
EUROFUSION WP15ER-PR(16) 16263

R Jorge et al.

Plasma Turbulence in the Scrape-off
Layer of the ISTTOK Tokamak

Preprint of Paper to be submitted for publication in
Physics of Plasmas

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Plasma Turbulence in the Scrape-off Layer of the ISTTOK

Tokamak
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Abstract

The properties of plasma turbulence in a poloidally limited scrape-off layer (SOL) are addressed,

with focus on ISTTOK, a large aspect ratio tokamak with a circular cross section. Theoretical

investigations based on the drift-reduced Braginskii equations are carried out through linear

calculations and non-linear simulations, in two- and three-dimensional geometries. The linear

instabilities driving turbulence and the mechanisms that set the amplitude of turbulence as well as

the SOL width are identified. A clear asymmetry is shown to exist between the low-field and the

high-field sides of the machine. A comparison between experimental measurements and simulation

results is presented.
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I. INTRODUCTION

In recent years, significant progress was made in the study of the plasma turbulence

properties in the scrape-off layer (SOL) of tokamaks [1–3], the region that exhausts the

tokamak power, controls the plasma fueling and the impurity dynamics, and plays a major

role in determining the overall plasma confinement [4–6]. These investigations focused mainly

on the toroidally limited SOL, a configuration that is relevant to the ITER start-up and

ramp-down phases during which the inner or the outer vessel wall will be used as the limiting

surface [7]. In this scenario, using low-frequency fluid models, the turbulent regimes were

identified. It was found that drift waves (DW) and ballooning modes (BM) drive the plasma

turbulent dynamics, with the resistive BM being the main drive in typical existing tokamak

conditions [8], a result in agreement with previous experimental results [9]. Simulations

and analytical estimates revealed that the fluctuations saturate due to a local flattening of

the plasma gradients and associated removal of the linear instability drive [10]. By using a

balance between turbulent transport and parallel losses at the vessel, a scaling of the pressure

scale length was derived. A thorough comparison with experimental measurements was

carried out with significant success [11]. The question of how these findings can be applied

to other configurations remains open and is one of the main motivations of this work.

The goal of the present paper is the study of turbulence properties in a poloidally limited

geometry, such as the one of ISTTOK [12, 13], a large aspect ratio tokamak (R/a ∼ 5.4,

where R and a are the major and minor radius respectively) with a circular cross section.

By intercepting the magnetic field lines on a poloidal plane, a poloidal limiter avoids the

connection between the low- and the high-field sides of the machine. This allows the turbulent

properties, and therefore the pressure scale length and the SOL width, to retain a strong

poloidal dependence. The shorter connection length, with respect to the toroidally limited

case, leads to enhanced parallel losses, steepening the gradients and, as we show, changing

the relative role of DW and BM in driving turbulence.

We carry out our investigation by using linear and non-linear simulations, in two- and three-

dimensional geometries, that are based on the drift-reduced Braginskii equations [14]. These

are solved with GBS [15], a numerical simulation code developed with the goal of simulating

plasma SOL turbulence by evolving the full profiles of the various plasma quantities with no

separation between perturbations and equilibrium, and was validated against experiments
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such as the TORPEX device [16] and several other machines [17], verified with the method

of manufactured solutions [11], and benchmarked against the major SOL simulation codes,

including BOUT++ [18], HESEL [19], and TOKAM3X [20]. The parameters of our study

rely on the ones from ISTTOK, where a clear asymmetry between the low and the high

field sides was found [21]. We uncover the instabilities driving turbulence and the turbulent

regimes in ISTTOK, and we quantitatively compare our simulation and theoretical results

with some of the measurements taken in this device.

This paper is organized as follows. Section II describes the model equations and the

ISTTOK simulation results. In Sec. III we investigate the nature of the instabilities driving

turbulence in a poloidally limited SOL. Sec. IV discusses the development of the linear

instabilities into non-linear turbulence and provides an estimate of the time-averaged pressure

gradient scale length. Finally, in Sec. V, a comparison between ISTTOK experimental

measurements and simulations is reported. The conclusions are presented in Sec. VI.

