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1. Introduction

Magnetized plasma represents a complex system with multi-scaled dynamics, which
challenges numerical implementations. Since several decades the gyrokinetic dynamical
reduction [1], [2], [3] is in the scope of the interest as one of the tools to access
this multi-scaled dynamics investigation: numerically and analytically. The general
gyrokinetic derivation [3] accounts background quantities gradients as well as the
electromagnetic fluctuations at the same order and therefore is rather challenging.
However, simplified orderings leading to the linearized polarization and magnetization
in gyrokinetic Maxwell equations are often implemented in nowadays gyrokinetic codes.

The goal of this paper is to present strictly necessary for numerical implementations
derivation of the reduced particle dynamics and to build up the hierarchy of the most
common reduced particle models.

Modern gyrokinetic theory considered as a field theory gives access to derivation
of a self-consistently coupled gyrokinetic Maxwell-Vlasov equations. The reduced
particle model defines the gyrokinetic Vlasov equation, reconstructed via particles
characteristics. The reduced particle dynamics affects the reduced Maxwell equations
via polarization and magnetization contributions, that link can be systematically
established within the first principle derivation from the gyrokinetic Lagrangian [4],
[5]. Details of such a derivation for the particle models containing up to the second
order Finite Larmor Radius (FLR) corrections can be found in [6].

This paper focusses on the generalised and detailed derivation of the Hamiltonian
models for gyrokinetic particle dynamics, which has been presented in a simplified form
into the Appendix A of [6]. A detailed comparison has been provided between the
second order FLR model following from the general gyrokinetic derivation and the one
recently implemented into the Particle-In-Cell (PIC) code ORB5 [7].

This paper is organised as follows: in Sec. 2 we remind the main idea of the
gyrokinetic reduction, in Sec. 3 we set up the general framework for the change of
coordinates and the reduced dynamics derivation, in Sec. 4 we present the Hamiltonian
models derivation: first in the case with full series of the Finite Larmor Radius
(FLR) corrections and then in the long-wavelength approximation. The second order
(with respect to the amplitudes of fluctuating fields) Maxwell-Vlasov gyrokinetic model
corresponding to the full FLR gyrokinetic particle model and the model containing
the second order FLR corrections suitable for the long-wavelength approximation are
currently implemented in PIC code ORBS5.

2. Gyrokinetic dynamical reduction

In magnetised plasmas presence of strong magnetic field induces scales of motion
separation. Particle’s dynamics is decomposed into the fast rotation around the
magnetic field lines and slow drift motion in the perpendicular direction. The cyclotron
frequency Q) = eB/mc , where e and m are, respectively, the charge and mass of particles,
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B is the magnetic field amplitude and c¢ is the speed of light, sets the scale of gyromotion.
The gyromotion is described by a fast gyroangle variable 6 to which corresponds a
canonically conjugated slowly varying magnetic moment p. At the lowest order

5= mv? /2B, 1)

where v, is the perpendicular velocity of particles with respect to the magnetic field
lines. In slab magnetic geometry p is an exact dynamical invariant. However magnetic
curvature effects as well as the presence of electromagnetic fluctuations destroys that
exact invariance. The gyrokinetic dynamical reduction uses the fact that averaged over
long times magnetic moment still being conserved, i.e. (1), = 0.

The goal of the gyrokinetic dynamical reduction consists in building up a new
set of phase space variables, such that 6 dependence is completely uncoupled and
i has a trivial dynamics, i.e. & = 0. Therefore, the reduced particle dynamics is
described on the 4 dimensional phase space with variables (X, p), where X represents
the reduced particle position and p is the corresponding scalar momentum coordinate.
This change of coordinate is constructed via perturbative series of near-identity phase
space transformations, i.e. these transformations are invertible at each step of the
perturbative procedure. The reduced position X has a simple geometrical meaning: it
is the instantaneous center of the fastest particle’s rotation around the magnetic field
line. Therefore, the gyrokinetic coordinate transformation is a shift between the initial
particle coordinate and the instantaneous center of its rotation. Performing numerical
simulations on the 4 dimensional phase space instead of the 6 dimensional one aims to
reduce numerical costs.

