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Abstract

The results of numerical simulations are presented to illustrate the saturation mechanism of
a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant
interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite
mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the
fast-ion density flattening produced by the radial flux associated to the resonant particles captured
in the potential well of the Alfvén wave extends over the whole region where mode-particle power
exchange can take place. The occurrence of two different saturation regimes is shown. In the first
regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is,
the width of the region where the fast-ion resonance frequency matches the mode frequency). In the
second regime, called radial decoupling, the power exchange region is limited by the mode radial
width. In the former regime, the mode saturation amplitude scales quadratically with the growth
rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on
the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and
the mode structure. Here, we discuss how such properties can depend on the considered toroidal
number and compare simulation results with the predictions obtained from a simplified nonlinear
pendulum model.



I Introduction

Plasma physics finds one of its most relevant applications in the field of controlled ther-
monuclear fusion research. A promising approach to the realization of a fusion reactor is the
so-called magnetic confinement, in which a hot plasma (temperatures of the order of those
characterising stars’ core) is contained by means of strong magnetic fields. Tokamak is the
most advanced magnetic-confinement concept. In order to bring plasma to conditions in
which fusion reactions can occur at a sufficiently large rate, several heating methods (based
on radio-frequency waves and neutral beam injection) have to be added to the ohmic heating
produced by the electric current flowing through the plasma itself. These methods, as well as
fusion reactions, produce energetic particles (EPs) with velocities of the order of the Alfvén
speed, the typical propagation velocity of shear Alfvén waves (SAWSs). Such particles can
then easily resonate with SAWs, with their pressure gradient acting as a free-energy source
for destabilising these waves. On their turn, Alfvénic fluctuations can cause an enhanced
transport of EPs, affecting their confinement, preventing their thermalization in the cen-
tral region of the plasma and increasing thermal and particle loads on the tokamak wall.
The assessment of EP confinement properties in next generation fusion experiments then
strongly relies on understanding Alfvén mode dynamics, with regard both to linear stability
properties (which modes are expected to be driven unstable) and the nonlinear saturation
mechanisms (which saturation level is expected for the mode amplitude and which effects
on the EP confinement).

In nonuniform tokamak plasmas, the SAW spectrum becomes a continuum. Poloidal
asymmetries open “gaps” in such continuum, allowing for weakly damped global modes,
such as the Toroidal Alfvén Eigenmode (TAE) [1] or the Reversed Shear Alfvén Eigenmode
(RSAE) [2], to exist. The resonant interaction with EPs can drive these modes unstable.
As the EP pressure gradient exceeds a certain threshold, even strongly damped continuum
oscillations, besides these normal modes of the background plasma, can be driven unstable;
they are called Energetic Particle Modes (EPM) [3]. Alvénic fluctuations of various types,
excited by EPs, have been identified in several tokamak experiments [4-9].

Linear properties of Alfvénic fluctuations driven by EPs can be investigated within the
theoretical framework of the generalized fishbone-like dispersion relation (GFLDR) [3, 10,
11]. On this basis, several successful comparison between theoretical predictions and exper-
imental observations, as well as numerical simulation results, have been reported [12-15].

Concerning the nonlinear dynamics of Alfvén modes (and its consequences on the overall
performances of tokamak plasmas), it is determined by two main factors: the nonlinear
wave-wave coupling and nonlinear wave-particle interactions. With reference to the former
factor, various wave-wave interactions leading to the breaking of the Alfvénic state have been
analyzed in Ref. [16, 17]. Although these effects play a crucial role in multi-scale dynamics
in burning plasmas, we will focus, in our current work, on the nonlinear wave-particle inter-
actions. This issue has been first addressed within the “bump-on-tail” paradigm, extensively
developed in the 1990s by Berk, Breizman and co-workers [18-20] for interpreting experi-
mental observations of AE excitations by EPs and related nonlinear processes near marginal
stability. In this weak drive limit, Alfvén mode saturates at very low field amplitudes, and
the perturbed EP motion is not able to sample the non-uniformities associated to the finite
width of mode structure. The system can then be treated as a uniform one, and saturation
occurs because of the phenomenon of resonance detuning[21, 22]: the EP pressure gradient
is flattened, by the particle flux associated to the perturbed EP orbits, over the whole region



where the mode-particle resonance condition can be satisfied (whose radial width is smaller
for lower growth rates).

A more general treatment of mode-particle nonlinear dynamics is represented by the
“fishbone” paradigm [16, 22|, which emphasizes the role played by magnetic field geometry
and plasma non-uniformities in the complex tokamak burning plasma system. In the near
marginal stability limit (or, in the uniform plasma one), the fishbone paradigm reduces to
the bump-on-tail paradigm. For increasing growth rates (and mode amplitudes), the radial
excursion of resonant particles becomes comparable with the scale length of plasma non-
uniformities. In this limit, the bump-on-tail paradigm is no longer suited to describe the
nonlinear dynamics and the fishbone paradigm has to be applied. Mode saturation is due
to a mechanism called radial decoupling [21, 22|, corresponding to the flattening process
extending over the whole radial region where the mode structure is localized. Further in-
creasing the drive (EPM regime) causes the EP contribution to become fully nonperturbative
and able to determine both mode frequency and radial structure [8, 9, 23-25].