II. MODEL EQUATIONS AND ISTTOK SIMULATION RESULTS

In the ISTTOK SOL, the turbulent time scales (such as the one measured by Langmuir

probes <∼ 10−5 s) are slower than the collisional time (τe ∼ 10−6 s), and the scale lengths

along the (poloidally limited) magnetic field (L‖ = 2πR ∼ 3 m) are longer than the mean

free path (λmfp ∼ 1 m). This implies that the plasma distribution function is close to a

local Maxwellian [22], and justifies the use of a fluid description. Furthermore, the turbulent

time scales are slower than the ion cyclotron time (ω−1ci ∼ 10−7 s), and the perpendicular

scale lengths (Lp ∼ 1 cm) are longer than the ion gyroradius (ρi ∼ 0.1 cm). It follows that

a description of ISTTOK’s SOL based on the three-dimensional, two-fluid, drift-reduced

Braginskii equations can be used [14]. In the electrostatic limit considered here, the model

equations are
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where Ω = ω + ∇2
⊥Ti/e, with ω = ∇2

⊥φ the vorticity and φ the electrostatic potential.

In the density (n) and electron and ion temperature (Te, Ti) equations, source terms

Sn,T = S0n,T exp [−(x− xs)2/σ2
s ] are added to mimic the plasma outflow from the core into

the SOL. The diffusion operators for a generic field A, defined as DA(A) = χA∇2
⊥A, are

present for numerical reasons, i.e., to damp fluctuations at the grid scale. The gyroviscous

terms Gi,e are defined as

Gi,e = −η0i,e
{

2∇‖V‖i,e +
c

enB
[enC(φ)± C(nTi,e)]

}
, (7)

with η0i,e the Braginskii’s viscosity coefficients [22]. In Eqs. (1 - 6), we have also introduced

the magnetic field unit vector b = B/B, the curvature operator C(f) = (B/2)∇×(b/B) ·∇f ,

and the Poisson brackets operator [φ, f ] = b · (∇φ×∇f). The electron-ion collision frequency

is defined as νe = 2.91× 10−6λnT
−3/2
e , with λ the Coulomb logarithm, Te in eV, and n in

cm−3.

For simplicity, we consider a large aspect ratio geometry, and no magnetic shear. An

orthogonal coordinate system [y, x, z] is used, where x is the flux coordinate corresponding

to the radial direction, z is a coordinate along the magnetic field B, and y is the coordinate
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perpendicular to both x and z. Because of the considered large aspect ratio limit, the

plane (x, y) coincides with the poloidal plane, which implies y = aθ, where θ is the poloidal

angle (−π < θ < π), with θ = 0 corresponding to the low-field side (LFS) equatorial

midplane and θ = ±π to the high-field side (HFS). In the rest of the paper, we use θ and

ϕ as the poloidal and toroidal coordinates respectively, with z = Rϕ/ cos ε, where ε is the

magnetic field pitch angle ε = arctan(a/qR) and q the safety factor. The parallel gradient

is ∇‖ = ∂z ' R−1(∂φ + q−1∂θ), and the perpendicular Laplacian is ∇2
⊥ = ∂2x + a−2∂2θ . The

poloidal limiter is located at ϕ = 0, 2π, where we impose the Bohm sheath conditions for the

ion and electron parallel velocities as V‖i = ±cs and V‖e = ±cs exp(Λ− eφ/Te) respectively,

with cs =
√

(Te + Ti)/mi and Λ = 0.5 ln [mi/(2πme)] ' 3 [23].

To solve Eqs. (1 - 6) we use GBS, a code that was developed in the past few years

to simulate the turbulent dynamics in the tokamak SOL [24]. We perform a simulation

(denoted as the standard ISTTOK simulation in the following) whose parameters follow

the ones of the ISTTOK tokamak, which has a major radius R = 0.46 m, minor radius

a = 0.085 m, and a toroidal magnetic field BT = 0.5 T. We express the input parameters

and the simulation results in terms of the ISTTOK’s last closed flux surface parameters,

i.e., a reference electron temperature Te0 = 20 eV, density n0 = 0.8× 1018 m−3, magnetic

field B = 0.5 T, and ion sound Larmor radius ρs0 ≡ cs0/ωci ' 0.9 mm [where cs0 =
√
Te0/mi

and ωci = eB/(mic)]. This results in R ' 504 ρs0, a ' 93 ρs0, dimensionless resistivity

ν = e2n0R/(miσ‖0cs0) ' 1× 10−3 [where σ‖ = 1.96 ne2/(meνe) is the parallel conductivity],

mass ratio mi/me ' 5×10−4, and safety factor q ' 8. As there are no detailed measures of the

ion temperature, we perform our non-linear simulations in the cold ion limit (τ = Ti/Te = 0),

and analyze the effect of finite Ti on the linear growth rate of the unstable modes and the

time-averaged pressure gradient length in Section IV.