The dynamical reduction can be organized in one or two steps. Within the one
step procedure, the contributions from the background geometry non-uniformities and
electromagnetic fluctuations to the breaking of the magnetic momentum conservation
are taken into account simultaneously. The two step procedure allows to treat those
effects at the separate stages, which may have some advantages for making a direct
link between the coordinate transformation and polarization effects it induces on the
reduced particle and field dynamics. Here we consider the two-step procedure in order
to make a clear separation between the polarization contributions associated to each
of those transformations at the lowest order. Within the two step procedure, a small
parameter is associated to each transformation: for the guiding-center eg = py,/Lp,
where py, is thermal Larmor radius of particle and L = VB/B sets the spatial scale
for background magnetic field variation, and e = (ki pw) ep/T for the gyrocenter.
Following the gyrokinetic code ordering, we consider in this work that ep < €5, i.e. all
the background gradient effects are of the superior order with respect to the amplitudes
of the fluctuations.

As a perturbative theory, each of the coordinate transformations: the guiding-
center and the gyrocenter represent an infinite series of corrections ordered accordingly
to the corresponding small parameter: eg or €¢5. From the point of view of spatial
components of the coordinate transformation, it means that the exact gyrokinetic
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coordinate transformation contains an infinite series of polarization displacements. In
this work we provide an explicit derivation of the reduced particle dynamics at the lowest
orders of both transformations. In that case, spatial components of both phase space
transformations: guiding-center and gyrocenter represent a shift between the initial
non-reduced particle position x and the reduced gyrocenter position X:

x =X + po(X, i1, 0) + €501 (X, 1, 0), (2)

where we have introduced polarization displacements of two kind: p, corresponding to
the lowest order guiding-center reduction and p; corresponding to the lowest order of
the gyrocenter reduction.

The lowest order guiding-center displacement is given by:

po=""\ 2 5= o~ O, 3)

where p is the unitary vector in the plane perpendicular to the background magnetic
field; the magnitude of magnetic field B is evaluated at the reduced position X. The
general gyrokinetic derivation comes up with a result that all the following guiding-center
polarization displacements are at least of the order O(eg) or higher (see, for example
the Eq. 36 in [8] or the Eqns. 63 and 66 in [9]), this is why we are not considering them
here.

In the same time, the lowest order gyrocenter displacement:

P (X)) ~ Ofes). e

m

2
p1L= %VL <¢1(X) -

where p, is the gyrocenter scalar canonical momentum coordinate related to the parallel

guiding-center momentum accordingly to the Eq. (10). In this work we consider
the gyrokinetic coordinate transformation in two cases: in the Sec. 3 we present the
transformation containing all the Finite Larmor Radius (FLR) corrections, i.e. from the
point of view of functional dependencies of electrostatic potentials containing corrections
of all orders related to the guiding-center transformation x = X + pyg.

Then in the Sec. 5.2 we explicit the change of coordinate at the lowest FLR order,
which corresponds from the physical point of view to the long-wavelenght approximation
with k) pgn << 1. We show that in this limit the gyrocenter phase space transformation
affects the spatial coordinate only, while the velocity phase space coordinates (p, u, )
remain unchanged, so it acts only as a shift between the guiding-center X + py and the
gyrocenter X + pg + €501 positions.

3. Phase-space perturbative procedure

In modern gyrokinetic theory, definition of new phase-space coordinates is done within
common perturbative procedure together with the derivation of the reduced dynamics.
At the first step, the guiding-center dynamical reduction starts from the local particle
coordinates (x,v). To access those coordinates, one needs to define two vector basis:
the static one and the dynamical one. The static basis is related to the magnetic field



Hierarchy of second order gyrokinetic Hamiltonian models for Particle-In-Cell codes. 5

line and the dynamical one rotates with the particle. As the static basis we choose
the natural Frenet triad : the unitary magnetic field vector b=B /B, the normalized
curvature vector by = b - Vb/|b- Vb| and by = b x by. Then, the dynamical basis is
defined from the static one as follows:

/3:61 cosG—BQSiDH, 1=-b; Sinﬁ—BQCOSG, (5)

where p is used for definition of the guiding-center displacement p, in the Eq. (3) and
therefore the local particle velocity can be decomposed in the following way:

~ 20B ~
vV = U”b + 4/ MWJ_. (6)

At the lowest order, the guiding-center transformation is defined as follows: the
particle space coordinate is decomposed as x = X + po(X, i, 6), with X the reduced
particle position and py the lowest order guiding-center polarization shift; the scalar
momentum coordinate is the parallel kinetic momentum p; = muv); p is the lowest order
magnetic momentum given by the Eq. (1) and 6 is the fast angle of rotation.

