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When electron cyclotron (EC) driven current is first applied to the inside of a magnetic island,
the current spreads throughout the island and after a short period achieves a steady level. Using a
two equation fluid model for the EC current that allows us to examine this early evolution in detail,
we analyze high-resolution simulations of a 2/1 classical tearing mode in a low-beta large aspect-
ratio circular tokamak. These simulations use a nonlinear 3D reduced-MHD fluid model and the
JOREK code. During the initial period where the EC driven current grows and spreads throughout
the magnetic island, it is not a function of the magnetic flux. However, once it has reached a
steady-state, it should be a flux function. We demonstrate numerically that if sufficiently resolved
toroidally, the steady-state EC driven current becomes approximately a flux function. We discuss
the physics of this early period of EC evolution and its impact on the size of the magnetic island.
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I. INTRODUCTION

Above a critical value of the plasma beta, neoclassical tearing modes (NTMs) are destabilized. As the size of
magnetic islands grow, hot particles are more easily lost from the machine and disruptions are triggered. Thus the
formation of magnetic islands establishes an effective limit on the plasma beta that can be achieved in a fusion device.
The presence of even small magnetic islands has a nonlocal effect on a fusion plasma. Magnetic islands change a
plasma’s temperature profile, the current profile, and the rotation velocity [1]. The primary tactic for controlling and
suppressing NTMs is to apply electron cyclotron current drive (ECCD) in a localized area inside the magnetic islands
[2–7].

In the limit of low plasma beta, the neoclassical bootstrap current, which distinguishes a neoclassical tearing mode
from a classical tearing mode, is negligibly small. The low beta limit represents a simplification of the full physics of
fusion plasmas, which is still of interest [8–10]. In this work we study the dynamics of the electron cyclotron driven
current within magnetic islands produced by a classical tearing mode in the low beta regime.

Experimentalists can reconstruct the width and position of a magnetic island in a fusion plasma from measurements
of the electron temperature obtained from electron cyclotron emission; this profile flattens inside a magnetic island.
Changes in the island width can also be calculated from the magnetic field perturbation, which is constructed from
an integrated and weighted sum of Mirnov coil measurements [7, 11]. However experiments have not been able to
produce a complete picture of the dynamics internal to the island during stabilization. A deeper understanding of this
physical process is necessary in order ultimately to build a more detailed theory of stabilization than the generalized
Rutherford equation provides.

Approaching the growth and suppression of tearing modes with simulation allows us to observe how physical
processes inside a magnetic island develop on time and space scales finer than those described by the generalized
Rutherford equation, or measurable in experiment. Over the last few decades computing power has increased to a
level that, with a magnetohydrodynamic (MHD) fluid model, the nonlinear development of instabilities are routinely
simulated with sufficient resolution in both space and time to produce results with excellent accuracy. Several large
codes have been developed to solve different variations of the MHD fluid equations in a tokamak. These codes include
NIMROD [12, 13], BOUT++ [14, 15], M3D(-C1) [16, 17], XTOR(-2F) [18, 19], and JOREK [20, 21]. The JOREK code
has been used to simulate MHD instabilities in tokamaks successfully using several nonlinear reduced MHD models
[22, 23] as well as full MHD models [24, 25]. In this work we use JOREK to simulate the evolution of classical 2/1
tearing modes from their first development, through their saturation and eventual partial suppression using electron
cyclotron current drive (ECCD).

We have recently revisited the closure of single fluid MHD in the presence of ECCD [26]. A typical feature of ECCD
is the two step process characterizing the current drive described by Fisch and Boozer [27, 28]: the electron cyclotron
waves create an asymmetry in the collisionality of the electron distribution which then results in the creation of a net
current with negligible momentum transfer between electrons and ions. The effect of this current is expressed as a
commonly-used modification to Ohm’s law, which is closed by an equation for the evolution of the EC driven current,
reflecting the delayed nature of its source and its convection with the parallel velocity of resonant electrons. Previous
modeling efforts have used a single equation for the EC driven current [29, 30]. Our two-equation fluid closure for
the EC driven current therefore results in a model that is more accurate, particularly for the early evolution of the
current.