According to Ref. [25], electromagnetic effects lead to a non-negligible enhancement on

heat and particle transport in the SOL. At the value of the MHD ballooning parameter

αMHD = βeR/Lp ∼ 1.2× 10−3 in ISTTOK, we do not expect the ideal ballooning mode to

play a major role. We refer the reader to Ref. [26] for a detailed treatment of electromagnetic

effects in the SOL within the drift-reduced fluid description.

The simulation has a radial extension 0 < x < 50 ρs0. The plasma and heat sources,

located at xs = 10 ρs0, have a characteristic width of σs = 2.5 ρs0. Our analysis considers

only the physically meaningful region x > xs. We remark that ISTTOK’s radial distance
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between the last closed flux surface and the outer wall is approximately 16 ρs0, in practice

comparable to the experimental SOL width. Since a set of boundary conditions that properly

describes the interaction of the plasma with the outer wall is not known, we consider a radial

domain extension larger than in the experiment, so that the plasma pressure decays to a

negligible value at the outer wall, and the boundary conditions we impose at this location

have a negligible impact on the turbulent properties. Specifically, at x = 0 and x = 50 ρs0,

Neumann boundary conditions are used for density, temperature, electric potential, while

Dirichlet boundary conditions are used for the vorticity. By computing the power spectrum

of the fluctuations, we observe that χA ≥ 6cs0/(ρ
2
s0R) properly damps fluctuations at the

grid scale. Moreover, the simulation results are not sensitive to the values of the diffusion

coefficients for the range of values 6 < χAρ
2
s0R/cs0 < 20, so the value of χA = 12cs0/(ρ

2
s0R)

is used for all fields.

A typical turbulent snapshot for a GBS simulation is shown in Figs. 1 and 2. A spatial grid

of 512×64×32 and a time step of 10−4R/cs0 is employed. Figure 1 shows the development of

the plasma turbulence on the poloidal plane ϕ = π. We observe that n, Te and φ fluctuations

with respect to the background quantities are stronger on the LFS, θ = 0, compared to

the HFS, θ = ±π, where the SOL width is narrower. Figure 2 is taken at a toroidal plane

x = xs + 5 ρs0, where we can confirm that turbulent fluctuations tend to be aligned to the

magnetic field lines. The ion parallel velocities V‖i are −cs and +cs at the limiter plates

ϕ = 0 and 2π respectively, and the V‖e fluctuations are much larger due to small electron

inertia.

III. IDENTIFICATION OF DRIVING LINEAR INSTABILITIES

Previous studies on the drift-reduced Braginskii equations show that ballooning modes

(BM) and drift waves (DW) are the instabilities that drive most of the transport in a toroidally

limited SOL [8, 27]. BM are driven unstable by magnetic field line curvature and plasma

pressure gradients. They are characterized by a large (∼ π/2) phase shift between n and φ

[28], and their growth rate is maximum at the longest parallel wavelength allowed in the

system. On the contrary, DW arise at finite k‖ due to the E ×B convection of the pressure

profile, and are driven unstable by finite resistivity and electron inertia, showing an adiabatic

electron response, and a small phase shift between n and φ [29]. Besides BM and DW, the
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FIG. 1. Snapshots of plasma turbulence in ISTTOK for a GBS simulation on a poloidal cross section

at halfway between the limiter (ϕ = π) of: (a) plasma density n/n0, (b) electron temperature

Te/Te0, (c) electrostatic potential φ/eTe0, (d) vorticity ω = ρ2s0∇2
⊥φ/eTe0, (e) electron V‖e/cs0, and

(f) ion V‖i/cs0 parallel velocities.
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FIG. 2. Snapshots of plasma turbulence in ISTTOK for a GBS simulation on a toroidal cross

section x = xs+5 ρs0 of: (a) plasma density n/n0, (b) electron temperature Te/Te0, (c) electrostatic

potential φ/eTe0, (d) vorticity ω = ρ2s0∇2
⊥φ/eTe0, (e) electron V‖e/cs0, and (f) ion V‖i/cs0 parallel

velocities.

