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Abstract. Internal kink instabilities exhibiting fishbone like behaviour have been

observed in a variety of experiments where a high energy electron population, generated

by strong auxiliary heating and/or current drive systems, was present. After briefly

reviewing the experimental evidences of energetic electrons driven fishbones, and

the main results of linear and non-linear theory of electron fishbones, the results

of global, self-consistent, non-linear hybrid MHD-Gyrokinetic simulations will be

presented. To this purpose, the extended/hybrid MHD-Gyrokinetic code XHMGC

will be used. Linear dynamics analysis will enlighten the effect of considering

kinetic thermal ion compressibility and diamagnetic response, and kinetic thermal

electrons compressibility, in addition to the energetic electron contribution. Non-linear

saturation and energetic electron transport will also be addressed, making extensive

use of Hamiltonian mapping techniques, discussing both centrally peaked and off-axis

peaked energetic electron profiles. It will be shown that centrally peaked energetic

electron profiles are characterized by resonant excitation and non-linear response of

deeply trapped energetic electrons. On the other side, off-axis peaked energetic electron

profiles are characterized by resonant excitation and non-linear response of barely

circulating energetic electrons which experience toroidal precession reversal of their

motion.
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1. Introduction

The mutual interaction of particle populations, characterized by very disparate kinetic

energies, is of great interest for research on thermonuclear plasmas of fusion relevance,

and, in particular, for the so-called “ignited” plasmas, in which the 3.52 MeV α-particles,

released in deuterium-tritium (D-T) reactions, have to thermalize by Coulomb collisions

with the bulk thermal D-T plasma in order to self sustain its temperature. The interplay

of fusion α-particles and magnetohydrodynamics- (MHD), Alfvénic-like modes has been

recognized, since long time, as a crucial issue for the success of next generation,“ignited”

devices as, e.g., ITER [1]. Indeed, the potential enhancement of the radial transport

of energetic particles toward the edge of the plasma device while preventing them to

fully thermalize could, in turn, degrade the fusion performance on one side, and damage

the plasma facing components on the other. Similar phenomenology could also take

place because of energetic particles accelerated by auxiliary heating systems, as, e.g.,

neutral beam (NB) injection and a variety of radio frequency heating and current drive

systems, and, indeed, has been observed in a large selection of present days auxiliary

heated toroidal plasma devices (see, e.g., Refs. [2, 3]).

One of the “case studies” of energetic particle driven MHD-like modes is the

“fishbone” mode, originally observed in the Poloidal Divertor eXperiment (PDX) [4]

device, owing its name to the characteristic fishbone-like shape of the perturbed

magnetic field signal evolution. The fishbone is an internal kink-like instability driven,

in PDX, by energetic ions due to neutral beam injection, which results in anomalous

losses of energetic ions themselves. The theoretical interpretation in terms of resonant

wave-particle interaction at the energetic particle toroidal precession frequency was first

proposed in [5] briefly after the experimental observations.

More recently, internal kink instabilities excited by supra-thermal electrons and

exhibiting fishbone like behaviour have been observed in the Doublet III-D (DIII-

D) [6] device, where the high-energy electron population was generated by electron

cyclotron current drive (ECCD). Later on, other devices observed fishbone oscillations

with electron heating only, i.e., electron cyclotron resonant heating (ECRH) and/or

lower hybrid heating (LHH) and lower hybrid current drive (LHCD) were present,

observed fishbone oscillations (see next section 2 for a brief review of experimental

evidence of electron fishbones, e-fishbones). Electron fishbones have linear dispersion

relation and excitation mechanisms that are similar to those of energetic ion driven

fishbones; moreover, fluctuation induced transport of magnetically trapped resonant

particles, due to precession resonance, is expected to depend on energy and not mass of

the energetic particles involved, because of the bounce averaged dynamic response [7].

Electron fishbones are characterized by a very small ratio between the resonant particle

orbit width and the the characteristic fishbone length scale (∼ δξr, the rigid radial

kink-type displacement). This is also expected to be the case of ion fishbones in

burning plasmas of fusion interest due to the large plasma current in these devices,

while this condition is not realized for the energetic ions in present-day experiments.
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These analogies between e-fishbones in present-day devices and fishbones in burning

plasmas provide a practical motivation for investigating these processes, in addition to

the general interest of studying e-fishbones “per se”.