In a recent review paper [17], a systematic theoretical framework of energetic particle
physics is presented, including a detailed discussion of the nonlinear wave-particle inter-
actions between Alfvén modes with EPs. In the present paper, we investigate, by means
of numerical simulations, the occurrence of different saturation mechanisms for a single-
toroidal-number gap mode in different EP drive regimes.

In Sec. II, we present an introduction to the single mode problem. First, a short review
is given of the historical work on understanding the nonlinear wave-particle interactions
in a beam-plasma system by pioneers in 1960s [26-29]. By introducing sources and col-
lisions, the “bump-on-tail” paradigm for Alfvén modes dynamics developed by Berk and
Breizman [18-20] is briefly discussed. Finally, resonance detuning and radial decoupling
saturation mechanisms are examined, for a nonuniform tokamak plasma, within the “fish-
bone” paradigm. In Sec. III, self-consistent simulations using an extended version of the
hybrid magnetohydrodynamics (MHD) Gyrokinetic code (XHMGC) [30, 31] are performed
for a beta-induced Alfvén eigenmode (BAE) in a tokamak equilibrium with monotonic safety
factor profile; here, the expression “beta” (f) refers to the ratio between the kinetic pressure
of the bulk plasma and the magnetic pressure. The effects of varying toroidal number is
analysed. Finally, conclusions and discussions are presented in Sec. IV.

II Overview of single mode problem

Nonlinear wave-particle interactions for a single wave in one-dimensional (1D) systems
was originally investigated by O’Neil and co-workers in 1960s [26-28]. In 1990s, the beam-
plasma nonlinear problem was re-considered by Berk and Breizman [18-20, 32-34] and ap-
plied to the interpretation of the dynamics of the Alfvén eigenmodes driven by EPs near
marginal stability. Such “bump-on-tail” paradigm treated EP contribution as a perturbative
one, i.e. the structure of Alfvénic fluctuations is determined by MHD equations (no kinetic
contributions), and its width is much larger than the nonlinear radial excursion of resonant
EP orbits. Recently, a “fishbone” paradigm [17, 22] has been introduced, which consider
the response of EPs in the frame of a nonperturbative approach, in which it can modify
the plasma dielectric response as well as mode structure and frequency. In this paradigm,
equilibrium geometry and plasma non-uniformity play important roles and become more
and more relevant with increasing drive. In the present work, we will show how these effects
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affect the nonlinear dynamics of the modes and their saturation amplitude.

A. 1D collisionless Beam-plamsa system

The original works on nonlinear wave-particle dynamics in 1D systems [27] studied the be-
haviour of a supra-thermal electron beam interacting with a thermal plasma in a strong axial
magnetic field. Various processes such as Landau damping in a finite amplitude wave [26]
and nonlinear wave-particle interactions [28] were understood for the first time within the
1D beam-plasma model.

In Ref. [27] a collisionless uniform 1D beam-plasma system is considered, with Maxwellian
bulk electrons characterised by density n. and thermal velocity vy, much lower than the
electron-beam drifting speed v4. The beam distribution function is assumed to be Lorentzian,
with density n, < n. and velocity spread Awv,. The resulting total electron distribution is
known as “bump-on-tail” distribution. Thermal ions are treated as a fixed neutralising back-
ground. In such system, a plasma wave is driven unstable. The wave grows and saturates
at a scalar-potential amplitude of order ¢ ~ (ny/n.)*>muv?/e; after that, it starts oscillat-
ing [28]. The reason for this is that, as the wave amplitude grows, more and more resonant
electrons slosh back and forth in the potential well of the wave. The flux associated to such
wave-trapped electron motion yields a temporary flattening of the velocity-space electron
distribution function (with consequent mode saturation), followed by a reconstruction of the
distribution-function gradient, a new flattening, and so on (with the corresponding mode
amplitude oscillation). The oscillation frequency is related to a mean value of wg, where wp
is the bounce frequency of resonant electrons in the potential well of the wave.

On longer time scales, the spread in wp values produces increasingly finer structures
of the electron distribution function around the resonance. The net mode-particle energy
exchange reduces, along with the mode amplitude oscillations. By this phenomenon of phase
mixing, the system asymptotically reaches a steady state [26], characterised by a flattened
coarse-grain particle distribution function [35] and a constant mode amplitude.