Kelvin-Helmholtz (KH) instability, driven by shear flows, and the sheath mode, driven by a

temperature gradient when magnetic field lines terminate on a solid wall and sheath physics

plays a role, may also influence the SOL dynamics [30].

The role of DW in the system is assessed by two different studies. First, we compare
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the standard ISTTOK simulation with a two-dimensional simulation carried out with a

model that, having excluded k‖ 6= 0 modes (and in particular DW), evolves the field-line

averaged density, n(r, θ), potential, φ(r, θ), and temperature, T (r, θ) (see Ref. [31]). Second,

we perform a three-dimensional simulation were we exclude DW dynamics by neglecting

the diamagnetic terms, Te∇‖ lnn and 1.71∇‖Te, in Ohm’s law, Eq. (3). The results of these

experiments cast in terms of the averaged pressure gradient scale length Lp ' |p/∇p| (where

p = nTe), are compared in Fig. 3 with the result from the full 3D GBS simulations. This

includes the standard ISTTOK simulation (blue line), and the two- and three-dimensional

simulations that exclude the DW dynamics (red and purple lines, respectively). Motivated

by the difference between the LFS and the HFS following the removal of DW in Fig. 3, we

analyse separately the different poloidal positions. We note that this is justified by the fact

that the plasma rotates poloidally on a time scale 2πa/VE×B ∼ 2πaLpωci/(Λc
2
s0) ∼ 10−3 s,

which is much slower than the turbulent time scales ∼ 10−5 s.

We start our analysis at the LFS. Here, curvature is unfavourable, BM are expected to be

unstable and, comparing the standard GBS simulation with the one excluding DW in Fig. 3,

it is observed that removing DW from the system leads to increasing values of Lp, suggesting

that these may have a significant role in driving turbulence. By linearizing the drift-reduced

Braginskii system of equations (1 - 6) in the cold-ion limit, assuming background density

and temperature profiles with radial scale lengths given by Ln and LTe respectively, and

a perturbation of the form eγt+ikyy+ik‖z, we obtain the following dispersion relation that

captures DW and BM

g
γ2

ω2
ci

k2y
k2‖

me

mi

= i
kyρ

2
s0

Ln

ωci
γ

(1 + 1.71ηe)− 2.95gk2yρ
2
s0 − 1, (8)

with

g =
1− 2 cos θ(1 + ηe)(ρ

2
s0/RLn)(ω2

ci/γ
2)

1 + 4.28i cos θ(kyρ2s0/R)(ωci/γ)
, (9)

and ηe = Ln/LTe . To deduce Eq. (8), we take into account the fact that θ is almost constant

along a field line due to a high q at the edge, we neglect both sound wave coupling and

compressibility terms in the continuity (1) and temperature (5) equations, since γ � k‖cs

and L‖/R� 1 (as confirmed by the linear analysis below), and we focus on the inertial limit

by neglecting the resistivity term νe in Ohm’s law (3). The inertial nature of the instabilities

present in the system is confirmed in Sec. IV.
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FIG. 3. The equilibrium pressure scale length, Lp, is plotted as a function of the poloidal angle, θ,

from an exponential fit in the radial direction of the type p/p0 = e−x/Lp(θ) of the two (red) and

three-dimensional simulations, with (blue) and without (purple) DW, and the prediction from

Eq. (18) (green).