In this paper, after briefly reviewing the experimental evidences of energetic

electrons driven fishbones as observed in present toroidal devices in section 2, and the

main results of linear and non-linear theory of e-fishbones in section 3, the results of

global, self-consistent, non-linear hybrid MHD-Gyrokinetic simulations will be presented

in section 4 [8]. In particular, the extended/hybrid MHD-Girokinetic code XHMGC,

described in Ref. [9], will be used. The effects of considering kinetic thermal ion

compressibility and diamagnetic response (in order to allow for an entirely novel

treatment of enhanced inertia response [7, 10, 11] and ion Landau damping [12]),

and kinetic thermal electrons compressibility, in addition to the energetic electron

contribution, will be enlightened in linear dynamics analysis. Non-linear saturation and

energetic electron transport will also be addressed, making extensive use of Hamiltonian

mapping techniques [13, 14]. In order to illustrate different non-linear dynamics, both

centrally peaked and off-axis peaked energetic electron profiles will be discussed. In

particular, centrally peaked energetic electron profiles are characterized by resonant

excitation and non-linear response of deeply trapped energetic electrons. Meanwhile,

barely circulating energetic electrons are identified as responsible of driving the e-

fishbone mode and causing its non-linear evolution for off-axis peaked energetic electron

profiles. Final considerations will be given in section 5.

2. Experimental evidences of energetic electron driven fishbones

Fishbone oscillation driven by energetic ions have been observed for the first time in

PDX [4] discharges heated by perpendicular neutral beam injection, where a large

n = 1 MHD mode was observed causing losses of energetic ions. Deeply trapped

ions, in presence of a beam deposition profile peaked near the magnetic axis, were

recognized to drive the mode [4, 5] because of resonant wave-particle interaction at

the energetic particle toroidal precession frequency ω̄d. Fishbone oscillations driven

by suprathermal ion population have been observed, since then, on many tokamak

devices [2, 3, 15, 16]. Observations indicate that the mode propagates poloidally in

the ion diamagnetic drift direction, and toroidally parallel to the energetic particle

precession velocity, thus having ω ' ωres ' ω̄dh and ω∗h/ω ' ω∗h/ω̄dh > 0, consistent

with theoretical predictions for unstable modes [5] (see also section 3). Here, ωres is the

resonance frequency, the overbar x̄ on the quantity “x” indicates its bounce average, the

diamagnetic frequency ω∗s = k · v∗s = k · cB×∇ps
nsesB2 ' nq(r)

r
c

nsesB
dps
dr

and the toroidal drift

frequency ωds = k ·vds ' nq(r)
r

cEs

esBR
, with v∗s the diamagnetic velocity, vds the magnetic

drift velocity, “s” indicating the particle species, n the toroidal mode number, Es the

energy of the single particle, ns the density, ps the pressure, es the electric charge, r the

minor radius coordinate, B the magnetic field, q(r) the safety factor, and the subscript

“h” refers to energetic (“hot”) particles. It is worth noting that the ratio ω∗h/ω̄dh does
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not depend on the sign of the electric charge es: thus, deeply trapped energetic electrons

with a density profile peaked on-axis and of energy similar to that of energetic ions could

be expected to drive a similar fishbone mode, propagating poloidally in the direction

of the electron diamagnetic drift, i.e., opposite to the ion fishbone (although with some

more unfavorable conditions [7], see section 3).

The first observation of fishbone oscillations driven by energetic electrons (e-

fishbones) is reported almost two decades later in DIII-D [6]. In that experiment, strong

MHD activity was observed in presence of neutral beam ion heating, in conjunction

with off-axis electron cyclotron (EC) current drive and heating on high field side (HFS)

and negative central shear equilibria with qmin ≈ 1. The fishbone oscillations were

stronger when EC was applied on the HFS equatorial plane (θres ≈ π, with θres the

resonant poloidal angle of the EC wave absorption location), and decreased while

decreasing θres toward θres = π/2. From the DIII-D experiment the following conclusions

were derived: (1) from ray-tracing and Fokker-Planck calculations, it was shown that

energetic electrons with hollow radial density profile were generated slightly internal

to the qmin = 1 surface, with a substantial fraction of barely trapped particles (i.e.,