B. Berk-Breizman model: bump-on-tail paradigm

In a series of papers in 1990 [18-20], Berk and Breizman reconsidered the beam plasma
bump-on-tail nonlinear problem and applied it to Alfvén Eigenmode dynamics. Their work
adds, to the previous analysis by O’Neil [26, 36], the treatment of particle interactions with
a finite-amplitude wave in the presence of sources and collisions. Because of the associated
dissipation, the system reaches saturation while the distribution function still presents a
finite gradient, such that the residual drive balances the background dissipation. Berk and
Breizman’s analysis relies on several assumptions: (1) mode amplitude is low and the linear
mode structure is fixed, but sampled by the perturbed particle orbits; (2) finite background
dissipation is independent of the wave amplitude; (3) wave dispersiveness is set by the back-
ground plasma and is not affected by the beam (in bump-on-tail problem) or the energetic
particles (in general tokamak plasma system). Under these assumptions, mode saturation
level comes out to be reduced with respect to the dissipationless system [18, 19].

Furthermore, the formation of propagating phase-space holes and clumps can occur, giv-
ing rise to adiabatic frequency chirping: the mode adjusts it in order to adapt to the reso-
nance frequency characterising the instantaneous hole/clump phase space localisation [32—
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34]. The “bump-on-tail” paradigm has been successful in explaining several phenomena
observed in experiments [37-41].

C. Resonance detuning and radial decoupling

The importance of plasma non-uniformity has been pointed out by Refs. [17, 22], in the
frame of the so-called “fishbone” paradigm. The basic point is that, for increasing drive and,
hence, mode amplitude, particle orbits become able to explore the finite radial-width of the
fields. At the same time, the resonance condition is satisfied, in this limit, in a wider radial
region (whose width scales with the mode growth rate). The spatial region where the mode-
particle power exchange can take place becomes than limited by the mode width rather
than the resonance width. The consequences of this fact on the nonlinear dynamics and the
saturation process of Alfvén modes in tokamaks have been investigated numerically [21] by
evolving a suited set of test particles in the fields computed by self-consistent single toroidal
mode number simulations. Provided that the mode frequency remains constant during the
nonlinear evolution (condition well satisfied in the simulations considered in Ref. [21]), the
system exhibits two invariants of the perturbed motion: besides the magnetic momentum
M, the quantity C' = wP, — nkE, with w being the mode frequency, P the toroidal angular
momentum, n the toroidal number and E the particle kinetic energy. The invariance of
M and C' implies that gradients of the distribution function along those directions do not
play any role in the dynamics (they do not appear in the Vlasov equation). Then, cutting
the phase space into slices orthogonal to the axes M and C, mode-particle power exchange
can be described as the combination of different-slice contributions, each of them evolving
in an independent way. In order to explore in great detail resonant-particle behaviour, test
particles are selected by fixing the values of M = M, and C' = Cj in correspondence with
a peak, in the phase space, of the linear-phase mode-particle power transfer. For each test
particle, the information related to its evolution is collected at the equatorial-plane crossing
times. Particles are referred to the coordinates (©, Py), with © being the wave-particle
phase. During the whole linear phase, in which the field amplitude is so small that its
effects on the particle orbits is negligible, P, is almost conserved. Then, during such phase,
particle trajectories in the (©, P;) plane essentially reduce to fixed points for Py = Pjyes,
with P, being the value at which the resonance condition for the considered set of particles,
dO/dt = w — wyes(Mp, Co, Py) = 0 (with wyes being the resonance frequency), is satisfied,
while they correspond to drift along the © axis in the positive/negative direction, for P,
greater/less than Pj.. In the nonlinear phase, P, varies because of the mode-particle
interaction (e.g., radial E x B drift). Even particles that were initially resonant are brought
out of resonance, getting non zero d©/dt and drifting in phase until the drift in Py is inverted.
Particles that cross the P, = P, line revert values of dO©/dt as well. Thus, their orbits
are bounded and they would properly close if the field amplitude were constant in time.
This is true for particles born close to the resonance, while particles born with P, far from
the resonance maintain drifting orbits, as they do not cross Py = Pjys. Bounded orbits
and drifting ones are divided by an instantaneous separatrix, whose P, width increases with
increasing field amplitude. The formation of such structures in the (0, P;) plane corresponds
to a particle flux from the higher density side of the resonance to the lower density one,
and a corresponding flattening of the resonant-particle density (as well as pressure) profile.
The drive is consequently reduced. Saturation occurs when the flattening region extends
by the whole region in which the mode-particle power exchange can occur. Such region



will be limited both by the finite mode width and the finite resonance width. This is
represented in Fig.1, where the radial profiles have been considered, instead of Py profiles,
taking into account that for given (M, Cp) there is a one-to-one correspondence between P,
and the (equatorial-plane) radial coordinate r: P, = Py(r, My, C). The resonance width is
determined by the condition |w —wyes| < 7yz; it then increases with the linear growth rate vz
Two opposite regimes are represented in Fig.1(left) and (right), respectively. In the former
(“resonance detuning” regime), the most stringent constraint on power exchange is set by
the resonance width; in the latter (“radial decoupling” regime), it is set by the mode width.
The transition from the resonance detuning regime to the radial decoupling one occurs,
ceteris paribus, as larger drive, narrower modes and/or flatter resonance frequency profiles
are considered. In ref. [21], examples of resonance detuning as well as radial decoupling have
been shown, on the basis of numerical simulations performed by the HMGC code[30].