FIG. 4. Linear growth rate as a function of the poloidal angle, θ, and of the parallel wavenumber

normalized to the major radius k‖R. From left to right: the solution of the full dispersion relation

that couples inertial DW and BM, Eq. (8); the solution of Eq. (10) for the pure BM; and the

solution of Eq. (11) for the pure DW.
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The largest growth rate solution of Eq. (8) is plotted as a function of k‖ and θ in the left

panel of Fig. 4, having chosen Ln, ηe, and kyρs0 according to the results of the ISTTOK

standard simulation. This growth rate is compared with the maximum one resulting from

the dispersion relation of the pure BM,

γ2

ω2
ci

− 2 cos θ(1 + ηe)
ρ2s0
RLn

= −
k2‖
k2y

mi

me

, (10)

and pure DW,

γ2

ω2
ci

k2y
k2‖

me

mi

= i
kyρ

2
s0

Ln

ωci
γ

(1 + 1.71ηe)− 2.95k2yρ
2
s0 − 1. (11)

One observes from Fig. 4 that pure BM are unstable for k‖R < 0.15 and for k‖ = 0 they

exhibit a strong growth rate at the LFS. However, as they are strongly stabilised by finite k‖,

at the typical values of k‖ ∼ 0.1 - 0.2 found in the standard ISTTOK simulations, DW are

the fastest growing instability.

To conclude the analysis of the turbulence driving mechanisms at the LFS, we assess the

role of KH, by considering a two-dimensional simulation where we remove the KH instability

drive, i.e., we replace φ in the [φ, ω] term of the vorticity equation (2) by its poloidally

averaged counterpart. This simulation (not shown) exhibits an increase of Lp from 18 ρs0 to

30 ρs0, revealing therefore that the KH instability does not drive turbulence, but it plays a

role in regulating its saturation level, since it decreases the characteristic gradient lengths in

the SOL. We can therefore conclude that, at the LFS, finite k‖ effects decrease the importance

of BM and lead to DW driven turbulence whose amplitude is partially regulated by the KH

mode at the LFS. As a comparison, we remark that k‖ is set by the ballooning character of

the modes in a toroidally limited SOL, where the smaller values of k‖ ultimately enhance the

importance of BM with respect to DW.

We now focus on the HFS, where the DW removal in the nonlinear simulation of Fig. 3

significantly decreases Lp. This pinpoints the important role of DW at this location and rules

out BM and KH modes as the main drive of HFS turbulence. The residual turbulence in the

DW-suppressed system is driven by the KH modes stabilized by the favourable curvature.

This is tested by removing the KH instability drive, and observing that Lp decreases even

further to negligible values from approximately 5 ρs0 to 2 ρs0.
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In addition, two-dimensional simulations (not shown) reveal that Lp increases substantially

at the HFS from Lp ' 5 ρs0 to Lp ' 11 ρs0 if the curvature term in the vorticity equation

is removed, a value in agreement with the estimate in Ref. [32]. This shows that favorable

curvature has a stabilizing effect on KH. A study on the coupling between the KH instability

and BM has been carried out in Ref. [33], where it was also noticed that favorable curvature

stabilises KH.

In order to further justify our conclusions on the turbulent driving mechanisms, we analyse

the simulation results by evaluating the cross-coherence and phase-shift between ñ and φ̃.

Here, ñ denotes the density fluctuations, defined by ñ = n− n̄, with n̄ the time averaged

density. An analogous definition is used for the other quantities. Figure 5 (top panels)

displays the cross-coherence between ñ and φ̃ for a standard ISTTOK simulation at the

radial location x = xs + 5 ρs0 and midway toroidally between the two limiter faces at ϕ = π.

The fluctuations are normalized to their standard deviation. Since DW are characterized by

an almost adiabatic electron response, a higher correlation between φ̃ and ñ is expected in

DW-driven turbulence with respect to BM-driven turbulence. Indeed, as shown in Fig. 5,

the correlation is strong at the LFS, and even stronger at the HFS, which clearly points to a

DW character of turbulence at this location, where the BM interchange drive is not present.

We also perform a cross-coherence analysis for the three-dimensional simulations where

DW, and more specifically the diamagnetic terms Te∇‖ lnn and 1.71∇‖Te in Ohm’s law (3),

are removed from the system, and for three-dimensional simulations where the BM drive, the

curvature term in the vorticity equation (2), is neglected, yielding the middle and bottom

panels of Fig. 5 respectively. One observes that BM removal does not affect the correlation at

the HFS, and increases it at the LFS (as compared with a standard simulation), as expected

from the DW nature of turbulence at the HFS and the mixed BM and DW nature at the LFS.

On the other hand, removing DW has the effect of increasing the correlation at the HFS.

As a matter of fact, the KH instability that drives transport at the HFS in DW-suppressed

turbulent simulations leads to a high correlation between ñ and φ̃.