We investigate the physical consequences of this two-equation fluid closure for the EC current presented in Westerhof
and Pratt [26]. This work is organized as follows. Section II summarizes the physical model implemented for EC
current and the magnetohydrodynamic fluid model and numerical models used in the JOREK code. Section III describes
the simulations of 2/1 tearing modes performed with JOREK. Section IV presents our numerical results for the early
dynamics of the EC driven current. In Section V we discuss implications of these results.

II. PHYSICAL AND NUMERICAL MODELS

A. Physical model for electron cyclotron current

We employ the fluid closure described in Westerhof and Pratt [26], which has been designed to model the Fisch-
Boozer current-generation mechanism [27, 28]. Using this current-generation mechanism, the electron cyclotron
waves drive an excess of electrons at the resonant parallel velocity and at high perpendicular velocity. There is a
corresponding shortfall of electrons at the resonant parallel velocity and at low perpendicular velocities. These two
populations of electrons exhibit different collisionality, allowing a steady-state current to emerge. The source region
of this current cannot be equated with the region where EC power is deposited, but is extended along the magnetic
field lines crossing through the EC power deposition region. The current is then convected out of the region where
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it is generated. Thus the essence of our closure model are two current equations that describe the convection of the
applied EC current along the magnetic field lines:

∂j1
∂t

= −Sec − ν1j1 + v‖,res∇‖j1 , (1)

∂j2
∂t

= +Sec − ν2j2 + v‖,res∇‖j2 . (2)

In eqs. (1) and (2) the parallel velocity of the electrons resonant with the electron cyclotron waves is given by v‖,res,
and ∇‖ is the gradient parallel to the magnetic field. The current perturbations j1 and j2 each have a source Sec,
which is of equal strength but different sign for each current perturbation, corresponding to the amplitude of the
current perturbation of the population of electrons that resonates with the EC wave. The source region of the EC
driven current is extended over a toroidal length equal to v‖,res/ν1. For typical tokamak parameters this corresponds

to O(102) toroidal revolutions. The regime of fast island rotation, where v‖,res/ν1 >> 1, is appropriate for the non-
rotating tearing mode that we study in this work. We thus adopt a form for the EC source Sec that is only radially
localized. We model Sec as a Gaussian distribution, centered at the resonant surface in the poloidal plane where the
magnetic islands begin to grow. The EC source has a constant amplitude and narrow standard deviation.

The different collision frequencies of the two populations of electrons that produce the current perturbations in
eqs. (1) and (2) are ν1 and ν2, respectively and ν1 > ν2. The difference in ν1 and ν2 produces a difference in j1 and j2
as these current perturbations evolve. The current perturbation j1 decays quickly over the distance v‖,res/ν1, while
j2 decays more slowly. This creates a net EC driven current

jec = j1 + j2 . (3)

which decays at the slower collision rate ν2. After the EC source is applied, a short period of time is required for jec
to reach a steady-state value. It is this early period of ECCD application that we examine in this work.

B. A reduced MHD fluid model in the JOREK code

We use the physical model for the EC current of eqs. (1)-(3) in conjunction with a reduced MHD model, which
is one of several MHD models implemented in the JOREK code. JOREK is a toroidal code that has the capacity to
accurately model the geometry and divertor, consistent with different tokamak designs. In the reduced MHD model
we employ, vector fields are represented in terms of the poloidal magnetic flux ψ, the velocity stream function u, and
the parallel velocity v||. The full magnetic and velocity fields can be reconstructed from these functions using the
definitions:

B = −êφ ×
1

R
∇ψ + êφBφ , (4)

v = êφ ×R∇u+ v||b̂ . (5)

Here êφ is a unit vector in the toroidal direction, and b̂ is a unit vector in the direction of the magnetic field B.
R is the major radius of the tokamak. The toroidal magnetic field Bφ = F0/R is held constant; when the toroidal
magnetic field is large, the reduced MHD formalism is accurate [31, 32]. The evolution equations [33] for the poloidal
magnetic flux ψ, and the velocity v are:

∂ψ

∂t
+R [u, ψ] = −F0

∂u

∂φ
+ η(j − jBS,0 −E0/η − jec) , (6)

ρ
∂v

∂t
= −ρ(v · ∇)v −∇p + j ×B + ν∇2v , (7)

where the Poisson bracket has been defined in the standard way as [u, ψ] = ∂Ru∂Zψ − ∂Zu∂Rψ. A resistivity and
viscosity, given by η and ν, are constant input parameters in these equations. The equilibrium electric field is given
by E0. The equilibrium bootstrap current jBS,0 is not evolved in this work, allowing classical tearing modes to be
produced. In eq. (6) the EC driven current jec is defined by our fluid model in eq. (3). Additional terms for drifts
and two-fluid effects are available in the JOREK code, but are not used in this work.
JOREK is a compressible MHD code and solves coupled evolution equations for the density ρ and temperature T :

∂ρ

∂t
= −∇ · (ρv) +∇ · (D⊥∇⊥ρ) , (8)

ρ
∂T

∂t
= −ρv · ∇T − (κ− 1)p∇ · v +∇ · (K⊥∇⊥T +K||∇||T ) .
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FIG. 1. A Poincaré map (a) of the poloidal plane of the circular tokamak in simulation T1 . Shown in blue is the magnetic
island formed by the 2/1 tearing mode at the point where they have come to saturation, and are at their largest width. The
separatrix is plotted in pink. The nearly-concentric surfaces of constant magnetic flux outside the magnetic island are plotted
in purple. A visualization (b) of the EC driven current in the poloidal plane of the circular tokamak. The EC driven current
spreads along flux surfaces, filling the magnetic island in simulation F3.

Here K||,⊥ are the parallel and perpendicular heat diffusivity, assumed to be small in this work, and κ = 5/3 is the
ratio of specific heats.

The toroidal current density jφ, and toroidal vorticity ω are also calculated at each time step from:

jφ = R2∇ · (R−2∇ψ) , (9)

ω = ∇2
polu . (10)

In our simulations using JOREK, the time integration is carried out using a fully implicit BDF1 (backward differentiation
formula) scheme due to Gear [34]. The preconditioning we use is a variant of block-Jacobi preconditioning, performed
on a reordered matrix [35–37]. The spatial scheme is a finite element method in the poloidal plane of the tokamak.
The finite elements are based on bicubic Bézier surfaces, a generalization of cubic Hermite elements. The advantage of
this is that the finite elements are aligned with the equilibrium magnetic flux surfaces [21]. In the toroidal direction,
a spectral method is used. For further details of the numerical models in the current JOREK code, we refer to Franck
et al. [32], Hölzl et al. [38].

III. CLASSICAL TEARING MODE SIMULATIONS WITH JOREK

We produce simulations of a classical 2/1 tearing mode in a circular tokamak with minor radius a = 1m and major
radius R = 10m. The maximum beta of the plasma is β ∼ O(10−4). The resonant surface is located at the point
where the safety factor q = 2; no other surfaces of rational q are located inside the plasma, allowing us to study a
pure 2/1 tearing mode that does not interact with other tearing instabilities. A magnetic island is allowed to form
from small fluctuations at the resonant surface at q = 2. We follow the growth of the magnetic island through the
exponential growth phase until the size of the magnetic island reaches a steady large width, commonly referred to as
saturation of the tearing instability. Panel (a) of FIG. 1 shows a Poincaré map of the poloidal plane in our simulations.
In this figure, the magnetic island is shown at the point of saturation, when it has reached its largest size. Panel (b)
of FIG. 1 shows the outlines of the magnetic island in a visualization of the steady-state EC driven current.