FIG. 1: Model comparison between the radial mode structure (black line) and the radial
resonance profile (blue line). The green solid line indicates the mode frequency w, while
dashed lines correspond to w 4 7. The resonance width Ar,.s is approximately defined as
the width of the region where the condition |w — wyes| < 7y is satisfied. Frame (a)
represents a situation in which the mode structure is larger than the resonance width;
frame (b), the opposite situation.

In the next Section, we will show that each of the two regimes corresponds to a specific
scaling of the saturation amplitude with the linear growth rate. This correspondence has
been explained in Refs. [42] and [43] on the basis of a simple nonlinear pendulum model.
An approximate analytical solution of that model connects the radial width of the resonant
particle density flattening with the instantaneous mode amplitude and the linear growth
rate. We will see how such solution allows us to predict the dependence of the saturation
amplitude observed in the different regimes.



III Simulations

A. Simulations of bump-on-tail instability

We perform a numerical simulation of the bump-on-tail system by the 6 f Vlasov-Poisson
code PIC1D-PETSc [44]. The distribution function for a homogeneous electron beam-plasma
system can be written as:

1 1
fo(v) = (1 —np)e *vin +npe * avp (1)

The parameters vy, = Av, = 1 and vy = 5.0 are fixed. The length of the system is L = 27 /k
with k£ = 0.3. Periodic boundary conditions are used. We initially perturb the distribution
function by a space dependent amount

dfe(x,v) = ecos(kx) fe(v) (2)

with € < 1. In our simulations, time ¢ is normalized to the inverse electron plasma frequency
wp_el, velocity is normalized to the electron thermal velocity /7. /m,. and length is normalized
to the electron Debye length Ap. In such system, only resonance condition plays a role. The
saturation is expected by resonance detuning.

By increasing the beam density n;, the growth rate increases, as well as the saturation
level, as shown in Fig. 2 (a). The mode reaches a first saturation, and, after that, amplitude
oscillations occur. Such oscillations are due to the particles trapped in the wave bouncing
back and forth, and it has shorter period for larger saturation amplitude. Figure 2 (b) shows
that the saturation amplitude scales quadratically with the linear growth rate v,. Such
scaling is also important for our later discussion concerning the two different saturation

mechanisms: namely, resonance detuning and radial decoupling.
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FIG. 2: Simulation of the bump-on-tail instability. Frame (a) shows the time evolution of
the amplitude of electrostatic potential for different beam densities ny; frame (b), the mode
amplitude at saturation versus the linear growth rate.



B. XHMGC model

In the present paper, the extended version [31] of the nonlinear MHD-Gyrokinetic code
HMGC [30, 45] (XHMGC) has been used to simulate self-consistenly the BAE mode driven
by anisotropic Maxwellian fast ions. In XHMGC, a shifted circular magnetic flux surfaces,
low-$ tokamak equilibrium is adopted. The fluid response of the thermal background plasma
is described by a set of O(e®)-reduced MHD equations [46] (with € being the inverse aspect
ratio). Fast-ion and thermal-ion kinetic dynamics enter suche equations via the respective
pressure tensors, which are computed by solving the Vlasov equation for each species in the
drift-kinetic limit, by particle-in-cell techniques. Finite-Larmor-radius effects are ignored,
while finite-orbit widths are taken into account in order to retain resonant wave-particle
dynamics associated with guiding-center magnetic-curvature drift in toroidal geometry. Ki-
netic contributions are treated in a non perturbative way: pressure-tensor terms contribute
to determine both structure and evolution of electromagnetic fields.

C. Test particle technique

In order to investigate in greater detail the resonant-particle behaviour, we can resort
to test-particle diagnostics. Following Ref. [21], we select the set of test particles in the
following way.

(1) We identify the coordinates, (7o, Mo, Vp), of the phase-space point where the power
exchange between particles and the mode (averaged over poloidal and toroidal angle) is
maximum (here, 7 is the radial coordinate of the particle gyrocenter when it crosses the
equatorial plane 6 = 0 at its outmost position. Here, M is the magnetic momentum in unit
of Ty /Quo, V is the parallel velocity in unit of /Ty /My), and Ty, Qgo and my are the
fast-ion temperature, on-axis cyclotron frequency and mass.