Since all kind of the invertible coordinate transformations are allowed for expression
of the Lagrangian dynamics, we write the expression for the guiding-center phase space
Lagrangian 1-form in the (X,p”, L, 9) coordinates:

€., < mc -
Lgc <X7pH7/L?0) :EA X—i_?lu’e_[_[gc’ (7)
where the symplectic part contains the modified magnetic potential:
cC ~
A=A+ S pr. (8)
The guiding-center Hamiltonian is given by:
2
ll
H,. = — B. 9

The L,. Lagrangian is the starting point of the derivation. At the next step,
we perturb that expression with first order fluctuating time-dependent electromagnetic
fields ¢; and Ay both ~ O(es) . Remark that in our derivation the perpendicular
part of the perturbed magnetic potential is absent, which corresponds to the choice
of considering the perpendicular component of the perturbed magnetic field only:
B, =V x A1||B. This approximation is implemented into the electromagnetic Particle-
In-Cell code ORB5.

In order to take into the account then eventual time-dependence of perturbed
electromagnetic potentials A;; and ¢; we extend the phase space from 6 to 8
dimensions. Therefore, formally the gyrocenter dynamical reduction is performed on
the 8-dimensional phase space where (¢,w) are canonically conjugated: t time and
w energy variables. This extension of the phase space is a standard for dynamical
systems procedure of autonomization (see for example [10]). From the physical point of
view, relevant reduced dynamics is still be performed on the 4 dimensional part of the
gyrocenter phase space with coordinates (X, p,), where

e
Dz = My + EA”'(X + po) (10)
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is the gyrocenter canonical momentum.
The perturbed guiding-center phase-space Lagrangian is given by:

(& ~ . mc - »

€ p, 1 reN? , B
2 A1H(X+Po)+% (C> AL (X + po) w>7 (11)

where A is the background vector potential, and b is the unitary vector associated to
the background magnetic field B = V x A. As all the background quantities A, b
and B are evaluated into the reduced gyrocenter position X, while the perturbative
electromagnetic potentials A and ¢; are evaluated into the guiding-center position
X + po, i.e. containing the gyrophase dependencies through the py. The two first
terms in the Eq. (11) represent the non-perturbed symplectic part and the last term
is the perturbed Hamiltonian of the system. Keeping the symplectic part gyrophase-
independent is possible within the p.-representation (10) of the dynamics. In that
representation all gyrophase-dependent terms are contained into the expression for the
Hamiltonian. This is one of the common choices for the Particle-In-Cell simulations
since it avoids appearance of the inductive electric field (the explicit time-derivative of
the perturbative magnetic potential Ay)|) into the particle characteristics.

In the next section we show how to eliminate the gyrophase-dependencies induced
by the perturbed electromagnetic potentials with using the Lie-transform near-identity
transformation at the first order with respect to the small parameter ¢5. We also explicit
the connection between the choice of the displacements py , p; and elimination of the
gyrophase-dependencies into the dynamics.

4. Full FLR Hamiltonian model

In this section we build up a near-identity phase-space change of variables aiming to
eliminate gyrophase-dependencies from the perturbative electromagnetic potentials Ay
and ¢ into the dynamics generated by the phase-space Lagrangian (11). We also show
the link between this change of coordinate and corrections appearing into the expression
for the reduced Hamiltonian.

Since in the p, representation of dynamics the symplectic part of the phase-space
Lagrangian is unperturbed, the gyrocenter change of coordinates will induce effects only
into its Hamiltonian part.

To define that change of coordinates, we derive the expression for the Poisson
Bracket, which can be obtained from the symplectic part of the perturbed Lagrangian
(11):

e (OFO0G OFO0G B* oG  OF
Foy=_° (&9 2O AwrPE
{FGl me (80 o Ou 86) B; <V op. 8pZVG>
b F F
D (vrxva) - 289G OFOG (12)

B eBﬂ‘ ow ot | ot ow’
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where B* = B + £p.V X b and Bj=B": b. The first three terms of that bracket are
ordered following the formal ordering introduced by Newcomb [11]: ez ~ e~ !. So the
first term generates the fastest scale of motion, the second one is related to the drifts
along the magnetic field lines, while B*/ By ~ B; and the last one is associated with the
slowest perpendicular drifts. The last two canonical terms corresponds to the extension
of the phase space up to 8 dimensions.