A magnetic island forms in a narrow layer around the resonant surface where resistivity is important. This layer is
commonly referred to as the resistive layer, or alternately has been referred to as the tearing layer, the singular layer,
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or the reconnection layer [e.g. 39–41]. Following Porcelli [41] eq. (49), we note that the width of the resistive layer, δ,
scales as the ratio of the resistivity η to the magnetic island growth rate γ in the exponential growth phase. To confirm
that our classical tearing mode simulations produce the expected results, we compare the width of the resistive layer
with well-known scaling laws based on the resistivity and the viscosity. Panel (a) of FIG. 2 demonstrates that in
JOREK simulations we recover the well-known 2/5 scaling of the resistive layer width with resistivity [42] when viscous
effects are negligible. When resistivity is low and viscosity ν is high, the resistive layer width is expected to follow
a theoretically determined viscoresistive scaling [41] with η. JOREK simulations also produce this 1/6 scaling with η
in the correct regime. We observe that when resistivity is large, the resistive layer is also large, and this affects the
formation of magnetic islands. This increase of the resistive layer width is clearly shown in FIG. 2(a). In this high
resistivity regime, the theoretical scaling laws no longer apply.

Our examination of the resistive layer width sheds light on the high resistivity regime. At very high resistivity,
the magnetic island growth rate no longer scales as γ ∼ η3/5; it displays a “hook” as resistivity is increased above
η ∼ 10−5Ωm, as shown in Haverkort et al. [25]. The resistive layer width, which rapidly increases above η ∼ 10−5Ωm,
provides a physical explanation for this reduced growth rate. A large and diffuse resistive layer impacts magnetic
reconnection and the early growth of the tearing instability. The tearing stability parameter ∆′ is calculated by
matching of the ideal MHD linear solution outside of the resistive layer to the resistive MHD linear solution inside
the resistive layer. When the resistive layer obtains a sizable width, higher order corrections to the tearing stability
parameter become important, and the mode grows less rapidly.

In addition to comparison against well-known scaling laws, we benchmark JOREK results for classical tearing modes
against the linear stability code PHOENIX. Panel (b) of FIG. 2 compares results for the resistive layer width at zero
viscosity produced using the JOREK code and from PHOENIX simulations, obtained from Figure 7.13 of Haverkort
[24] and from Haverkort et al. [25]. These codes show close agreement in the regime of moderate resistivity, diverging
only mildly at high resistivity. As part of this benchmarking effort, convergence of the width of the resistive layer
based on the number of finite elements in the poloidal plane and the number of harmonics in the toroidal direction
were carefully tested [for further details, see 25].

After the exponential growth phase the growth of the magnetic island width slows. Typically a phase of linear
growth, known as the Rutherford phase, is expected. After the Rutherford phase, the island begins a process of
nonlinear saturation [e.g. 44]. For simulations with low viscosity, we observe that a shallow oscillation in the maximum
width of the island occurs for some time. A similar oscillation was also recently observed by Poyé et al. [45]. This
oscillation in magnetic island width is shown in FIG. 3.

IV. RESULTS

We perform a suite of 8 simulations that vary in toroidal resolution, represented by the number of toroidal harmonics
N used, and in the magnitude of the EC source, denoted by max(SEC). These simulations are all of an identical,
large-aspect ratio circular tokamak with low plasma beta β ∼ O(10−4). The viscosity ν = 4 ·10−9kg/ms used in these
simulations is negligible so that it does not affect the tearing mode growth rate. The resistivity η = 2.5 · 10−6Ωm
is moderately higher than is expected by experiment, which is helpful for numerical efficiency, and not expected to
impact our results. The Lundquist number is defined S = vAL/η where vA is the Alfvén speed and L is a typical length
scale, assumed to be the minor radius of the tokamak. For the simulations considered in this work S = 2.8 · 106. The
collision frequencies ν1, ν2 are set to constants determined by comparison with a Fokker-Planck code, as described in
Westerhof and Pratt [26].

To set the EC source so that it targets the resonant surface for the 2/1 tearing modes on both the inward and
outward sides of the tokamak, we defined it as a Gaussian distribution centered at a fixed value of the poloidal
magnetic flux ψ, normalized by its values at the axis of the poloidal plane and the outer boundary. The standard
deviation of this EC source is 0.08 in units of the normalized poloidal magnetic flux; this is approximately equal to
0.08m and remains constant throughout our simulations. We find this width of the distribution to be well localized
within our saturated magnetic island width.

