim at
a minimal amount of modifications to existing particle codes, here we only use the FBL reconstruction
formula (3.5) to re-initialize the particles with a given remapping frequency, in the spirit of (3.13).
Specifically, we consider a 1D1V Vlasov-Poisson system

{∂t + v∂x + E(x, t)∂v} f(t, x, v) = 0

∂xE(t, x) =

ˆ
R
f(t, x, v) dv − nb

(x, v) ∈ R2, (5.2)

which models the evolution of a normalized plasma of charged particles in a uniform neutralizing
background cloud of density nb.

12
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Figure 1. (Color) Convergence curves (relative L∞ errors at t = T vs. number of par-
ticles) for the reversible SW test case defined in Table 1, solved with different methods
as stated (see text for details). Numbers in parenthesis indicate the approximate cpu
times for these runs, including the remappings and final vizualisations. The first row
shows the profile of the exact solution: the initial (and final) density f0 = f(T ) is on
the left, whereas the intermediate solution f(T/2) (with maximum stretching) is on
the right.
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Figure 2. (Color) Convergence curves (relative L∞ errors at t = T vs. number of par-
ticles) for the reversible RB test case defined in Table 1, solved with different methods
as stated (see text for details). Numbers in parenthesis indicate the approximate cpu
times for these runs, including the remappings and final vizualisations. The first row
shows the profile of the exact solution: the initial (and final) density f0 = f(T ) is on
the left, whereas the intermediate solution f(T/2) (with maximum stretching) is on
the right.
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Figure 3. (Color) Convergence curves (relative L∞ errors at t = T vs. number of
particles) for the NLR test case defined in Table 1, solved with different methods as
stated (see text for details). Numbers in parenthesis indicate the approximate cpu times
for these runs, including the remappings and final vizualisations. The first row shows
the profile of the exact solution: the initial density f0 = f(T ) is on the left and the final
one f(T ) is on the right. In this test case the final solution is different than the initial
one, but an exact formula based on the backward flow (5.1) is available to estimate the
approximation errors.
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Figure 4. (Color) Convergence curves (relative L2 errors at t = T vs. h) for the
reversible SW test case defined in Table 1, solved by the first order LTP and the L-
FBL methods. Here the gain of one convergence order appears rather clearly when the
remapping period is increased.

To compute numerical approximations to the electric field E and the associated particle trajectories,
we employ a standard particle-in-cell (PIC) method [19] which only sees point particles through
the piecewise affine shape functions attached to the finite-difference 1D grid used for the field. On
the remapping steps we then compute new particles using a cubic spline approximation to the FBL
representation of the transported phase-space density f as in (3.8).

To assess our method we use the standard “weak” two-stream instability test-case [17, 27, 10] which
initial distribution reads

f0(x, v) =
2(1 + 5v2)

7
√

2π
e−

v2

2

(
1 +A

(
cos(2kx) + cos(3kx)

1.2
+ cos(kx)

))
with k = 1

2 and a weak amplitude A = 0.01 for the perturbation. This test case is known to develop
very thin filaments in the phase space that are difficult to resolve numerically.

In Figure 5 we compare the results of simulations where the particles have been pushed with a
standard PIC method as described above, and remapped using either the first order LTP or the first
order FBL reconstruction for the transported densities. The approximated densities are shown at
t = 53 and the remapping period is always set to ∆tR = 3, which amounts to remapping every 15
time steps, which seemed to be a good value for virtually every run here. The simulations shown on
the first line use a grid of 128×128 particles, whereas those on the second line use 512×512 particles.
Again, the results show a similar accuracy for both methods, but the cpu times indicate that the FBL
is less expensive (16 s. versus 10 s. for the high-resolution runs) due to the enhanced locality of the
density reconstructions. We predict that in higher dimensions the gain will be much more significant.