particles, which spend most of their time near the tips of their banana orbits, and are

preferentially heated when θres ≈ π); (2) the diamagnetic drift velocity of the energetic

electrons (whose sign depends on sign(es)∇ps, with sign(es) and ps the sign of the electric

charge and pressure of species “s”, respectively) is parallel to that of the on-axis peaked

energetic ions produced by neutral beams; (3) the orbit averaged toroidal precession

velocity (depending on sign(es)Es) of trapped energetic electrons, which is opposite

to the one of the energetic ions for deeply trapped particles, reverses its sign when

considering barely trapped particles [17, 18], thus becoming parallel to that of deeply

trapped energetic ions. As a conclusion, barely trapped energetic electrons with inverted

radial density profile could meet the instability condition ω∗Ee/ω ≈ ω∗Ee/ω̄dEe > 0 and

drive a fishbone instability, in analogy with deeply trapped energetic ions with on-axis

peaked radial density profile (here, the subscript “Ee” stands for “energetic electron”).

Fishbone like fluctuations at higher frequency were also observed in COMPASS-D [19]

driven by electron cyclotron resonance heating (ECRH) and lower hybrid (LH).

Electron fishbones driven only by HFS off-axis (near q = 1) ECRH were observed

also in HL-1M tokamak [20]; applying LH waves was found to enhance the fishbone,

but only in conjunction with ECRH. Meanwhile, the observation of fishbone oscillations

driven by only LH waves has been reported on FTU [21, 22, 7] and Tore Supra [23, 24].

A careful experimental analysis to characterize the direction of propagation of the

electron fishbone mode has been performed on HL-2A tokamak [25, 26, 27, 28, 29],

where mode frequency of energetic electron driven fishbones during off-axis ECRH on

both HFS and low field side (LFS) was studied. In particular, in [25] barely circulating

energetic electrons were considered responsible to drive electron fishbones during off-

axis ECRH on the LFS, whereas both barely circulating and barely trapped energetic

electrons were considered responsible to drive electron fishbones during HFS heating.

More recently, an interesting link between non-linear dynamics of fishbone fluctuations
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in neutral beam heated discharges and non-local thermal electron heat transport has

been demonstrated in HL-2A [30].

3. Linear and non-linear theory of e-fishbones

The theoretical framework for analyzing linear and non-linear fishbone dynamics has

been recently reviewed in Ref. [31]. Here, we briefly summarize the analysis given

therein, referring to original works for more in-depth discussions.

Fishbone linear stability and nonlinear evolution can be described by the general

fishbone like dispersion relation (GFLDR) [32, 33]

i|s|Λ = δŴf + δŴk . (1)

Here, we have assumed fishbone fluctuations with toroidal mode number n = 1 and s

denotes magnetic shear at the rational surface r = rs, where the safety factor q(rs) = 1.

For convenience, we adopt straight magnetic field line toroidal flux coordinates (r, θ, ζ),

with r the radial (magnetic flux) coordinate, while θ and ζ are periodic angular

variables in poloidal and toroidal directions, respectively. In Eq. (1), Λ accounts for

the kinetic/singular layer response at r = rs, where the fishbone mode structure is

sharply varying. When s at r = rs vanishes, the singular layer response must be suitably

rewritten into a form similar to Eq. (1), which can be found in Refs. [31, 32, 33] and is

assumed to be adopted if necessary. Such explicit form is not given explicitly here, since

it is not needed in the discussion of the formal properties of the GFLDR. Meanwhile,

terms on the right hand side of Eq. (1) describe potential energy contributions from

the regular region, separating fluid (δŴf) and kinetic (δŴk) responses consistently with

the original approach in Ref. [5]. Explicit expressions for Λ, δŴf and δŴk are given in

Refs. [31, 32, 33] and will be omitted here for brevity.

The kinetic/singular layer response Λ accounts for the structures of the shear

Alfvén wave (SAW) continuous spectrum including kinetic and geometry effects,

e.g., continuum damping, neoclassical inertia enhancement and Landau damping [32].