We now turn our attention to the phase-shift −π < δ < π between ñ and φ̃, which

is expected to be large and close to π/2 in BM turbulence where, according to Eq. (2),

neglecting k‖ = 0 and KH effects, we have

γ∇2
⊥φ̃ ∼ 2ωci

Te + Ti
en

C(ñ), (12)
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FIG. 5. Probability of correlation between density and electric potential fluctuations normalized to

their respective standard deviation, resulting from GBS simulations of standard ISTTOK parameters

(top), the removal of DW (middle) and BM (bottom) from the system, at the HFS (left) and LFS

(right).

and small in DW driven turbulence, where neglecting electron inertia and viscous Ge terms

we have instead in Eq. (3)

∇‖φ̃ ∼
Te
en
∇‖ñ. (13)

This is shown in Fig. 6, where δ is calculated at the HFS and at the LFS, both at x = xs+5

ρs0 and ϕ = π as in Fig. 5, by performing the Fourier transform of φ̃ and ñ along θ, on a

domain ∆θ = π/2 centered at θ = 0 for the LFS, and θ = ±π for the HFS, and computing

the phase shift between these two quantities as a function of ky. The phase shifts evaluated

with a frequency of 103cs0/R, during a time span of R/cs0, are then binned as a function

of ky with the proper weight given by the power spectral density of φ̃ and ñ fluctuations.

The results of this test, shown in Fig. 6, are not particularly clear. In fact, the phase-shift
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FIG. 6. Phase-shift probability between density and electric potential fluctuations, resulting from

GBS simulations of standard ISTTOK parameters (top), the removal of DW (middle) and BM

(bottom) from the system, at the HFS (left) and LFS (right).

between φ̃ and ñ is small both at LFS and HFS. Similarly small values are observed if BM

and DW drive are removed from the simulation. We conclude that Eq. (12) is too simplistic

to study the phase shift between φ and n. The short connection length of our configuration

introduces finite k‖ effects, that tend to reduce the phase shift. We have highlighted these

effects by performing two-dimensional simulations (not shown) with an increasing connection

length, and observing that δ tends to the expected value of π/2 only when the connection

length approaches infinity.

IV. TURBULENCE SATURATION MECHANISMS

Having identified the nature of the linear turbulent drive at different locations, we now

turn to the investigation of the mechanisms that saturate the growth of the linearly unstable

modes. While a number of saturation mechanisms have been proposed (for a recent review

see Ref. [34]), it has been shown that the growth of a secondary KH instability and the

14



gradient removal mechanism, i.e., the saturation of the linear mode due to the non-linear local

flattening of the driving plasma gradients, are the main saturation mechanisms in the case of

DW and BM driven turbulence. Moreover, analytical estimates and numerical simulations

suggest that the gradient removal saturation mechanism is present when
√
kyLp <∼ 3 [10].

In our nonlinear simulations,
√
kyLp ' 1 at the HFS, and

√
kyLp ' 2.2 at the LFS, which

may point to the gradient removal mechanism as the one at play at the HFS, and partially

contributing to the saturation of the unstable modes at the LFS where KH also plays a role

in the saturation of the DW, as confirmed in the test described in Section III.

When turbulence is saturated by the gradient removal mechanism, the characteristic

pressure gradient length Lp in the SOL can be derived by stating that the growth of the

linearly unstable modes saturates when the radial gradient of the perturbed pressure becomes

comparable to the radial gradient of the background pressure dp/dx ∼ dp̃/dx, which can also

be written as

kxp̃ ∼
p

Lp
. (14)

Following non-local linear theory as outlined in Refs [35, 36], for DW and BM respectively,

we estimate the radial wavenumber as

kx ∼

√
ky
Lp
. (15)

To estimate the balance between the pressure flux and the parallel losses at the limiter

plates, we combine Eq. (1) and Eq. (5), and ignore the curvature and diffusion terms, to

derive the leading order pressure equation

∂p

∂t
= − c

B
[φ, p]−∇‖(pV‖e). (16)