Following the p,-representation of the Lagrangian defined in the Eq. (11), the second
order gyrocenter Hamiltonian is:

2
H = Hot e 61X+ polps0),p:) + 5 (5) Au(X+ po 0%, (13)

where the unperturbed guiding-center Hamiltonian now writes as:

Hy = P + upB (14)
2m
and
DX+ polp,0),p) = (X + po) =~ p. Ay (X + po) (15)
is the linear perturbed gyrocenter potential. = Remark that the guiding-center

displacement py given by the Eq. (3) is formally depending on the phase-space
coordinates (X, u,#). Because all the dynamical fields automatically depend on the
reduced position X not only through the guiding-center displacement field pg, in
what follows we keep in mind the py, dependence in the velocity part of the phase-
space coordinates (u,6) without specifying its spatial dependency. This is justified
by the fact that we are performing the calculation on the lowest order with respect
to the guiding-center displacement py. Derivation of p, with respect to the spatial
coordinate X would lead to appearance of the VB/B coefficient, which would in its
turn lead to appearance of the O(eg) terms, which are neglected here anyway. To
make formulas appearing more compact we omit writing the functional dependencies
of the displacement py in the following text explicitely but we keep in mind its (u,0)
dependencies.

4.1. Gyrocenter phase-space coordinate transformation

In order to eliminate the gyrophase dependence of the Hamiltonian H, we perform a Lie
transform which maps the guiding-center coordinates (X, p,, i, ) into the gyrocenter
ones. Up to the first order, this change of coordinates is defined as follows:

e "5 (X 4 py) = X+ po — {51, X + po} (16)
e “sip, =p. — e{S1,p:} (17)
e oy = — e5{S, 1} (18)
e 510 =0 — {51,0}, (19)

where 5] is the generating function defining the transformation at the first order.
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We define the first order gyrocenter displacement as the shift between the guiding-
center and the gyrocenter positions:

p1 = —€6{5, X+ po}, (20)

therefore

e (X + po) = X + po + p1. (21)

4.2. Full FLR gyrocenter dynamics

In the same time, the Hamiltonian expressed in new coordinates, up to the second order
in €5 is:
_ 1
H = 67’65267"851]{ = HO — 65{51, H(]} + 56?{51, {Sl, H()}} + 6?{52, Ho}
+ et (X + po;p2) — 63{51, U1 (X + po;p2)}
1 re\?
+62<)A X + po)? + O(€d), 22
55\ o) AuX+po) (€5) (22)
where S is the same generating function as in the Eqns. (16-19). Remark that from
the point of view of the Hamiltonian, S; is removing the gyrophase dependence at the
orders €5 and €2. The generating function Sy is defined such that it removes the gyroangle
dependence from the order €% terms. The expression of the generating function Sy is
defined at the next order of perturbative procedure and involves terms of O(e}).
The expression for .57 is obtained from the condition that the gyrophase dependent
part of linear electromagnetic perturbation ), is removed from the lowest order
gyrocenter Hamiltonian:

{S1, Ho} = e b1 (X + po,p:) = et (X + po, p2)—eTo (1 (X + po, p2))(23)

and the gyroaveraged quantities are defined as follows:

1 2w
(o) (X, o) = 5 [0 (X + po. ) df. (24)
Therefore, the second order contribution:
{517{5171—[0}} = {5172;1 (X+p07pz)} (25)

By taking into the account the explicit expression for the guiding-center Poisson
bracket (12) at the lowest order:

e 0 oG e 0 oG
Foy=2(p) - < 2 (pE 2
{r.Gh mc@@( 8,u> mc@y( 80)’ (26)
the condition (23) becomes:
€ 851 8ch B eB (951 . ~ .
me 69 8[1, - me 89 =€ ¢1 (X + pO’pz) ) (27)

and therefore the generating function is:

Sy = %/dQ Uy (X + poips) s (28)




Hierarchy of second order gyrokinetic Hamiltonian models for Particle-In-Cell codes. 9

which means that this function has a fluctuating part only, ie. (J7S;) = 0 and
S1 =51 (X + po; p2).