Meanwhile, δŴf represents the potential energy fluctuation due to the fluid thermal

plasma response and the fluid/convective behavior of the energetic particle (EP)

component. Kinetic responses of thermal and supra-thermal plasma are accounted for

by δŴk, which, e.g., describes instability drive by resonant wave particle interaction at

ω = ωres = nω̄d + `ωb , (2)

for magnetically trapped particles; and

ω = ωres = nω̄d + (nq̄ −m+ `)ωb , (3)

for circulating particles. Here, (m/n) are (poloidal/toroidal) mode numbers, ω̄d ≡
(ωb/2π)

∮
(ζ̇ − qθ̇)(dθ/θ̇) is the toroidal precession frequency, ωb ≡ 2π(

∮
dθ/θ̇)−1 is the

bounce/transit frequency for magnetically trapped/circulating particles and
∮
dθ/θ̇(...)

is taken along a closed equilibrium particle orbit. Furthermore q̄ ≡
∮
qdθ/

∮
dθ [34] and

` indicates the “bounce” harmonics of the considered wave-particle resonance.
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In linear theory, Eq. (1) predicts that fishbones can be excited by magnetically

trapped EPs at the precession frequency [5]. Thus, for deeply trapped EPs with

pressure profile peaked at the magnetic axis, fishbones above excitation threshold are

expected to rotate in the EP diamagnetic direction, as observed originally [4]. For

e-fishbones, this situation is experimentally more difficult to achieve as they require

a particularly strong fast-electron source, due to the stronger continuum damping for

modes rotating in the electron than in the ion diamagnetic direction [7]. In fact, most

favorable excitation conditions for e-fishbones are off-axis peaked EP pressure profiles

with modes rotating in the ion diamagnetic direction, consistent with Eqs. (2)-(3) and

` = 0 for barely trapped/barely circulating EPs affected by precession reversal [6]. The

important role of finite (q̄ − 1) for barely circulating EPs in Eq. (3) has been recently

emphasized in Ref. [35]. In the following sections, we will numerically investigate both

situations; i.e., the case of pressure profile peaked on axis and e-fishbone excited by

deeply trapped EPs, as well as the off-axis peaked EP pressure profile case excited by

barely trapped/circulating electrons.

When non-linear physics is investigated, Eq. (1) can be cast as a non-linear equation

for the evolution of the fishbone amplitude and essentially fixed (linear) radial mode

structure [31]. The nonlinear wave-wave and wave-EP interactions are dominated,

respectively, by the non-linear responses ΛNL and δŴNL
k [31, 32, 33]. Both zonal flows

and currents, i.e., in general zonal structures (ZS), contribute to ΛNL and are generated

by the dominant (m,n) = (1, 1) component of the fishbone mode [36]. Meanwhile, δŴNL
k

is due to phase space ZS (PSZS), that is self-consistent nonlinear distortions in the EP

distribution function having the same symmetry (spatial structure) of the underlying EP

reference equilibrium [34]. In general, δŴNL
k and nonlinear dynamics of PSZS dominate

over ΛNL and ZS nonlinear response for sufficiently strong EP drive. However, the

role of ZS becomes increasingly more important approaching the excitation threshold,

and ΛNL has to be considered on the same footing as δŴNL
k near marginal stability

[31]. This transition in the nonlinear behavior is quantitatively affected by kinetic and

geometry effects, such as neoclassical inertia enhancement, which must be taken into

account for a proper description of the self-consistent nonlinear fishbone dynamics in

toroidal fusion plasmas. In this work, for simplicity, we consider a sufficiently strong

supra-thermal electron source and numerically investigate only the effect of δŴNL
k and

nonlinear dynamics of PSZS [34].

Following Refs. [31, 34], and assuming deeply trapped resonant EPs with negligible

orbit width and a rigid plasma displacement δξr0, the evolution equation for the EP

PSZS can be cast as
∂

∂t
F0(t) ' StF0(t) + S(t) + 2

(
ω̄d

ω0(τ)

)
×

∂

∂r

[∫ +∞

−∞
e−iωt

(
∂F̂0(ω)

∂r
− ω0

ω̄d

E
R0

∂F̂0(ω)

∂E

)

×(γ − iω)− (ω̄d − ω0)(γ/ω0)

(ω̄d − ω0)2 + (γ − iω)2
|ω0(τ)|2|δξr0|2dω

]
. (4)
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Here, StF0(t) and S(t) denote collision and external source terms; and the PSZS F0(t)

depends on velocity space variables µ = v2
⊥/2B0 + ... (the magnetic moment) and

E = v2/2 (energy per unit mass) as well as r but, for conciseness of notation, only time

dependence is indicated explicitly. Meanwhile, F̂0(ω) ≡ (2π)−1
∫∞

0
eiωtF0(t)dt denotes

the Laplace transform. Furthermore, B0 is the magnetic field on the magnetic axis at

toroidal major radius R = R0 and fishbone fluctuations are assumed to occur with the

time dependent frequency ω0(τ) + iγ(τ). The τ notation instead of t explicitly refers to

sufficiently slow time variation, such that |ω̇0| � |γω0| [34].

