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Abstract

A refined two-point model is derived from the drift-reduced Braginskii equa-

tions for the limited tokamak scrape-off layer (SOL). It balances the parallel

plasma dynamics, the plasma-neutral interaction, and the radial plasma and

heat transport from the tokamak core. Self-consistent first-principle turbu-

lence simulations of the SOL plasma including its interaction with neutral

atoms are perfomed with the GBS code and compared to the refined two-

point model and a simple version. The refined two-point model is shown to
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be in very good agreement with the turbulence simulation results.

1 Introduction

The level of impurities in the core and the lifetime of the plasma facing com-

ponents, two critical issues on the way to fusion energy, depend on the amount

of sputtering of wall material [9]. Sputtering occurs when ions, accelerated

in the sheath, hit the solid wall. The acceleration is directly related to the

plasma temperature in front of the divertor or limiter plates [16]. Therefore,

understanding the physical processes that regulate the plasma temperature

in front of the solid walls is of paramount importance.

Reliable predictions of the conditions in front of the solid walls can be

obtained by using three-dimensional simulations of the turbulent dynamics

in the outermost plasma region of a fusion device, the scrape-off layer (SOL).

A number of simulation codes were developed in the past years to carry out

these simulations, such as BOUT++ [4], GBS [13, 6], GRILLIX [18], and

TOKAM3X [19]. However, their development is still ongoing and turbu-

lence simulations remain computationally very expensive. For this reason,

progress was made in the development of simplified models that describe
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perpendicular turbulent transport as a diffusive process with diffusion co-

efficients obtained from fitting experimental data. Widely used transport

codes that use these models are, e.g., SOLEDGE2D-EIRENE [3], SOLPS

formerly B2-EIRENE [11, 15, 12], EMC3-EIRENE [5], UEDGE [14]. Fur-

ther simplifications of these transport models lead to the so-called two-point

models [16], which are widely used to obtain fast, although rough, estimates

of plasma parameters in front of the solid walls. Two-point models can be

used to understand basic trends of the parallel transport in the tokamak SOL.

Two-point models use assumptions about the perpendicular heat and particle

fluxes and a one-dimensional description of the plasma dynamics along the

field lines to obtain relations between the plasma parameters at the target

(the divertor or limiter plates) and upstream (a location far from the target

and in contact with the core, e.g., close to the X-point, where the divertor

legs begin, or at the low-field side midplane). While a number of two-point

models were developed in the past varying in their geometries, assumptions,

and inclusion of different physical processes (see, e.g., Refs. [17, 20, 7, 16]), to

our knowledge no direct comparison of two-point models with the results of

turbulence codes was carried out. The goal of the present paper is to perform

such a comparison by evaluating the electron temperature drop from the up-
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stream to the target regions in a very simple magnetic configuration, i.e. a

tokamak with a toroidal limiter on the high-field side equatorial midplane

with circular magnetic flux surfaces. In this case, the targets are the lower

and upper sides of the limiter, while the upstream location is at the low-field

side equatorial midplane, halfway between the two targets.

Since in the limited configuration the target location is next to the con-

fined region a large fraction of the recycled neutral atoms are ionized inside

the confined region, even in high density plasmas, where the ionization mean

free path is short. The plasma can redistribute itself poloidally in the closed

flux surface region, by moving along the magnetic field lines, and it flows

back out to the SOL also at locations far from the limiter. Therefore, plasma

parallel flows towards the limiter are important and, contrary to what is of-

ten done for high-density divertor configurations [16], the parallel convective

heat flux cannot be neglected. It turns out that the simplest two-point model

in limited configuration is derived from the balance between perpendicular

heat transport, parallel heat conduction, and parallel heat convection [20]. In

the present paper, we compare the predictions of this model to first-principle

turbulence simulations carried out with the GBS code. Since the compari-

son is not completely satisfactory, we derive a more refined two-point model
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rigorously from the fluid drift-reduced Braginskii equations that are coupled

to a kinetic equation for neutral atoms. The comparison of this model with

the turbulence simulations shows good agreement.

The present paper is structured as follows. After the Introduction, in

Sec. 2 we describe a simple two-point model for toroidally limited tokamaks.