5.3. Application to the 2D Euler equation

We then consider the inviscid evolution of an elliptical vortex of compact support. The 2D incom-
pressible Euler equations in vorticity-velocity form write:

∂w

∂t
+ u · ∇w = 0,

∇× u = w,

∇ · u = 0,

lim
|x|→+∞

|u| = 0,

(5.3)
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Figure 5. Vlasov-Poisson simulations of the two-stream instability described in Sec-
tion 5.2. The approximated densities shown here have been computed up to t = 53
with a standard PIC scheme using 128×128 or 512×512 particles as indicated. On the
left plots the particles are periodically remapped using an LTP reconstruction of the
density, whereas on the right plots an L-FBL reconstruction is used. The approximated
CPU times are close to 3 s. for the low-resolution runs (top row), 16 s. for the high
resolution LTP run and 10 s. for the high resolution L-FBL run.

and for the initial condition we take (like in [22] and [4])

w0(x) = w0
I (
√

(x1/0.8)2 + (x2/1.6)2), w0
I (r) = 20(1− exp(−(2.56085/r) exp(1/(r − 1)))). (5.4)

Here the vorticity w plays the role of a transported density and is approximated by a particle repre-
sentation. The velocity field can be related to w using a Green’s function formulation (see [14])

u = K ∗ w where K(x) =
1

2π|x|2
(−x2, x1). (5.5)
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This example has been used as a test case in [22] and in [4] to investigate Smooth Particle (Vortex)
methods using adaptive and multilevel remapping techniques.

As we did for the Vlasov-Poisson system, we study here the combination of a standard method to
push forward the particle centers and an accurate representation of the density (either with an LTP
(2.1)-(2.3) or an FBL (3.5) reconstruction) to re-initialize the particles positions and weights at a
given remapping frequency. Since a particle representation of the vorticity w with Dirac masses leads
to a velocity field that is singular on particles, it is classical to use a regularization Kε = K ∗ ζε of the
kernel K, with ζε a smooth approximation of the Dirac mass. One can also consider an approximation
of the vorticity with smoothed particles, that is

wh,ε(t, x) =
∑
k

ωkζε(x− xk(t)),

and use it directly in (5.5). In both cases, it leads to the regularized expression of the velocity of the
k-th particle

uh,ε(t, xk(t)) =
∑
j

ωjKε(xk(t)− xj(t)). (5.6)

Some examples of smoothing functions ζε and resulting kernels Kε can be found in [18] and [14].
In Figure 6 we compare numerical vorticities obtained remapped with the first order LTP and FBL

reconstructions. We see that the FBL method achieves an improved precision when the remapping
period increases, which is reminiscent of the behavior already observed in Figure 4 for the Vlasov-
Poisson simulations. Here the simulations involve grids of 50×50 particles corresponding to an average
inter-particle distance of h = 0.08. In theses simulations the particle trajectories have been computed
by applying an RK4 scheme with time step ∆t = 0.01 to the above approximation (5.6) for the velocity,
and for the smoothing of the kernel K we have set ε = 0.01. We note that this smoothing scale is
much smaller than the inter-particle distance h, which is not sufficient to guarantee the convergence of
the reconstructed vorticity in view of the classical analysis [18, 3, 28]. The qualitatively good results
displayed in Figure 6 are thus a practical evidence of the beneficial influence of the accurate LTP and
FBL reconstructions involved in the remappings.

6. Conclusion

In this article we have introduced a novel method to represent the solution of a transport equation
using an existing distribution of markers pushed forward. In standard smooth particle methods, the
density is reconstructed as a sum of weighted shape functions centered on the markers positions. In the
LTP and QTP methods recently developped by the authors, and in other similar methods proposed
in the literature, the shapes of the particles are transformed according to a local expansion of the
backward flow around each particle. These methods allow to obtain strong convergence properties,
but at the price of stretching the particles supports which leads to a loss of locality.

In the Forward-Backward Lagrangian (FBL) method proposed here, the locality is regained by
adopting a Lagrangian point of view to reconstruct the solution, which relies on an accurate repre-
sentation of the initial density (or some reconstructed density at a the last remapping time) and on
a global approximation of the backward flow. The latter is obtained by smoothly patching together
local expansions of the flow with explicit formulas given in the appendix, around particles seen as
(unweighted) flow markers.