Equation (4) coupled with Eq. (1) via δŴNL
k give the description of the self-

consistent nonlinear evolution of PSZS and fishbone oscillations [31]. This process

is generally non-perturbative; that is, fishbone spatiotemporal structures affect EP

transport and vice-versa. It is worthwhile noting that fishbone spatiotemporal structures

are evolving in time even though the radial mode structure remains close to a rigid

plasma displacement. In fact, mode amplitude and frequency are changing in time,

and influence the phase space structure of F0(t) due to the radial and velocity space

dependence of the resonance conditions, Eqs. (2) and (3). With non-perturbative

EP response, nonlinear evolution is dictated by maximization of wave-particle power

transfer, as discussed in Refs. [31, 34]. In particular, Eq. (4) suggests that PSZS

evolution tries to preserve the resonance condition; i.e., that |Θ̈| � γ2 ∼ τ−2
NL , with

Θ the wave-particle phase and τNL the characteristic nonlinear time [31, 34]. The

ensuing frequency chirping is typically non-adiabatic; that is |ω̇0| ∼ γ2 ∼ τ−2
NL and,

thus, resonant EP continuously enter and leave the resonance region since wave-particle

trapping is suppressed, consistently with maximization of wave-particle power transfer.

A given group of particles remains in resonance for a finite interaction time, τI , given

by the condition∫ τI

0

(ω0(τ)− ωres) dτ ' π . (5)

Due to phase locking (|Θ̈| � γ2 ∼ τ−2
NL), resonant interaction is preserved during effective

mode amplification and is rapidly lost after residual resonance detuning has shifted the

wave-particle phase by ∼ π, similar to the slippage of resonant electrons with respect to

a short free electron laser pulse [31, 34]. In this way, mode amplification can continue

as resonant EPs continuously enter (and leave) the resonance region. Equation (5)

corresponds to a finite interaction length, ∆rI , set by the distance traveled by the PSZS

group velocity (∼ ω0δξr0) over τI [31, 34].

Strong fishbone excitation occurs when ∆rI ∼ rs; i.e., when resonant particles are

convectively pumped out from within the q(rs) = 1 magnetic flux surface as discussed

in the original work by White et al. [37]. In such a case, saturation corresponds to

balancing the convective power loss with the wave-particle power transfer, yielding

|δξr0/rs| ∼ |γ/ω0| [31]. This behavior is demonstrated by present numerical simulation

results with on axis peaked supra-thermal electron pressure profile, resonantly driven by

deeply trapped particle at the precession resonance. For weaker EP drive and ∆rI < rs,

after a group of particles looses the resonance condition according to Eq. (5), a new
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group of particles can enter the resonance region because of non-adiabatic frequency

chirping (|ω̇0| ∼ γ2 ∼ τ−2
NL) and mode amplification can continue until it is suppressed

by equilibrium non-uniformity [31, 34]. This behavior has been recently observed by

numerical simulations based on a reduced description of the fishbone burst cycle that can

be obtained from Eqs. (1) and Eq. (4) with some additional simplifying assumptions [38].

When EP drive is further reduced, the effect of ZS should be considered on the same

footing of PSZS nonlinear dynamics, as anticipated above. This is beyond the scope

of the present work, where we focus on nonlinear wave-EP interaction and the effect of

δŴNL
k only. Application of Eqs. (1) and Eq. (4) in such a case, approaching marginal

stability and with perturbative EP drive, yields the prediction fishbone saturation by

local EP redistribution. In the case of supra-thermal electron pressure profile peaked

off-axis, numerically analyzed in this work as illustration of e-fishbones driven by barely

trapped/circulating EPs, ωres radial profile has a local maximum at rs, corresponding to

slowly evolving (adiabatic) PSZS of ∆rB ∼ |2ω0/ω
′′
res0|1/3|δξr0|1/3 radial extension, with

ω′′res0 the second radial derivative of ωres at rs. It is then possible to show that fishbone

saturation due to local EP relaxation occurs at |δξr0| ∼ γ3|ω0|−3/2|∆ω|−3/2|2ω0/ω
′′
res0|1/2,

with ∆ω = ωres0 − ω0.