Sec. 3 compares the prediction of this model with the SOL turbulence sim-

ulations. In Sec. 4 we develop a more accurate two-point model, which we

compare to the turbulent simulations and discuss in Sec. 5.

2 A simple two-point model for the limited

SOL

In this chapter we describe a simple two-point model for an axi-symmetric

tokamak with a toroidal limiter. We consider one flux tube, which spans

along a magnetic the field line from one side to the other side of the lim-

iter. We assume that the limiter is located at the high-field side equatorial

midplane. We label the direction along the flux tube with the coordinate s,

which spans from s = −L at the lower side of the limiter, to s = +L at its

upper side, with the upstream location, s = 0, located at the low-field side
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equatorial midplane. We remark that all flux tubes on the same flux surface

show equal behavior, since we consider an axi-symmetric system.

Since in the limited configuration the target location is next to the con-

fined region, a large fraction of the recycled neutral atoms is ionized, even in

high density plasmas, inside the closed flux surface region, where the ionized

particles can redistribute poloidally. The flow of particles into the SOL is

poloidally constant to a first approximation. As a consequence, large plasma

flows towards the limiter are present and the parallel convective heat flux can-

not be neglected. The simplest two-point model in limited configuration [20]

is derived from the balance between the heat deposited in the flux tube due

to the radial heat transport, SQ⊥, the parallel heat conduction, Qcond, and

the parallel heat convection, Qconv, i.e.

Qcond(s) +Qconv(s) =

∫ s

0

SQ⊥(s′)ds′. (1)

In Eq. (1) we impose Qcond(0) = Qconv(0) = 0 because the upstream location,

s = 0, is both a symmetry and a stagnation point in this simple model. The

conductive heat flux is modeled by using the Spitzer heat flux coefficient,

Qcond = −χe0T
5/2
e dTe/ds, and the convective heat flux is estimated with

Qconv = ce0ΓTe, where ce0 = 5/2 is the heat capacity of the electrons and

Γ =
∫
Sn⊥ds is the parallel particle flux, with Sn⊥ being the particle source
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due to radial transport into the flux tube. Assuming SQ⊥ and Sn⊥ constant

along the flux tube in a limited geometry (the outflow of plasma and heat is

poloidally uniform), the equation that determines the electron temperature

is

−χe0T
5/2
e

dTe
ds

+ ce0sSn⊥Te = sSQ⊥. (2)

The solution of Eq. (2) requires a boundary condition that we apply at the

magnetic pre-sheath entrance by writing the electron heat flux through the

sheath entrance as Qt = γeΓtTe,t, where the subscript t indicates the tar-

get location, and the coefficient γe ≈ 5 is the electron sheath transmission

coefficient [16].

With this boundary condition Eq. (2) can be integrated numerically for

a given SQ⊥ and Sn⊥. An implicit analytical expression to relate the elec-

tron temperature at the target, Te,t to its upstream value Te,u can also be

obtained [20] that can be evaluated numerically.
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3 Turbulent SOL simulations and compari-

son with the simple two-point model

In this section we introduce the model that we use to describe plasma tur-

bulence in the tokamak SOL and its interaction with neutrals, by outlining

the basic assumptions of the model and presenting the resulting equations.

(A more complete derivation can be found in Refs. [22, 21].) The electron

temperature drop from the upstream to the target location predicted by this

model, which is implemented in the GBS code [13, 6], is then compared with

the simple two-point model.

Since the plasma in the SOL is rather cold (a few eV), its collisionality is

sufficiently high that a fluid model, such as Braginskii’s model [2], can be used

for its description. Moreover, by taking advantage of the fact that plasma

turbulence is elongated along the field lines (k‖ � k⊥) and that turbulent

timescales are much slower than the ion cyclotron motion (∂/∂t � Ωci) the

drift reduction can be applied [22]. This leads, together with quasi-neutrality,

to a set of drift-reduced two-fluid Braginskii equations that describe the

dynamics of plasma density, n, generalized vorticity, ω̃, electron and ion

parallel velocities, v‖e and v‖i, and electron and ion temperatures, Te and Ti.
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In the electrostatic limit these equations are
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∂n

∂t
=− 1

B
[φ, n]−∇‖(nv‖e) +

2

eB

[
C(pe)− enC(φ)

]
+Dn(n) + Sn (3)