Our a priori error analysis shows improved convergence rates for the resulting FBL reconstructions,
compared with both standard smooth particles and LTP/QTP methods. Using first order (linear) flow
expansions the L-FBL densities converge in O(h2), and with second order (quadratic) expansions the
Q-FBL densities converge like O(h3), which represents a gain of one order compared to the LTP and
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LTP method, ∆tR = 0.1 L-FBL method, ∆tR = 0.1

LTP method, ∆tR = 0.15 L-FBL method, ∆tR = 0.15

LTP method, ∆tR = 0.2 L-FBL method, ∆tR = 0.2

Figure 6. Vorticity contours for equation (5.3)-(5.4) with LTP or L-FBL scheme at
time t = 1.5, using remapping periods ∆tR as indicated and with particles remapped
on a 50× 50 grid.
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QTP methods. Moreover, the smothness of the FBL densities is stable in W q,∞ norms, with q ≤ 1 for
L-FBL and q ≤ 2 for Q-FBL.

At the numerical level it is possible to observe the improved accuracy of the FBL reconstructions
compared to the LTP ones, especially for increasing remapping periods, however in several practical
cases our convergence studies show that the overall quality of both methods is similar. From a CPU
time point of view the LTP and L-FBL methods are quite comparable in two dimensions; but due to its
good locality the Q-FBL method is much more efficient than the QTP one. Because of the stretching
of particle supports the latter has indeed a large computational cost compared to first order methods
when the remapping period increases, which has not been observed with the Q-FBL method.

Additional results provided for non-linear problems such as the 1D1V Vlasov-Poisson system or
the 2D Euler equation in vorticity form highlight two attractive features of the proposed approach
compared to previous ones: On the one hand, its relative efficiency in terms of CPU time when the
number of particles increases; and on the other hand its relative accuracy when the remapping period
increases. These encouraging results call for more advanced comparisons with existing reconstruction
methods. They will be the subject of future articles, in particular for higher dimensional Vlasov-Poisson
codes currently under implementation.

Appendix A. Explicit approximation of the flow Jacobian from the particles

Using particles originally distributed on a cartesian grid, i.e., x0k = hk, k ∈ Zd, we compute the
deformation matrices Dn

k approximating the Jacobian matrices of the backward flow at the particles
positions (2.2), namely

J
B0,n

ex
(xnk) =

(
∂j(B

0,n
ex )i(x

n
k)
)
1≤i,j≤d,

as follows. We first approximate the derivatives of the forward flow F 0,n
ex by finite differences involving

the current particle positions xnk = F 0,n
ex (x0k). With a centered formula we define

Jnk :=

(
(xnk+ej − x

n
k−ej )i

2h

)
1≤i,j≤d

≈ J
F 0,n
ex

(x0k) (A.1)

and using the relation
J
B0,n

ex
(xnk)J

F 0,n
ex

(x0k) = Id (A.2)

which follows by differentiating the identity x = B0,n
ex (F 0,n

ex (x)) at x0k, we approximate J
B0,n

ex
(xnk) with

Dn
k := (Jnk )−1. (A.3)

Since we consider a measure-preserving exact flow, we have det(J
F 0,n
ex

) = 1 on Rd and it is reasonable

to assume that the d × d matrix Jnk is invertible. In the following Lemma we establish a sufficient
condition for this, together with some a priori estimates for the resulting approximations.

Lemma A.1. The approximate forward Jacobian satisfies the a priori estimates

‖Jnk − JF 0,n
ex

(x0k)‖∞ ≤ hq
|F 0,n

ex |q+1

(q + 1)!
, q ∈ {1, 2} (A.4)

and the determinant error is bounded as

|det(Jnk )− 1| ≤ γn(h) with γn(h) = 3d2|F 0,n
ex |1 min

q∈{1,2}

(
hq
|F 0,n

ex |q+1

(q + 1)!

)
(A.5)

In particular, if h satisfies

h ≤ h∗(F 0,n
ex ) := max

q∈{1,2}

(1

2
3d2|F 0,n

ex |1
|F 0,n

ex |q+1

(q + 1)!

)− 1
q

(A.6)
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then det(Jnk ) ≥ 1
2 so that Dn

k is well defined, and we have the a priori estimate

‖Dn
k − JB0,n

ex
(xnk)‖∞ ≤ min

q∈{1,2}

(
hq
|F 0,n

ex |q+1

(q + 1)!