The parameters for the suite of 8 simulations are summarized in Table I. In each simulation, the number of finite
elements in the poloidal plane is 8281. This is significantly higher poloidal resolution than is required to resolve the
dynamics of the magnetic island; this higher number of finite elements is used to resolve the finer-scale dynamics of
the EC current with high precision. The lowest number of toroidal harmonics used in the simulations in Table I is
N = 6. During benchmarking, we found that the dynamics of the exponential growth phase of the magnetic island
were well-resolved using N ≥ 3.
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FIG. 2. The width of the resistive layer δ vs the resistivity η for (a) reduced-MHD JOREK simulations with different values of
the viscosity ν and (b) identical simulations at viscosity ν = 0 performed with a reduced-MHD model in JOREK and with the
linear stability code PHOENIX [43] in the zero beta limit. Heavy black lines show the theoretically predicted resistive scaling
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TABLE I. Classical 2/1 tearing mode simulation parameters. a

Simulation P1 P2 P3 N1 T1 T2 T3 F1 F2 F3

toroidal harmonics N 6 6 6 9 13 13 13 21 21 21

source max(SEC)(10−6) 0 5 500 5 0 5 500 0 5 500

a For all simulations ν1 = 9.47 · 103 Hz, ν2 = 1.99 · 103 Hz, a = 1m, R = 10m, toroidal magnetic field Bφ = 1.945 T, and the number of
finite elements in the poloidal plane is 8281. The resistivity is η = 2.5 · 10−6Ωm and viscosity ν = 4. · 10−9kg/ms.
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FIG. 4. (a) Early-time evolution of the magnitude of the total EC current jec as well as the magnitude of its contributions j1
and j2. (b) The width of the magnetic island during the period where the EC current is relaxing toward a steady-state value.
Results are from simulation P3, described in Table I.

A. Early evolution of the EC driven current

Two distinct time scales exist in the evolution of the EC driven current, related to the two collision frequencies ν1
and ν2. These two time scales can be observed in the early time evolution of the total EC current jec in panel (a) of
FIG. 4. The current perturbation that evolves faster, j1, reaches a steady state on a time scale after approximately
0.2ms. For the more slowly evolving current perturbation, j2, more than 1.4ms is required for the current to reach a
steady state. Within 1.4ms, the magnetic island width in simulation P3 is reduced to approximately 77% of its width
at saturation; the early evolution of the EC current can cover a significant period of time in our simulations. This
is partly a reflection of the relatively high resistivity; at a resistivity realistic to experiment, these time scales are
predicted to be more disparate. The drop in island width during suppression of the tearing mode is shown in panel
(b) of FIG. 4. We note that in order to resolve this fast evolving current, a time step of approximately 2 · 10−4ms is
required. The evolution of the total EC current does not change when significantly more resolution is used, either in
the finite elements of the poloidal plane, or in spectral harmonics in the toroidal direction.

In some early studies [e.g. 46] the EC driven current was assumed to be a function of the magnetic flux ψ. For the
simulations described in Table I, the time for the EC driven current to spread along flux surfaces is approximately
the time for it to be convected along the magnetic field lines; this time scale is faster than the collisional time scale
on which the current reaches a steady state, so the steady-state EC driven current will tend to be constant on the
flux surfaces. During early evolution when jec is growing and spreading along magnetic flux surfaces, however, it is
not expected to be a function of the magnetic flux.

To examine how far jec is from a flux function, we define a measure Σ, the flux-function error, such that

Σ = 〈σjec/j̄ec〉 . (11)

Here σjec is the standard deviation of jec along a surface of constant magnetic flux. The average of the EC driven
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FIG. 5. The evolution of the flux-function error Σ, defined in eq. (12), for (a) simulations P2, N1, T2, and F2 that are identical
except for the number of toroidal harmonics used, and (b) simulation P2 and P3 that are identical except for the source
amplitude for the EC driven current.

current along that surface is j̄ec. The brackets 〈...〉 indicate an average of the ratio over all closed magnetic flux
surfaces inside the magnetic island. Thus Σ measures in a global sense how far jec is from being a flux function. At
the separatrix, the field-line connection length approaches infinity; the contribution to Σ should therefore be largest
there. We observe that the largest contributions to Σ from magnetic flux surfaces near the separatrix; interior to the
magnetic island contributions to Σ are smaller but exhibit no clear trend.