+ nnνiz − nνrec

∂ω̃

∂t
=− 1

B
[φ, ω̃]− v‖i∇‖ω̃ +

B2

min
∇‖j‖ +

2B

min
C(p) +Dω̃(ω̃)− nn

n
νcxω̃ (4)

∂v‖e
∂t

=− 1

B
[φ, v‖e]− v‖e∇‖v‖e +

e

σ‖me

j‖ (5)

+
e

me

∇‖φ−
Te
men
∇‖n−

1.71

me

∇‖Te +Dv‖e(v‖e)

+
nn

n
(νen + 2νiz)(v‖n − v‖e)

∂v‖i
∂t

=− 1

B
[φ, v‖i]− v‖i∇‖v‖i −

1

min
∇‖p+Dv‖i(v‖i) (6)

+
nn

n
(νiz + νcx)(v‖n − v‖i)

∂Te
∂t

=− 1

B
[φ, Te]− v‖e∇‖Te +

4Te
3eB

[
Te
n
C(n) +

7

2
C(Te)− eC(φ)

]
(7)

+
2Te
3n

[
0.71

e
∇‖j‖ − n∇‖v‖e

]
+DTe(Te) + κ‖e∇‖(T 5/2

e ∇‖Te) + STe

+
nn

n
νiz

[
−2

3
Eiz − Te +mev‖e

(
v‖e −

4

3
v‖n

)]
− nn

n
νenme

2

3
v‖e(v‖n − v‖e)

∂Ti
∂t

=− 1

B
[φ, Ti]− v‖i∇‖Ti +

4Ti
3eB

[
C(Te) +

Te
n
C(n)− 5

2
C(Ti)− eC(φ)

]
(8)

+
2Ti
3n

[
1

e
∇‖j‖ − n∇‖v‖i

]
+DTi

(Ti) + κ‖i∇‖(T 5/2
i ∇‖Ti) + STi

+
nn

n
(νiz + νcx)

[
Tn − Ti +

1

3
(v‖n − v‖i)2

]
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with p = n(Te + Ti), the total pressure, j‖ = en(v‖i − v‖e), κ‖e and κ‖i

the Spitzer heat conduction coefficients, Eiz the effective ionization energy,

and σ‖ = 1.96e2nτe/me, the parallel conductivity, where τe is the electron

collision time. The generalized vorticity, ω̃ = ω + 1/e∇2
⊥Ti, is related to

the electrostatic potential by ∇2
⊥φ = ω. The following operators are used

∇‖A = b̂ · ∇A, [A,B] = b̂ · (∇A×∇B), and C(A) = B/2[∇× (b̂/B)] · ∇A.

The source terms (Sn, STe , STi
) mimic the outflow of hot plasma from the

confined region to the SOL, and we interpret their location as the radial

position of the last closed flux surface (LCFS). The perpendicular diffusive

terms DA(A) are included mostly for numerical reasons. The system is closed

by a set of first-principles boundary conditions applied at the magnetic pre-

sheath entrance of the limiter plates, derived and discussed in Ref. [10].

The interaction of the plasma with the neutral atoms, rigorously deduced

from a kinetic description [21], is included through the interaction with the

neutral density, nn, parallel velocity, v‖n, and temperature, Tn. These mo-

ments of the neutral distribution function are obtained from the solution of

the kinetic neutral equation for a mono-atomic neutral species

∂fn
∂t

+ v · ∂fn
∂x

= −νizfn − νcx
(
fn −

nn

ni

fi

)
+ νrecfi (9)

where fn and fi are the neutral and ion distribution functions. The ion-
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ization, charge-exchange, and recombination processes are described, respec-

tively, through the use of Krook operators with collision frequencies defined

as νiz = ne〈veσiz(ve)〉, νrec = ne〈veσrec(ve)〉, and νcx = ni〈viσcx(vi)〉, where σiz,

σrec, and σcx are the ionization, recombination, and charge-exchange cross

sections. (The 〈·〉 operator denotes the averaging over the Maxwellian elec-

tron, or ion, distribution function.) Eqs. (3-8) are solved by the GBS code

by using a second order finite difference scheme, except for the [A,B] opera-

tors that are discretized by using the Arakawa scheme [1]. Time integration

is carried out with the classical Runge-Kutta method [8]. The solution of

Eq. (9) is obtained in the limit of τn < τturb (τn is the mean flight time of

a neutral atom, τturb is the turbulent timescale) and k‖ < λmfp (λmfp is the

mean free path of the neutrals) by using the method of characteristics [21].