4. Numerical Simulations

4.1. Description of XHMGC

In the following sections we will present the results of numerical simulations performed

using the HMGC code [39, 40, 41], which is a hybrid [42] MHD gyrokinetic code

originally developed at the Frascati Laboratories. In HMGC, the thermal plasma is

described by O(ε3) non linear reduced MHD equations [43], which describe circular

shifted magnetic surface equilibria; moreover, the limit of zero bulk plasma pressure

is also assumed; the energetic particles are described by non linear Vlasov equation

in the drift-kinetic limit, solved using particle-in-cell technique, the two components

(thermal and energetic particles) being coupled [42] via the pressure tensor term of

the energetic particle species entering in the extended momentum equation of the bulk

plasma. The hybrid scheme allows to consider the effect of the energetic particles on the

electromagnetic fields self-consistently, i.e., they are retained non perturbatively: thus,

the mutual effect of energetic particles and MHD-like modes (as, e.g., toroidal Alfvén

modes, TAEs and or internal kink modes), as well as modes which do not have their

MHD counterpart (as, e.g., energetic particle driven modes, EPMs), can be studied

properly; in particular, energetic particles will contribute to both time evolution of the

mode (i.e., to the growth rate and frequency) and to its spatial structure (i.e., to the

eigenfunction). HMGC has been extensively used to study TAEs and EPMs [41, 44, 45],

as well as in the analysis of modes observed in existing devices (JT-60U [46], DIII-D [47])

or expected in forthcoming burning plasmas (ITER [48, 49]) and proposed experiments

(FAST [50, 51]). The original version of HMGC has been recently extended to include
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new physics (XHMGC [9]): diamagnetic effects and thermal ion compressibility are

retained in the extended momentum equation of the bulk plasma through the divergence

of the thermal ion pressure tensor, obtained by solving the non linear Vlasov equation

for that population, in order to account for enhanced inertia response [7, 10, 11] and

ion Landau damping [12]. Moreover, XHMGC is able to treat simultaneously, using

the kinetic formalism, up to three independent particle populations, assuming different

equilibrium distribution functions (as, e.g., bulk ions and electrons, energetic ions and/or

electrons accelerated by NB, ICRH, ECRH, fusion alphas, etc.). The XHMGC code

has been also used to simulate fishbone modes driven by energetic electrons [8]. With

respect to energetic ion driven modes (as, e.g., TAEs and EPMs), the simulation of

e-fishbones poses the challenge of properly follow the extremely fast parallel electron

motion along equilibrium magnetic field lines, in order to correctly evaluate the effective

bounce averaging during both linear and non linear dynamics. To this purpose, a suited

sub-cycling scheme has been introduced and solved in the particle-in-cell scheme. As

synthetic diagnostic tool, XHMGC allows to follow, in a self-consistent simulation, a set

of test particles; the phase-space coordinates of such particles are stored in time, and

can be used to compute a variety of single particle physical quantities as , e.g., the single

particle frequencies of the supra-thermal electrons, namely, the precession and bounce

frequencies. The resonances underlying the linear instability can be clearly identified

in this way. Furthermore, the use of energetic particle phase-space diagnostics, based

on Hamiltonian mapping techniques [13] generating kinetic Poincaré plots, allow us to

isolate the physics processes underlying fishbone mode saturation, frequency chirping

and secular (versus diffusive) energetic particle redistribution.