(2) We observe that the perturbed motion preserves a second invariant (besides the
magnetic momentum M), provided that the mode is characterised by a single mode number
and a constant frequency; namely, the quantity C, defined, at the lowest order, as

C(r,0,M,V) =wPy —n(muV?/2+ MQy) | (3)

where

Py(r,0,V) =~ myRV + ey Ro(teq — Yeqo)/c (4)

is the toroidal angular momentum and 1), is the poloidal flux of the equilibrium magnetic
field, defined by B = RyByVé + RoVipeq X Vo (with ¢ being the toroidal angle and R, the
major radius). We can then compute the value Cy = C(rg, 0, My, Vy) corresponding to the
coordinates identified in the first step.

(3) All test particles are selected with the same values of the conserved quantities, M =
My and C' = Cj. They are initialised at = 0 and different values of . The corresponding
values of the parallel velocity V' is determined as V' = V (r, My, Cp).

(4) In order to analyse the formation and evolution of closed-orbit structures in the plane
(©,P,), with © being the wave phase, such set of test particles is replicated at several
equispaced values of toroidal angle ¢, chosen in the open inteval [0, 27].
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D. Simulation parameters

The simulation parameters are the same as those used in ref. [42]. A tokamak equilibrium
is considered, characterized by aspect ratio Ry/a = 10 and safety factor ¢ = qo + (¢o —
qo)(r/a)?, with go = 1.9 and ¢, = 2.3. Thermal ions are characterized by flat density and
temperature radial profiles, such that their diamagnetic effect can then be ignored. Kinetic
thermal-ion compressibility effects are instead retained, and they give raise to the formation
of a kinetic thermal-ion gap in the shear-Alfvén continuum spectrum. As a consequence,
a BAE mode exists and localized around r/a =~ 0.5, i.e. the ¢ = 2 rational surface, in our
current equilibrium. Kinetic thermal ions are characterized by an isotropic Maxwellian initial
distribution function. The fast-ion initial distribution function is instead an anisotropic
Maxwellian with a single pitch angle cosa = V/1/2E/my. In the following, we will report
the results of simulations related to modes characterised, respectively, by toroidal numbers
n = 2, 3 and 4. Different toroidal numbers correspond to different shapes of the shear-
Alfvén continuum; then, both mode structure and mode frequency change. In principle, we
could find that, for different n, different regions of the phase space yield the most relevant
contribution to the destabilisation of the mode. Moreover, as the mode frequency does not
change proportionally to the toroidal numbers, the relative weight of angular momentum
and kinetic energy in the C expression changes with n. This means that, even the same
couple (My, Cy) would correspond to a different radial profile of the parallel velocity V' and,
then, of the resonance frequency. We will show that such differences affect the scaling of the
mode saturation amplitude with the linear growth rate.

E. Different toroidal number n simulations

In this section we will analyze the effect of increasing the toroidal number on the scaling
of the mode saturation amplitude. We will show that both the variation of the radial profile
of the resonance frequency and the narrowing of the mode radial profile play a role.

1. Owerview of mode evolution

In Ref. [42], the results of n = 2 simulations were reported. It was shown that both
co-passing and counter-passing fast ions drive the mode unstable via transit resonance, with
very similar real frequencies. Growth rates increase with increasing fast-ion fraction. We
start comparing the results obtained for a given n = 2 simulation with those obtained
for n = 3 and n = 4. In particular, we consider the case characterised by fast ion density
ng/n; = 0.0014 and pitch angle o such that cos & = 0.5 for co-passing fast ions, cosa = —0.5
for counter-passing fast ions. The other parameters are those given in Sec. IIID and in
Ref. [42].

The normalized mode structure of the scalar potential and the mode frequency spectrum
are shown in Fig. 3 for each n. The unstable modes are all located near the shear-Alfvén
continuum accumulation point for each n. Mode frequencies are very similar for co-passing
fast ion driven modes and counter-passing ones for all n values. They increase as the toroidal
mode number increases. The mode structure is narrower for larger toroidal mode number
n. In Fig. 4, the power exchange between mode and particles is shown in the velocity space
(M, V). The power exchange is integrated over a toroidal shell centred around the mode
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(0.2 < r <0.8). Boundaries between the passing-particle region and the trapped-particle one
at r = 0.2 and r = 0.8 are plotted. The power exchange is obviously maximum for passing
particles along the pitch angle direction. No significant dependence on the toroidal number
is observed for the value of magnetic momentum where the power exchange is peaked.