To compare the simple two-point model with results from the GBS code,

we consider five simulations, with a toroidal limiter on the high-field equa-

torial midplane, R/ρs0 = 500, mi/me = 400, 2πa = 800ρs0, a being the

minor radius, ρs0 = cs0/Ωci, cs0 =
√
Te0/mi, and Te0 = Ti0 = 10eV. The

five simulations are variants of two basic configurations, characterized by

two different plasma densities, which were also used in Ref. [21]. In the low

plasma density configuration, we impose n0 = 5 · 1018m−3, the value of the
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density at the LCFS, and ν̃ = Rme/(1.96cs0miτe) = 0.02, the resistivity nor-

malized to R/cs0. As a consequence, the dimensionless parallel electron heat

conductivity is κ̃‖e = 3.16× 2Te0τe/(3mecs0R) = 56.0, and the dimensionless

parallel ion heat conductivity is κ̃‖i = 3.9 × 2Ti0τi/(3mics0R) = 1.6. In the

high plasma density configuration, n0 = 5 · 1019m−3, ν̃ = 0.2, κ̃‖e = 5.6, and

κ̃‖i = 0.16 are used. In addition to these two basic simulations, we repeat

both simulations zeroing out the plasma interaction terms with the neutral

atoms. These simulations are labeled as ’no nn’ in the following. For the high

density case, we also carry out a simulation where we change the energy re-

moved by each ionization to include the increased energy loss due to multiple

impact ionizations, labeled as ’Eiz = 30eV’ (in the other cases Eiz = 13.6eV).

The computational domain extends for all five simulations from rmin = 0 to

rmax = 150ρs0. The source terms Sn, STi
, and STe in Eqs. (3-8) are constant

in time, poloidally uniform, and radially Gaussian around rs = 30ρs0 with a

width of 5ρs0.

The comparison with the simple two-point model is performed for five dif-

ferent flux tubes extending radially over 10ρs0 centered at r = 45, 55, 65, 75, 85ρs0.

To calculate the particle and heat deposited into each flux tube, Sn⊥ and SQ⊥,

we combine the perpendicular drift terms in the GBS equations (as explained
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in Sec. 4), and we average them over time and over the poloidal direction.

The two-point model estimates of the temperature ratio, Te,u/Te,t, are

then compared to the temperature ratio in the simulations. The results are

shown in Fig. 1. While the general trends are captured by the simple two-

point model, the agreement with the turbulent simulations is rather poor in

most cases.
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1 1.5 2

Te,u/Te,t (GBS)

1

1.2

1.4

1.6

1.8

2

T
e,
u
/
T
e,
t
(t
p
m
)

simple two-point model

5 · 1013, no nn

5 · 1013

5 · 1012, no nn

5 · 1012

5 · 1013, Eiz = 30

Figure 1: Comparison of the ratio between the electron temperature at

the upstream and target locations predicted by the simple two-point model

(tpm), Eq. (2), with the results of a set of GBS simulations. For each sim-

ulation (different colors) we consider five radial locations for the flux tube

(r = 45, 55, 65, 75, 85ρs0).

4 A refined two-point model for limited SOL

In this chapter, we derive a refined two-point model rigorously from the

drift-reduced Braginskii equations for plasma density, Eq. (3), and electron
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temperature, Eq. (7). The perpendicular diffusive terms, Dn(n) and DTe(Te),

included mostly for numerical reasons, are neglected, since they are small.

For typical parameters of limited tokamaks, the SOL plasma temperature

is sufficiently high to neglect recombination processes. Furthermore, we ne-

glect the terms in the electron temperature equation (7) associated with the

difference between parallel electron and neutral velocity since they are small

compared to the other plasma-neutral interaction terms. We also assume

j‖ = 0. The validity of these assumptions is shown in Fig. 2. By making use

of these assumptions, we obtain
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Figure 2: Time-averaged plasma density (left) and electron temperature

(right) balance along the field lines between the two limiter plates. The

contributions are labeled NL, for the ExB term, CU, for the curvature term,

PA, for the parallel flow, SO, for the source term, DI, for the perpendicular

numerical diffusion, NN, for the neutrals, where k marks terms that are kept,

and r terms that are neglected, and PD the parallel conduction. The sum in

black shows that the quasi steady state balance is almost exact.