Since Sy removes fluctuating parts from the second order terms, we only need to
evaluate the corresponding gyroaveraged contributions. With taking into the account
the Eq. (25) and the fact that S; is purely fluctuating function: Jy ({S1,¢1}) =
Jo ({Sl, {/;1}) we obtain a partial cancellation of the second order term O(€3):

;70 ({51, {S1, Ho}}) — Jo ({S1,11(X + po; ) })

= — ;jo ({51, Y1 (X + po;p2) }) (29)

Finally, we get the expression for the second order Hamiltonian containing the
guiding-center FLR corrections at all orders:

q = 52 + 1B + €5 (o (61(X + po)) (30)
— e Jo (Ay (X + po>)) + 632; (if Ty (A (X + po)?)
250 ({81, 01X + po.p.)}) (31)

With using the expression for the lowest order Poisson bracket given by the Eq. (26):
~ 0 ([~ 05
S X s Pz - = y Mz
{ lawl( + po;p )} au <¢1( + Po; P ) o0 >
0 [~ 051
_ = X p )L
with using that 951 = 11 (X + po; p.), after gyroaveraging, we get:

Jo ({81, 01X + poi p:)}) = 0uTo (¥ (X + po;p=)°) - (32)

Hfull pz

—tuBtes (eJo (1(X + po))
- P Jo (Alu(X + po))) + €5 21 ( ) Jo (AlH(X + po) )
- 552 o (@E(X—i—po;pz) ) (33)

This result corresponds to the derivation given in [12] in the electrostatic limit and
to the expression obtained in the slab magnetic geometry in [13].

5. Hamiltonian model in long-wavelength approximation

The long-wavelenght approximation with &, py, < 1 is implemented into the gyrokinetic
codes as an useful tool for investigation of the MHD modes, it is also suitable for studies
of turbulence generated by interaction of modes with low toroidal numbers. As have
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been shown in the latest linear electromagnetic benchmark [14], the long-wavelength
approximation implemented into the ORB5 code allows to treat modes with & py, < 0.6.
From the point of view of the gyrokinetic dynamical reduction, the long-wavelength
limit means that only the lowest order guiding-center FLR effects are included into
the derivation. The four-point gyroaverage approximation [15] is consistent with the
long-wavelength approximation.

Recently a full FLR solver for the Poisson equation has been implemented in ORB5
[Julien PhD]. Preliminary results shown that the new algorithm is 2 times slower then
the long-wavelength solver. This is mostly due to the need for additional integration
points for the gyroaverage algorithm as it was already shown in [16].

In this section we show how to obtain that simplified model in the framework
of the general derivation. There are two different ways to proceed. First of all, one
can perform the first order FLR series truncation directly on the expression of the
second order electrostatic potential given by the Eq. (32). Another possibility is to
follow the main steps of the general derivation with introducing the FLR truncation
at each step: starting with the expression for the generating function S, getting
the corresponding gyrocenter change of coordinates and finally the expression for the
simplified Hamiltonian. In the Sec. 5.2 we expose the main steps of this derivation.

We start with obtaining the long wavelenght limit model via the direct full FLR
model truncation.

5.1. Direct full FLR model truncation

Here we evaluate the lowest order FLR contribution to the second order term of the
Hamiltonian (33). We start with decomposing the first order fluctuating electromagnetic
potential into the FLR series:

1 (X + po,p:) = po - Vi (X, p.) + popo : VV1(X,p.) + ... (34)
In the long-wavelength limit we keep the first term only and we calculate:
0 ~ oy 0 2\
5270 (01 (Xt o1, 0):p2)°) = 5270 (Ipo - Vr(Xpa)*) = (39)
= L (2) Jo(5p V61X, p) Vi1 (X, p.)) = (C)QIW b1 (X,p.)
—a,LL Po o\pPp - 1 y Pz 1 yPz)) = e B 1% y Pz )
where we have used the definition (3), the fact that %%—’f’ = Zz’g and the dyadic tensors

property Jo (pp) = % (6161 + l32‘62) = %]—J_-
The magnetic term of the second order is obtained from:

Jo (AlH(X + 90)2) =Jo <<A%|(X) + po - VA (X) + ;Poﬂo : VVA1||(X)> )

= AL (X) +m (Z>2 % VoA +m <z)2 %Al\\(X) Vidy(X).  (36)