Writing [φ, p] = ∇ · Γ, we time average Eq. (16), integrate it along a magnetic field line,

and neglect the pressure flux in the poloidal direction Γy with respect to the turbulent radial

flux Γx = cp̃∂yφ̃/B ∼ ckyφ̃p̃/B. In addition, estimating the parallel losses at the limiter as

pV‖e
∣∣
limiter

' p cs, we obtain

∂Γx
∂x
∼ − p cs

2πR
. (17)

15



Finally, estimating the electrostatic potential φ̃ by neglecting the k‖ term in the pressure

equation (16) as φ̃ ∼ Bγp̃Lp/(Rpkyc), and with ∂xΓx ∼ Γx/Lp, we have

Lp =
R

cs

(
γ

ky

)
max

, (18)

where γ/ky is maximised over all possible instabilities present in the system. In practice,

having fixed θ, the solution of Eq. (18) requires the evaluation of the linear growth rate γ as

a function of ky and Lp from the linear dispersion relation associated with the drift-reduced

Braginskii system. We then seek the value of ky that yields the largest ratio γ/ky for each

Lp, and we obtain the value of Lp that satisfies Eq. (18) using Muller’s secant method [37].

A linear code was used to obtain γ and ky for the different unstable modes [8]. Here, a Robin

boundary condition [38] is implemented that mimics the dynamics of the different fields at

the sheath entrance in the non-linear simulations.

The Lp solution of Eq. (18) for ISTTOK parameters is shown in Fig. 3 (green dashed line).

The agreement with the simulation results is particularly good at the HFS, while at the LFS

it overestimates Lp by 25% (as expected from KH having a role in saturating turbulence).

Using the result of Eq. (18), we also estimate Lp as a function of the resistivity ν, ion to

electron temperature ratio τ , and safety factor q in order to assess the dependence of the

SOL radial pressure profile on these parameters. The results of this estimate are shown in

Fig. 7, which revealed that Lp depends weakly on the safety factor q, while it increases for

increasing values of ν and τ .

Equation (18) allows us to further confirm the ISTTOK turbulent regimes identified in

Section III, and extend this analysis to a wide parameter space. In fact, having estimated Lp

as a function of τ, ν, and q, one can evaluate the growth rate of the Resistive BM, Inertial

BM, Resistive DW, and Inertial DW instabilities. We note that the resistive branch of BM

and DW is due to the presence of resistivity (ν) in Ohm’s law, Eq. (3), while an inertial

branch of BM and DW is made unstable by electron inertia (me) effects. Therefore, the

growth rate of the resistive BM and DW can be found by neglecting me in Eq. (3), while the

inertial instability is evaluated by neglecting νe in Eq. (3). In order to identify the turbulent

regimes we evaluate the growth rate of the four instabilities above at the ky and Lp that

solves Eq. (18). Turbulence is expected to be driven by the instability that has the largest

linear growth rate.
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FIG. 7. Equilibrium pressure scale-length, Lp, as a function of the poloidal angle θ and normalised

resistivity ν (left panel), ion to electron temperature ration τ (mid panel), and safety factor q (right

panel). The black lines represent the standard ISTTOK case.

FIG. 8. Turbulent regimes as a function of the poloidal angle θ and normalised resistivity ν (upper

left panel), ion to electron temperature ration τ (mid panel), and safety factor q (right panel). We

depict Resistive BM in dark blue, Inertial BM in light blue, Resistive DW in yellow, and Inertial

DW in red. The black lines represent the standard ISTTOK case.

The turbulence regimes are shown in Fig. 8, where Inertial DW drives turbulence at all

poloidal angles for typical ISTTOK parameters. An increase of the resistivity ν from the

typical ISTTOK standard simulation value, ν ∼ 1× 10−3, to 1× 10−2 leads to the Resistive

BM at the LFS, while for τ > 1 a transition to the Inertial BM also seen near θ = 0. For the

case of 1 < τ < 2, Resistive DW seem to drive turbulence at the HFS, and for a wide range

of values of 4 < q < 12, the turbulent regime identification seems unaffected.

V. COMPARISON WITH EXPERIMENTAL RESULTS

A large number of experimental campaigns have been carried out in ISTTOK to explore

the SOL turbulence properties by using Langmuir probes at different radial locations [21].
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We compare some of these measurements with our numerical results.