∂n

∂t
+∇‖(nv‖e) = S̃n⊥ + S̃n⊥nn (10)

∂Te
∂t

+ v‖e∇‖Te +
2Te
3
∇‖v‖e − κe∇‖(T 5/2

e ∇‖Te) = S̃Te⊥ + S̃Te⊥nn (11)

where we combine the perpendicular transport terms (the terms related to

the E × B and diamagnetic drifts as well as the Sn and STe terms) into
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effective perpendicular source terms,

S̃n⊥ =− 1

B
[φ, n] +

2

eB

[
C(pe)− enC(φ)

]
+ Sn (12)

S̃Te⊥ =− 1

B
[φ, Te] +

4Te
3eB

[
Te
n
C(n) +

7

2
C(Te)− eC(φ)

]
+ STe , (13)

and we do the same for the plasma-neutral interactions terms:

S̃n⊥nn =nnνiz (14)

S̃Te⊥nn =
nn

n
νiz

(
−2

3
Eiz − Te

)
. (15)

To obtain an equation for the parallel electron heat flux, we multiply

Eq. (10) by 3Te/2, and Eq. (11) by 3n/2 and we add the two resulting

equations:

3

2

∂(nTe)

∂t
+

3

2
Te∇‖(nv‖e) +

3

2
nv‖e∇‖Te + nTe∇‖v‖e −

3

2
nκe∇‖(T 5/2

e ∇‖Te)

(16)

=
3

2
TeS̃n⊥ +

3

2
nS̃Te⊥ +

3

2
TeS̃n⊥nn +

3

2
nS̃Te⊥nn .

We now average Eqs. (10) and (16) in time (and rearrange the terms) to

obtain

∇‖
(
nv‖e

)
≈ Sn⊥ + Sn⊥nn (17)

∇‖
(

5

2
nv‖eTe

)
− v‖e∇‖ (nTe)− χe∇‖

(
T 5/2
e ∇‖Te

)
≈ SQ⊥ − Sn⊥nnEiz, (18)
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with Sn⊥ and SQ⊥ being the time average of S̃n⊥ and 3/2(TeS̃n⊥ + nS̃Te⊥)

respectively, and all quantities in Eqs. (17-18) meant to be time averaged. We

note that the contribution due to the correlation between the fluctuations is

small and can be neglected when time-averaging the parallel transport terms

and the neutral-plasma interaction terms. Moreover, the coefficient in the

parallel Spitzer heat conductivity is defined as χe = 3
2
nftκe, where nft is the

average density in the flux tube.

To derive the electron temperature drop along the field lines from Eq. (18),

we estimate the variation of the parallel electron velocity, the plasma den-

sity, and the neutral density along the field line. We assume that the parallel

velocity varies linearly between the two limiters, where Bohm boundary con-

ditions are valid, i.e.

v‖e(±L) = ±cs = ±
√
Te + Ti
mi

≈ ±
√

2Te
mi

. (19)

obtaining therefore

v‖e(s) =
css

L
. (20)

To obtain the density profile, we integrate Eq. (17), that is

Γ = nv‖e =

∫
Sn⊥ + Sn⊥nnds. (21)
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The profile of the plasma density is then n = Γ/v‖e.

The neutral density is assumed to decay exponentially from the two lim-

iters, i.e.

nn(s) = nn(−L) exp [(−s− L)/λmfp] + nn(L) exp [(s− L)/λmfp], (22)

with the decaying scale length given by λmfp = αrcs/(νiz + νcx), where αr is

the reflection coefficient of the neutrals on the limiter [21] (the velocity of the

thermal neutrals from the wall is much smaller and can be neglected when

estimating the effective mean free path). The collision frequencies νiz and νcx

are evaluated with the electron temperature and plasma density averaged

around the target (from the limiter to a distance λmfp from the limiter). The

target density, nn(±L), is chosen to match the total amount of ionization

in the considered flux tube. This is an input for an one-dimensional model,

since neutral particles are not bound to flow along a field line, and can, in

the limited configuration, move easily accross the flux surfaces before being

ionized. The ionization inside each flux tube amounts for about 5% to 20%

of the recycled particles at its ends, depending mainly on plasma density

and radial location of the considered flux tube. The perpendicular source

terms, Sn and SQ, are approximated to have a cosine distribution due to the

ballooning character of the perpendicular transport, which is confirmed by
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the turbulence simulations.