Figure 5 shows the nonlinear time evolution of the scalar potential amplitude (normalized
to To/en, where Ty being the on-axis fast ion temperature and ey the charge of fast ions)
at the peak of the radial structure shown in Fig. 3 for each toroidal number n. Each case
shows amplitude oscillations after the mode reaches the first saturation. For the considered
case, all simulations show that the co-passing fast ion driven mode reaches higher saturation
level than the one driven by counter-passing fast ions. For co-passing fast ion driven modes,
the larger toroidal number yields larger growth rate. The largest saturation level occurs for
n = 2 mode, with the n = 3 mode reaching close levels, though n = 2 mode is characterised
by much smaller growth rate. Counter-passing fast ion driven ones yield analogous results,
apart from that related to the saturation level of the n = 2 mode: in this case, the lower
growth rate is not accompanied by a larger saturation level.
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FIG. 3: Energy spectrum for the scalar potential, in the (r,w) plane, for the BAE driven
by fast ions, as obtained from XHMGC simulations for different choices of the toroidal
mode number n. The normalised radial structure of the dominant harmonic for the scalar
potential is also reported for each case (dashed lines). Top frames refer to modes driven by
co-passing fast ions; bottom frames, to modes driven by counter-passing fast ions. Here
wao is the one-axis Alfvén speed.

2. Scaling of mode saturation amplitude with the growth rate

Let us now examine how the mode saturation amplitude varies as the growth rate in-
creases. The results obtained at different values of ng /n; or different toroidal mode numbers
are reported in Fig. 6, for modes driven by co-passing fast ions (left) and counter-passing
ones (right). A clear transition from quadratic to linear scaling is observed in the counter-
passing fast ion case, for all the values of the toroidal mode number n. The growth rate
value at which the transition occurs slightly increases with increasing n. At the same time,
the corresponding mode saturation amplitude decreases. The situation is less defined in the
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The variables M and V' are reported in units of Ty /Qpyo and /Ty /my. Boundaries
between the passing-particle region and the trapped-particle one at r = 0.2 (dashed lines)
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FIG. 5: Time evolution of the mode amplitude |A|, with |A| corresponding to the radial
peak, in unit of Ty /ey, of the dominant harmonic of the scalar potential, for the same
cases shown in Fig. 3.

co-passing fast ion case. In particular, no transition is observed for n = 2, with the mode
saturation amplitude scaling linearly over the whole considered range of ny/n;. For n = 3,
although a quadratic scaling can not be revealed, a deviation from the linear scaling is ob-
served when moving from the stronger to the weaker cases. It is still true that the transition
growth rate value increases with n (for n = 2 and n = 3 we can only set upper limits to such
value, with the limit relative to the n = 2 case being surely lower than that pertaining to
the n = 3 case). Nothing can be said, instead, about the variation of the transition values
of the mode saturation amplitude.
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It has been demonstrated [21] that mode saturation occurs as the flattening of the reso-
nant particle distribution function profile (which represent the free-energy source for mode
instability) extends over the whole region where the mode-particle interaction can take place.
This region is limited both by the finite radial structure of the mode (Aryeqe) and the fi-
nite radial extension where the resonance condition, |w — wyes(7)| S vz, 1 satisfied (Aries).
Saturation will be reached as

A'rﬂat = min[Arre& ATmode]' (5)

In Ref. [42, 43], it has been argued, on the basis of a nonlinear pendulum model, that the
radial width of the flattening region scales as

Argar(t) ~ A(t) /71, (6)

with A(t) being the instantaneous mode amplitude, at time ¢. Linearizing the frequency
mismatch as

W — Wres = S(I — Tres)s (7)
with S = —w!  (res), we get the following approximate expression for the radial width of
the resonance:

Arees = 71/]S|. (8)
Equation (5) then yields
A [y ~ min[y/|S], Armode)- (9)

Taking into account that the mode width exhibits a negligible dependence on the growth
rate, we see that the quadratic scaling for the mode saturation amplitude is obtained when
the most stringent constraint is represented by the resonance width (resonance detuning
regime); the linear scaling, when it is given by the finite mode width (radial decoupling
regime). Transition from the former to the latter regime is expected for

YLtr 7 |S|Armodea (10)
with a saturation amplitude
A:?t ~ |S|Arr2node' (11)

In the present case, the mode structure has been inspected in Fig. 3. In Sec. I[ITE 3 we
will analyse the radial structure of the resonance frequency, in order to explain the results
shown in Fig. 6.

3. Radial resonance structure

As sketched in Fig. 1, we need to compare the resonance width with the radial mode
structure given in Fig. 3. A single slice of resonant particles is chosen following the recipe
delineated in Sec. III C. The mode peak locations are the same as shown in Fig. 3 and ry =
0.48 is chosen for all the cases. Meanwhile, the power exchange structure shown in Fig. 4 has
certain width. First for each toroidal number n, My = 1.25 and Vi = 0.93 are chosen for the
co-passing fast ion cases and My = 1.25 and V) = —0.93 for the counter-passing ones. The
initial parallel velocity radial profiles V() computed from C(r,0, My, V') = Cy(ro, 0, Mo, V5)
for different toroidal numbers n are shown in Fig. 7 (a) for co-passing fast ions and Fig. 7 (b)
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FIG. 6: Scaling of saturation amplitude of scalar potential versus normalized linear
growth rate for different toroidal numbers, for co-passing (left) and counter-passing (right)
fast ions. The reference quadratic and linear 7, scaling are also shown.