)
2d2|F 0,n

ex |
2(d−1)
1 . (A.7)

Proof. For conciseness, we denote in this proof

Jn,exk = J
F 0,n
ex

(x0k) and Dn,ex
k = J

B0,n
ex

(xnk)

and using the semi-norms (1.8) we observe that

max(‖Jn,exk ‖∞, ‖Jnk ‖∞) ≤ |F 0,n
ex |1. (A.8)

Next we write two Taylor formulas for s 7→ F 0,n
ex (x0k + sej) with j = 1, . . . , d, namely

F 0,n
ex (x0k + σhej) = F 0,n

ex (x0k) + σh∂jF
0,n
ex (x0k) +

ˆ σh

0
(σh− s)∂2jF 0,n

ex (x0k + sej) ds, σ = ±1 (A.9)

and by taking their difference we obtain

(2h)−1[F 0,n
ex ]

x0k+hej
x0k−hej

= ∂jF
0,n
ex (x0k) + (2h)−1

ˆ h

0
(h− s)

(
∂2jF

0,n
ex (x0k + sej)− ∂2jF 0,n

ex (x0k − sej)
)

ds.

This gives

‖Jnk − J
n,ex
k ‖∞ ≤ h

|F 0,n
ex |2
2

(A.10)

and also

‖Jnk − J
n,ex
k ‖∞ ≤ h2

|F 0,n
ex |3
6

(A.11)

which shows (A.4). Using next det(Jn,exk ) = 1 and the Lemma A.2, we find

|det(Jnk )− 1| ≤ d‖Jnk − J
n,ex
k ‖2(‖Jnk − J

n,ex
k ‖2 + ‖Jn,exk ‖2) ≤ 3d2|F 0,n

ex |1 min
q∈{1,2}

(
hq
|F 0,n

ex |q+1

(q + 1)!

)
(A.12)

since ‖M‖2 ≤
√
d‖M‖∞ for M ∈ Md(R). Here the upper bound corresponds to γn(h), which shows

(A.5). From now on we assume that h is as in (A.6), so that γn(h) ≤ 1/2, det(Jnk ) ≥ 1/2 and Dn
k is

well defined. Using the formula A−1 = det(A)−1C(A)t involving the cofactor matrix C(A) we then
write, with A = Dn

k = (Jnk )−1,

‖Dn
k‖∞ ≤ d

‖Jnk ‖d−1∞
det(Jnk )

≤ d(1− γn(h))−1|F 0,n|d−11 . (A.13)

With A = Dn,ex
k := (Jn,exk )−1, see (A.2), this also gives

‖Dn,ex
k ‖∞ ≤ d

‖Jn,exk ‖d−1∞
det(Jn,exk )

≤ d|F 0,n|d−11 . (A.14)

In particular, writing Dn
k −D

n,ex
k = Dn

k (Jn,exk − Jnk )Dn,ex
k gives

‖Dn
k −D

n,ex
k ‖∞ ≤ ‖Dn

k‖∞‖Jnk − J
n,ex
k ‖∞‖Dn,ex

k ‖∞ ≤ h
d2

2
(1− γn(h))−1|F 0,n|2(d−1)1 |F 0,n|2.

using the 2nd order estimate (A.10), while the third order estimate (A.11) leads to

‖Dn
k −D

n,ex
k ‖∞ ≤ ‖Dn

k‖∞‖Jnk − J
n,ex
k ‖∞‖Dn,ex

k ‖∞ ≤ h2
d2

6
(1− γn(h))−1|F 0,n|2(d−1)1 |F 0,n|3.

This ends the proof.

Lemma A.2. For all A, B ∈Md(C) we have

| det(A)− det(B)| ≤ d
[
‖A−B‖2 + ‖B‖2

]
‖A−B‖2
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where

Proof. Let φ : t 7→ tA+ (1− t)B. Using that the differential of the determinant is given by

D det(M)H = Tr(M∗H)

we can write
|det(A)− det(B)| = |det(φ(1))− det(φ(0))|

= Tr (φ(θ)∗(A−B)) , with θ ∈]0, 1[

= θTr((A−B)∗(A−B)) +
1

2
Tr((A−B)∗B +B∗(A−B))

≤ θ d% ((A−B)∗(A−B)) +
d

2
% ((A−B)∗B +B∗(A−B))

≤ θ d‖A−B‖22 +
d

2
‖(A−B)∗B +B∗(A−B)‖22

≤ d‖A−B‖22 + d‖A−B‖2‖B‖2,
where %(M) is the spectral radius of a matrix M .