Panel (a) of FIG. 5 shows how Σ evolves in time for simulations that use different numbers of toroidal harmonics N ,
but otherwise have identical parameters. In each of these simulations, Σ is initially high. After approximately 0.2ms,
Σ has dropped to a steady, much lower level. Before this steady level of flux-function error Σ is reached, Σ changes
non-linearly, and sometimes non-monotonically, as the EC driven current spreads throughout the magnetic island.
The final level of Σ is lower for simulations with a larger number of toroidal harmonics N . This implies that once a
steady state EC current is established it is close to a flux function, with some small constant error. As the toroidal
direction is better resolved, the approximation of the EC current as a function of the magnetic flux also becomes a
better approximation.

For the simulations in panel (a) of FIG. 5 the source amplitude for the EC driven current, max(SEC), was chosen
to be 100 times smaller than a typical tokamak experiment. For this source amplitude the magnetic island is not
meaningfully affected by the application of the current. Panel (b) of FIG. 5 compares Σ for simulations P2 and
P3, which differ only in the source amplitude max(SEC); simulation P2 uses the same low source amplitude, where
simulation P3 uses a source amplitude one hundred times higher, in the range of a typical tokamak experiment. For
simulation P2, a constant value of Σ is reached. In contrast, in simulation P3, Σ continues to drop slowly as the
magnetic island shrinks, and magnetic flux surfaces evolve under the influence of the applied current.

B. Early suppression of the tearing mode

When ECCD is applied, the width w of the magnetic island immediately begins to shrink proportionally to the
magnitude of the current. In FIG. 6, panels (a) and (b) follow the width of the magnetic island during the phase where
the fast-evolving current perturbation j1 is relaxing toward a steady-state, in two independent sets of simulations that
use a moderate number of toroidal harmonics, and a high number of toroidal harmonics respectively. In each panel,
lines are drawn that show the evolution of island width for no ECCD (solid line), for a small amplitude of EC driven
current (dashed line), and a driven current amplitude that is one hundred times larger (dotted line). The local
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FIG. 6. Width of the magnetic island during the period where the fast-evolving current perturbation j1 is relaxing towards its
steady-state value for (a) simulations with 6 toroidal harmonics: P1,P2, and P3, and (b) simulations with 21 toroidal harmonics:
F1,F2, and F3. Solid lines indicate simulations with no applied ECCD. Dashed lines indicate simulations with small applied
ECCD. Dotted lines indicate simulations with high levels of EC driven current.

maximum value of the large EC current is 15% of the local maximum of the full current; the total EC current applied
is approximately 5% of the total current. For the small amplitude of EC driven current, the width of the island
changes a negligibly small amount during the relaxation toward a steady-state EC current. When we correct for the
slightly different initial values of dw/dt in the two sets of simulations represented in panels (a) and (b) of FIG. 6, the
results exhibit a high degree of similarity. At this level, the width of the magnetic island as it is suppressed appears
to be independent of the number of toroidal harmonics N .

After a magnetic island has reached its maximum width, the island width can change by small amounts in time,
shallowly growing or shrinking even before ECCD has been applied. For simulation P1 the maximal amplitude of
oscillation is 1% of the saturated island width. Therefore to compare the size of the island shrinking under the
influence of ECCD in simulations P2 and P3 precisely, we need to consider the value of dw/dt from simulation P1,
an identical simulation with no ECCD. We define the compensated time derivative of the island width:

1

jec(t)

dw

dt

∣∣∣∣
comp

=
1

jec(t)

(
dw

dt

∣∣∣∣
with ECCD

− dw

dt

∣∣∣∣
no ECCD

)
(12)

By dividing by the total EC current, this definition of the compensated time derivative of the island width allows for
comparison between simulations with different levels of applied EC driven current. The compensated time derivative
of the island width is plotted in FIG. 7 for three simulations that use increasing numbers of toroidal harmonics but
otherwise have identical parameters. Because the results in FIG. 7 are similar, we conclude that the suppression of
the magnetic island is well-resolved in the toroidal direction for each of these simulations.