We remark that the second term is missing into the ORB5 model [6], which corresponds
to the slab geometry result obtained in [13].
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2
' = 2% +uB + € (e o (61(X + po)) — % p- Jo (Ay(X + Po))>
1 re\? c\? p 2
+ 2 <2m (C) A2,(X) +m (e> vy X)) )
c\2 mec? e
+ € (m (e) EAlH(X) ViAln(X) T op? Vi¢i(X) - P p-V 1Ay (X)

5.2. Gyrocenter coordinate transformation in long-wavelength approximation

In this section we derive the truncated Hamiltonian model (37) by performing the
gyrocenter coordinate transformation (16-19) at the lowest FLR order. To that purpose,
we are taking into the account only the lowest order FLR correction to the generating
function S;. Since the lowest order FLR correction to the fluctuating electromagnetic
potential is 1, (X 4+ po) = pop - Vip1(X), from the Eq. (28) with using the property of
rotating basis vectors p = [ df 1 , we get:

mec  ~
S1 = Eﬂo L - Vii(X). (38)
Now we calculate the corresponding gyrocenter displacement p; with using the

definition (20). Taking into account the lowest order Poisson bracket (26):
e (851 8p0 8p0 E)Sl>

- _ X __
P1 {51, X+ po} e

00 Ou 00 ou
From the definition of rotating basis vectors (5), and 9,p5 = 26?];2, we have:
e 0S10py mc* e 0pp0S, mc* ~~
£ - v d-= SRS 2T
mc 00 Oy eB? pp: Vi1 an mc 00 Oy eB? “

By taking into the account definition of the dyadic tensor 1, = pp + ll,
the expression for the first order gyrocenter displacement in the long wavelength
approrimation is:

2
P1 = —%Vﬂh- (39)
At the lowest FLR order of the gyrocenter phase-space transformation only the
spatial coordinate is affected. Velocity space coordinates (p., i, #) remain unchanged.
To show that it is sufficient to demonstrate that {Sy,p.}, {S1, u} and {Si, 8} represent
contributions of the next order with respect to the FLR decomposition. This
demonstration is summarized into the Appendix.
For that reason, at the lowest FLR order the gyrocenter transformation can be
interpreted as a simple shift of spatial coordinate with respect to the displacement p;.
Remark, that in the electrostatic case, it is easier to demonstrate that fact since the
generating function of the gyrocenter transformation is given by the fluctuating part of

the electrostatic potential ¢; = ¢1(X + py) and does not involve any p, dependencies.
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Since we still working in the p.-representation, the expression for the Poisson
Bracket remains unchanged under the FLR truncation. However, the expression for
the second order ~ O(¢€2) contributions to the reduced Hamiltonian will be affected.

Following the general procedure of the Hamiltonian transformation given by the
Eq. (22), we consider:

e 1y (X + po) = i(X + po + p1)

and therefore:

DX+ po+ p1) = Ui(X + po) + p1 - V(X + po) + O(e}),

now comparing this expression with formal Lie-transform implementation:

e L5 (X + po) = 1 (X + po) + {S1, 1 (X + po)} + O(€3)

we identify that
{SL,vi(X+ po)} = p1- Vi (X + po). (40)

Taking into the account the condition for definition of the generating function S; given
by the Eq. (25) and the fact that J ({Sl,zll}> = Jo ({S1,%1}), we recover the same
partial cancellation of the second order terms as in the full FLR case given by the
Eq. (29).

Finally, at the leading order in py the second order electromagnetic contribution is:

To ({S1, 0 (X+po)}) = =To (p1 - V).

Therefore, using the above definition for p; given by the Eq. (39), we find the same
expression for the second order Hamiltonian as from the direct FLR series truncation
of the full FLR model (33).

This demonstrates the link between the definition of the reduced particle position,
and in particular the displacement p;, and the elimination of the gyrophase dependence
of the reduced Hamiltonian dynamics.

6. Conclusions

In this work we have performed a detailed derivation of the second order gyrocenter
Hamiltonian models in the case with full FLR corrections and within the long-wavelength
approximation. The textitlong-wavelength model have been obtained in a two different
ways: within the direct truncation of the full FLR model and by constructing the
dynamical reduction procedure with the gyrocenter generating function, containing
only the lowest order FLR contribution. We have explicitely shown that in the long-
wavelength approximation, the gyrokinetic dynamical reduction resumes into the shift of
the particle position, which clarifies the purpose of the complex gyrokinetic phase-space
coordinate transformation.
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