First, we focus on the power spectrum of the floating potential, Vf = φ − ΛTe/e, a

quantity that can be measured directly by Langmuir probes when operating in floating

conditions. The absolute value of the temporal Fourier transform of Ṽf is shown in Fig. 9,

superimposing the experimental measurements and numerical results. In both cases, the

power spectrum is approximately flat for lower frequencies, a typical behavior observed in

tokamak SOL turbulence that is dominated by low-frequency fluctuations [39]. In Fig. 9, it

remains flat for frequencies <∼ 20 kHz. At higher frequencies (> 50 kHz) at the HFS, both

the experimental and simulation spectra show a power-law decay with slope approximately

equal to −2, whereas at the LFS this is not so clear. In fact, an exponential decay seems to

better reproduce the results here, even for lower (> 30 kHz) threshold frequencies (in Ref.

[40] a theoretical justification of an exponential power-spectrum behavior is proposed).

Second, we consider the probability distribution function (PDF) of the ion saturation

current, Isat = ecsn, and turbulent particle flux, ΓE×B = (c/B)ñ∂yφ̃. In Fig. 10, we

superimpose the experimental and numerical PDF at the LFS and HFS. In the simulation

results, as well as in the ISTTOK experiment, we observe for Isat a Gaussian-like kurtosis

(' 3 at the LFS and ' 3.5 at the HFS) and a positive skewness (' 1.3 at the LFS and ' 1.7

at the HFS). On the other hand, the particle flux shows the same statistical properties at

the LFS and at the HFS, with a large kurtosis (∼ 6) and positive skeweness (∼ 1.7). The

good agreement between experiments and simulations points to the fact that the simulations

we carried out capture the main turbulent time scales at play as well as the mean turbulence

statistical features.

Finally, we compare the experimental characteristic pressure gradient lengths Lp with the

ones discussed in Section IV. Experimental measurements suggest that Lp, is independent of

q for a wide range of values (Lp = 4.8 ρs0 for q = 7, Lp = 4.5 ρs0 for q = 10, and Lp = 4.3

ρs0 for q = 13, at the LFS), a behavior in agreement with simulation results. However, the

experimental value of Lp ' 4.5 ρs0 at the LFS differs from the the one predicted in simulation

results by a factor larger than three. In fact, in the ISTTOK standard simulation we have

Lp ' 15 ρs0 at the LFS (see Fig. 3). This might be due to the presence of the outer wall

in the experiment that acts effectively as a plasma sink and reduces Lp. Its presence is not

accounted for in the GBS simulations, which considers a large radial domain extension.
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FIG. 9. Power spectrum of the floating potential Vf = φ− ΛTe/e from the experiment (red) and

simulations (black), at the LFS (top panel) and HFS (bottom panel).

VI. CONCLUSIONS

This paper addresses the study of plasma turbulence in a poloidally limited SOL, using

linear calculations and non-linear simulations based on the drift-reduced Braginskii equations.

We focus our investigations on the parameters of the ISTTOK tokamak and compare our

theoretical results with experiments carried out there.

Significant differences are found with respect to a toroidally limited SOL. Because of the

presence of the poloidal limiter that avoids the connection between the LFS and HFS, a clear

poloidal asymmetry is observed, with the time-averaged pressure scale length considerably

shorter at the LFS compared with the HFS. Due to the short connection length and related

steep pressure gradients, the role of DW is enhanced with respect to the toroidally limited
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FIG. 10. Probability distribution function from the experiment and simulations, for Isat (top panels)

and ΓE×B (bottom panels). Turbulence at the HFS (left) and at the LFS (right) is considered.

case. In fact, for the typical ISTTOK parameters, we identify DW as the main linear

instability drive both at the LFS and HFS, where we also find KH to play a non-negligible

role in saturating turbulence.

The pressure scale length obtained from the non-linear simulations shows a remarkable

agreement with estimates based on the saturation of the unstable linear modes due to

the non-linear local flattening of the driving plasma gradients at the HFS. The agreement

decreases at the LFS due to the aforementioned role of the KH instability in setting the

turbulence amplitude.

The comparison of the statistical properties of turbulence shows a good agreement between

experimental and numerical results. On the other hand, possibly because of the interaction

of the plasma with the wall, the characteristic pressure scale gradient length found in the

simulation is considerably larger than that measured in the experiment.
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