From FIG. 7 the multiple time scales of our physical problem are evident. On the fastest time scale O(10−1ms),
jec spreads over the magnetic flux surfaces (see also FIG. 5) and the fast evolving current perturbation j1 reaches
a steady state (see also FIG. 4). If the effect of the EC current on the island were entirely produced by its helical
component, as discussed in Westerhof et al. [47], then the compensated time derivative of the island width would
be constant after approximately 0.1ms. However, in FIG. 7 we observe that the compensated time derivative of the
island width reaches a constant only on a longer time scale of ∼ 0.4ms. This longer time scale can be related to a
local EC current diffusion time. The local EC current diffusion time is defined

τECdiff = µ0σ
2/η , (13)

where σ is the standard deviation of the Gaussian-shaped EC current source, and µ0 is the permeability of free space.
For all of the simulations in in Table I, we find τECdiff ≈ 0.32ms. The evolution of the compensated time derivative of
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FIG. 7. The compensated time derivative of the island width in arbitrary units for simulations P3,T3, and F3.

the island width and the local EC current diffusion thus act on similar time scales. This suggests that a contribution
from the poloidally-averaged n = 0 component of the EC current also acts through the mode stability. To examine
this effect in greater detail, we repeat simulations P2 and P3, allowing only the n = 0 contribution of the EC current
to contribute to the magnetic island evolution. In these test simulations, we find that the island is suppressed on
approximately the same time-scale as when all n modes are allowed to affect the magnetic island evolution. Therefore
the poloidally-averaged n = 0 component of the EC current significantly impacts the tearing mode suppression in our
simulations.

V. SUMMARY AND CONCLUSIONS

Using a two-equation fluid model for the EC driven current derived by Westerhof and Pratt [26], and a 3D reduced-
MHD fluid model in the JOREK code, we have numerically shown that the steady-state EC driven current jec is
approximately a function of the magnetic flux. High resolution in the toroidal direction is required to accurately
produce this applied current as a flux function. When a lower resolution in the toroidal direction is used, the applied
current varies from a flux function by an error that we find is typically reasonably small for N ≥ 6, and decreases as
N is increased. For N = 6, when a higher amplitude of EC driven current is produced, the steady-state jec is closer
to a flux function.

Although how evenly the steady-state EC driven current spreads along surfaces of constant magnetic flux is sensitive
to the toroidal resolution, any error in the form of the applied EC current due to the toroidal resolution appears to
have negligible impact on the size of the island during the early period of suppression of the tearing mode.

An interesting aspect of the two-equation fluid model that we use for the EC driven current is that it captures the
early evolution of the EC driven current with better physical accuracy than previously-studied single equation models.
The full early evolution phase, before the total EC driven current jec reaches a steady-state, corresponds to a drop
in magnetic island width of approximately a quarter relative to its saturated size. Before the j1 current perturbation
reaches a steady-state, the EC driven current is not a function of the magnetic flux, nor is it theoretically expected
to be. We find that the applied current spreads along magnetic flux surfaces within the island on the time scale of
the relaxation of the faster-evolving current contribution j1. We observe that the compensated time derivative of
the island width, which we define to compare tearing mode suppression in different simulations, evolves over the EC
current diffusion time scale, which is a longer time scale than for the relaxation of j1. Using targeted test simulations,
we conclude that the suppression of the magnetic island is accomplished primarily by the n = 0 component, with
smaller contributions from higher n components of the EC current. Our results apply for a continuous waveform
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(CW) EC source that is localized only in the radial direction of the poloidal plane. Future investigations that use a
modulated EC source, localized both in the poloidal and toroidal directions, may produce differences. Investigations
of X-point and finite-aspect-ratio geometries are also planned.
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