for counter-passing fast ions. The radial profile of V (r) is steeper for lower toroidal number
n for both co-passing and counter-passing fast ions. The resonance frequency calculated for
each particles is given by

Wres = Nwp + (g — m)o + klwy (12)

where wp is the precession frequency and wy is the transit frequency defined as

wp = — wDE[%—Jq}wb. (13)
27

In the above definition, o is the sign of parallel velocity V', A¢ is the change in toroidal angle
over the bounce time 7, defined as 7, = ¢ df/0 and q is the safety factor integrated along
the particle orbit § = (0/27) § gdf. In the present cases, the dominant bounce harmonic
k for both co-passing and counter-passing fast ions is £ = 1, as discussed in detail in [42].
Here, we show how the resonance radial profile changes for different toroidal numbers in
the same equilibrium. By initializing test particles along the curves V(r) shown in Fig 7,
the corresponding resonance profiles are shown in Fig. 8. For passing particles, the preces-
sion frequency is so small that its contribution to the whole resonance frequency is in fact
negligible. The red line represents the radial profile of the transit frequency wy, the green
dashed line is the profile of the term proportional to (nGg — m), which is the contribution
of k| V. Adding these two values (k = 1, as stated above) gives the resonance frequency
radial profile wyes(r). The fast-ion transit frequency monotonically decreases along radius
for both co-passing and counter-passing fast ions. On the other hand, for the considered
q profile, the term related to k| monotonically increases from for co-passing fast ions; it
decreases for counter-passing fast ions; and changes the sign when crossing & = 0 radial
position which is corresponding to the ¢ = 2 rational surface in the current equilibrium. The
final resonance profiles are given in Fig. 8 (bottom), showing that, co-passing fast ions have
flatter resonance than counter-passing ones. For n = 2 case, which is discussed in Ref. [42],
co-passing fast ions have an extremely flat profile for inner values of the radius, so that the
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resonance width is much larger than the mode width for all the considered growth rate. For
the counter-passing fast ions, the radial resonance profile is steeper, so that the resonance
width for low growth rate is smaller than the mode width. As the growth rate increases, a
transition from resonance detuning to radial decoupling is expected.

For the n = 3 case, transit frequency radial profile is slightly flattened by the fact that
the resonant particle velocity profile, V'(r), is flatter. However, this is compensated by the
steeper profile of the &V term. The resonance frequency radial profile has then a larger
gradient in the region around the mode localisation.
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\% (a \Y%

o 1k 0 [
-0.75 |

095 [
08

09 i
085 -0.85 |
0.8 1 091
0.75 [
-095[

0.7 | [
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FIG. 7: Radial profiles of the parallel velocity V for the selected slices of test particles.
Frame (a) refers to co-passing fast ions; frame (b), to counter-passing fast ions.

Figure 9 shows the dependence of the resonance frequency steepness and the mode width
on the toroidal number, for both co-passing and counter-passing ions. It allows us for
interpreting the results shown in Fig. 6 and compare them with the predictions based on
the nonlinear pendulum model. Inserting these results in Eqgs. (10) and (11), we find, for
the transition values for growth rate and mode saturation amplitude the dependence on the
toroidal number shown in Fig. 10 (note that the mode amplitude is determined apart from
a proportionality constant) These predictions appear to be in qualitative agreement with
most of the simulation results reported in Fig. 6. In particular, as far as the counter-passing
fast ion case is concerned, the decrease of the transition mode saturation amplitude with n
is predicted, as well as, the weak n dependence of the transition growth rate. The latter
dependence on the positive n dependence of the steepness of the resonance frequency, which
compensate the negative dependence of the mode width (cf. Fig. 9).

With regard to the co-passing fast ion case, Fig. 10 (left) predicts a positive n dependence
for the transition growth rate. This is in agreement with the fact that our simulations show
the transition from the resonance detuning regime to the radial decoupling one only for
n = 4, while for the lower n cases, only an upper limit to the transition growth rate can
be recovered, as a proper resonance detuning regime is not observed in the growth rate
range considered (for n = 3, however, a clear deviation from the linear scaling is observed
for the weaker cases). This dependence is motivated by the strong positive increase of the
resonance frequency steepness with n, which beats the opposite dependence of the mode
width (cf. Fig. 9 and Eq. (10)). Figure 10 (right) predicts a positive dependence on the
toroidal mode number for the transition saturation amplitude as well. The fact that no
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FIG. 8: Radial profiles of different terms contributing to the resonance frequency, for
co-passing (top) and counter-passing (centre) fast ions, at different values of the toroidal
mode number. Bottom frames show the resulting resonance frequency for both species.
The mode frequency is also shown in each frame (solid line).

transition is observed in our simulations for the lower-n cases does not allow a comparison
between model results and simulation ones.