Finally, to solve (18) for the electron temperature, we impose symme-

try around the upstream location s = 0, where the parallel derivative of Te

vanishes. We also ensure that the velocity profile is self-consistently evalu-

ated with Te(±L) by enforcing that the integral of the parallel electron heat

equation, Eq. (18), along s, i.e.

[
5

2
nv‖eTe

]L
−L

= 5LΓ(±L)Te(±L) (23)

=

∫ L

−L

[
SQ⊥ − Sn⊥nnEiz + v‖e∇‖(nTe) + χe∇‖(T 5/2

e ∇‖Te)
]
ds,

is satisfied, which describes the total heat balance in the flux tube.

With these constraints, for a given density source strength, heat source

strength, and total amount of ionization in the observed flux tube, the re-

fined two-point model, consisting of Eqs. (17,18,20,22), can be solved self-

consistently. We compare its results to the set of simulations described in

Sec. 3 in Fig. 3. The results from the refined two-point model and the simu-

lations show very good agreement.
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Figure 3: Comparison of the refined two-point model, Eqs. (17-18), with the

same set of GBS simulations as used in Fig. 1 and described in Sec. 3.

5 Discussion and conclusions

We test separately the main differences between the simple and the refined

two-point model to determine the reason behind the significantly better

agreement of the latter with the turbulence simulations. We observe that the

shape of the source terms Sn⊥ and SQ⊥ (from constant to a cosine poloidal

dependence) does not improve significantly the agreement of the simple two-
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point model. However, a significant effect can be observed by including the

plasma-neutral interaction terms. This was also observed by Tokar et al. [20],

where an improved two-point model is described in which the neutrals are

modelled as exponentially decaying from the limiter, similar to the approach

in the present paper, including a diffusive model for the charge-exchange

processes in addition. However, the inclusion of the pressure gradient term

in Eq. (18), v‖e∇‖ (nTe), is even more important. This term originates from

the plasma compressibility in the Braginskii equations.

To conclude, taking into account these effects, the refined two-point model

that we derived from the drift-reduced Braginskii equations for the limited

tokamak SOL predicts the ratio between upstream and target electron tem-

peratures along a flux tube from three input parameters, namely the particle

source and heat source to the flux tube due to perpendicular turbulent trans-

port, as well as the ionizations source strength in the flux tube, in very good

agreement with GBS turbulence simulations. In particular, the inclusion of

plasma-neutral interactions and the additional term in the heat equation are

necessary to accurately retrieve the electron temperature ratios observed in

turbulent SOL simulations.

In the present paper, we have focused our attention on the electron tem-
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perature drop. We would like to remark that evaluating the same drop for the

ion temperature brings an additional difficulty. In fact, in the drift-reduced

Braginskii equations, Eqs. (3-8), the plasma density and the electron tem-

perature are advected by the electron velocity [see Eq. (3) and Eq. (7)], while

the ion temperature is advected by the ion velocity [see Eq. (8)]. The com-

bination of the plasma density and ion temperature equation to an ion heat

equation is therefore not straightforward. While v‖,i ≈ v‖,e is a good approx-

imation for the electrons, since it only appears in the term proportional to

∇‖j‖ in the electron temperature equation, Eq. (7), and the other terms in

this equation are much larger, it is not a good approximation for the ions.

On the other hand, the parallel heat conduction is much smaller for the ions

than for the electrons, and can be neglected in most cases.

This paper presents, to our knowledge, the first comparison between a

two-point model including plasma-neutral interactions and turbulence simu-

lations of the tokamak SOL. This comparison has ultimately allowed us to

develop a more refined two-point model. As progress in the development of

three-dimensional turbulence codes evolves, we can foresee improvements of

two-point models in more advanced tokamak exhaust configurations.
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