Appendix B. Explicit approximation of the flow Hessian from the particles

To compute the quadratic deformation matrices Qnk,i which approximate the Hessian matrices of the

backward flow at the particles positions (2.4), namely

H
(B0,n

ex )i
(xnk) =

(
∂j1∂j2(B0,n

ex )i(x
n
k)
)
1≤j1,j2≤d, 1 ≤ i ≤ d,

we follow the same principle as for the Jacobian matrices. First, using the current particles positions
xnk = F 0,n

ex (x0k) we define approximate forward Hessian matrices as

Hn
k,i :=

(
(h)−2

1∑
α1,α2=0

(−1)α1+α2
(
xnk+α1ej1+α2ej2

)
i

)
1≤j1,j2≤d

≈ H
(F 0,n

ex )i
(x0k) (B.1)

which corresponds to finite differences on the original grid nodes x0k = hk, k ∈ Zd. Then, differentiating

twice the identity x = I(x) = B0,n
ex (F 0,n

ex (x)) we obtain

0 = ∂j1∂j2(I)i(x) =
d∑

l1,l2=1

∂l1∂l2(B0,n
ex )i(F

0,n
ex (x))∂j1(F 0,n

ex )l1(x)∂j2(F 0,n
ex )l2(x)

+

d∑
l=1

∂l(B
0,n
ex )i(F

0,n
ex (x))∂j1∂j2(F 0,n

ex )l(x)


for

1 ≤ i,j1, j2 ≤ d.

At x = x0k and denoting for conciseness the exact Hessian matrices by

Hn,ex
k,i = H

(F 0,n
ex )i

(x0k) and Qn,exk,i = H
(B0,n

ex )i
(xnk), 1 ≤ i ≤ d, (B.2)

this gives 0 = (Jn,exk )tQn,exk,i J
n,ex
k +

∑d
l=1(D

n,ex
k )lH

n,ex
k,l , hence with (A.2),

Qn,exk,i = −(Dn,ex
k )t

( d∑
l=1

(Dn,ex
k )i,lH

n,ex
k,l

)
Dn,ex
k . (B.3)
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For the approximate backward Hessian matrix at xnk we thus set

Qnk,i := −(Dn
k )t
( d∑
l=1

(Dn
k )i,lH

n
k,l

)
Dn
k (B.4)

where the approximate backward Jacobian matrix Dn
k is computed as in Appendix A.

Lemma B.1. The forward Hessian matrices (Hn
k )i defined above satisfy the a priori estimates

‖Hn
k,i −H(F 0,n

ex )i
(x0k)‖∞ ≤ C|F 0,n

ex |W 3,∞h (B.5)

with a constant C that depends only on the dimension d. Moreover if h ≤ h∗(F 0,n
ex ) as in (A.6), the

backward ones Qnk,i satisfy

‖Qnk,i −H(B0,n
ex )i

(xnk)‖∞ ≤ CQ(F 0,n
ex )h (B.6)

with a constant CQ(F 0,n
ex ) that depends on |F 0,n

ex |W q,∞ with 1 ≤ q ≤ 3.

Proof. Expressing the finite differences in (B.1) as local averages of second derivatives of F 0,n
ex , one

easily verifies the estimate (B.5), as well as the bounds

‖Hn
k,i‖∞ ≤ C|F 0,n

ex |W 2,∞ , 1 ≤ i ≤ d (B.7)

also satisfied by the exact Hn,ex
k,i . To show (B.6) it then suffices to use the identities (B.3) and (B.4),

together with the estimates (B.5) on Hn
k , (A.7) on Dn

k (with q = 1) and the bounds (A.13), (A.14),
(B.7) satisfied by the exact and approximate (backward) Jacobian and (forward) Hessian matrices.
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