Note that Eq. (8) is a quite rough approximation for the resonance width if the growth
rate is not too small and the dependence of the resonance frequency on the radial distance
from the resonant surface is not linear. A slightly better quantitative agreement can be
obtained, for the transition values of the growth rate by computing Ar.. directly from the
full resonance frequency profile, as

|W - Wres(ﬂ“es + ATres/z)| =L (14)

Figure 11 compares the values of the resonance width obtained from Eq. (14) with the
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FIG. 10: Values of the r.h.s. of Eq. (10) and Eq. (11) computed on the basis of the
measured mode width and resonance frequency radial derivative, for co-passing and
counter-passing fast ions.

measured values of the mode width at different toroidal numbers. Figure 12 reports the
transition growth rate values recovered from Fig. 11 and the corresponding saturation mode
amplitudes, computed, consistently with Eq. (9), multiplying the transition growth rate by
the mode width. We observe that, while no relevant difference is obtained for the transition
saturation amplitude, the transition growth rate for the counter-passing fast ion case exhibits
a weak positive n dependence. Moreover, for the co-passing fast ions, the transition growth
rate values result smaller than those reported in Fig. 10. Both these results appear to be in
better agreement with the results reported in Fig. 6.
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FIG. 11: Resonance width computed by Eq. (14), compared with the measured mode
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FIG. 12: Values of the transition growth rate measured from Fig. 11 and the corresponding
value of the saturation mode amplitude, computed multiplying the transition growth rate
by the mode radial width.

IV Summay and conclusions

In this paper, the saturation mechanism is investigated for BAEs driven unstable by
anisotropic fast-ion populations (co-passing or counter-passing ions) for different single
toroidal numbers. Numerical simulations are performed by the hybrid MHD-particle code

XHMGC.

The fact that a single toroidal mode number is considered and that the mode frequency
does not appreciably vary in time allows for the existence of a second constant of (the
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perturbed) motion, apart from the magnetic momentum M: namely, the quantity C' =
wPy — nE. Cutting the phase space into slices orthogonal to the axes M and C, the
dynamics of each slice is independent on that of other slices. We can then look at the
evolution of that slice (or those slices) where the mode-particle power transfer is maximum
to explore the nonlinear evolution of the system. Once determined the relevant (M, C') slice,
the resonance frequency depends only on the radial coordinate. In our case, the shape of
the resonance frequency is mainly determined by the bounce (transit) frequency for passing
particles. The resonance frequency profile is steeper for the counter-passing fast ions than for
the co-passing ones. In both cases, the steepness increases with the toroidal mode number.
Correspondingly, the width of the radial region where the resonance condition is satisfied
decreases with n. The same happens to the radial mode width.

Taking into account that the mode-particle power exchange can take place only in the
radial region where the mode amplitude is not negligible and the resonance condition is
satisfied, two different saturation regimes can be distinguished, depending on the relative
importance of these two characteristic widths. In the first regime, the most stringent con-
straint is given by the resonance condition (A7 < Arpede). Saturation occurs when the
fast-ion density flattening induced by the radial flux associated to resonant particles cap-
tured in the wave potential well extends over the whole region where the frequency match-
ing is satisfied. This regime is called resonance detuning regime and is characterised by
a quadratic scaling of the mode saturation amplitude with the linear growth rate. In the
second regime, called radial decoupling regime, the relevant constraint comes from the finite
mode width (Aryede < Arpes). Saturation is characterised by a density flattening extending
over the whole region where the mode amplitude is not vanishing, and a linear scaling of
such amplitude with the growth rate.

In the case considered in this paper, the radial profile of the resonance frequency for the
co-passing fast ions is flatter than that for the counter-passing ones. This results in a much
greater resonance width in the former case, such that, for low toroidal mode numbers, only
the radial decoupling regime is observed in the explored growth-rate range. The transition
from the resonance detuning regime to the radial decoupling one is appreciated, for co-
passing ions, only for the larger toroidal number considered, n = 4. Modes driven by
counter-passing fast ions, instead, exhibit such transition even for the lower n values.

These results and the n-dependence of the growth-rate value at which the resonance-
detuning/radial-decoupling transition occurs and the corresponding saturation mode am-
plitude, for both co-passing and counter-passing fast ions, compare fairly well with the
prediction based on a simplified nonlinear pendulum model.

Note that the analysis presented in this paper does not encompass several aspects of
Alfvén mode nonlinear dynamics, able to play an important role for different equilibria, like
frequency chirping, large nonlinear modification of mode structure and synergic interaction
of different toroidal harmonics, which will be discussed in later works.
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