The energetic electrons (“Ee”) distribution function used in the following

simulations is:

fEe ∝ nEe(ψ)

TEe(ψ)3/2
Ξ(α;α0,∆)e−E/TEe(ψ) , (6)

Ξ(α;α0,∆) ≡ 4

∆
√
π

exp
[
−
(

cosα−cosα0

∆

)2
]

erf
(

1−cosα0

∆

)
+ erf

(
1+cosα0

∆

) , (7)

where E = mev
2
‖/2 + Mωce is the single particle energy, with v‖ the parallel (to the

equilibrium magnetic field) velocity, M the conserved magnetic moment (here defined

as M ≡ mev
2
⊥/(2ωce), and ωce = eB/(mec) the cyclotron frequency with e and me

being the (absolute value of) charge and mass of electrons, respectively, and B the local

equilibrium magnetic field. Moreover, nEe(ψ) and TEe(ψ) are the radial density and

temperature profiles, respectively, ψ being the (normalized) poloidal flux (ψ = 0 on the

magnetic axis and ψ = 1 at the plasma edge). The function Ξ(α;α0,∆) models the

anisotropy of the distribution function, with cosα ≡ v‖/
√

2E/me, sin2 α ≡ Mωce/E,

and α is the pitch angle of the energetic electrons. Within the code, the parallel velocity

is normalized to the on-axis energetic electron thermal velocity û ≡ v‖/vth,Ee,0, with

vth,Ee,0 =
√
TEe0/me, and the magnetic moment is normalized as M̂ ≡ Mωce0/TEe0,

with the subscript “0” indicating on-axis values.
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In the following simulations performed with XHMGC, the contribution to

Landau damping, enhanced plasma inertia (mostly due to trapped particles), finite

compressibility of thermal ions, as well as Landau damping and finite compressibility of

thermal electrons will be all treated kinetically by considering isotropic Maxwellian

distribution functions with nth,j(ψ), Tth,j(ψ) being the corresponding density and

temperature profiles, with j = i, e. We will neglect mode-mode coupling non linearities,

thus considering single n toroidal mode number simulations, while particles non

linearities will be fully retained.

4.2. Energetic electrons with density profile peaked on-axis

As a first example of e-fishbone we will consider an energetic electron population with on

axis peaked density profile. Similarly to the conventional energetic ion driven fishbones,

deeply trapped energetic particles are expected to drive the mode. The same FTU-like

equilibrium of Ref. [8] will be considered in this section, namely a torus of circular

cross section with inverse aspect ratio ε = a/R0 ≈ 0.3 (with a and R0 the minor

and major radius, respectively). The safety factor profile is slightly reversed, with

q0 ≈ 1.25, qmin ≈ 1.05 at the surface rqmin
/a ≈ 0.35 and qa ≈ 6 (see figure 1, left).

Reference on-axis magnetic field B0 = 5.4T, deuterium bulk plasma with on-axis density
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Figure 1. Profile of the safety factor q vs. r (left) and normalized profiles of ni(ψ),

Ti(ψ), nEe(ψ), TEe(ψ) vs. the normalized flux function ψ (right).

ni0 = 1×1020m−3 and profile ni(ψ)/ni0 = (1−ψ)1/2, on-axis ion temperature Ti0 = 2 keV

and radial profile Ti(ψ)/Ti0 = (1−ψ) have been assumed as well (see figure 1, right); thus,

vth,i,0/vA0 ≈ 3.72 × 10−2 (with vA0 ≡ B0/
√

4πni0mi being the on-axis Alfvén velocity),

while the on-axis bulk ion Larmor radius is ρi/a ≈ 4.27 × 10−3. Bulk electrons have

been assumed to have the same radial density and temperature profiles, with ne0 = ni0

and Te0 = 7 keV; thus, vth,e,0/vA0 ≈ 4.22, while the on-axis bulk electron Larmor radius

is ρe/a ≈ 1.32 × 10−4. Energetic electrons described by a distribution function with
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perpendicular temperature much higher than the parallel one are considered in the

simulations by assuming cosα0 = 0 and ∆ = 0.1, see Eq. (7), in order to maximize

the fraction of trapped particles, which are expected to contribute to the resonant

excitation of electron fishbone mode; the energetic electron density radial profile is

nEe(ψ) = nEe0 exp(−10ψ), whereas the energetic electron temperature is assumed to

be uniform TEe = TEe0 = 50 keV (see figure 1, right); thus, vth,Ee,0/vA0 ≈ 12.27, while

the on-axis energetic electrons Larmor radius is ρEe/a ≈ 3.52× 10−4. This equilibrium

has been already analyzed in Ref. [8], were it was shown that the electron fishbone

mode was destabilized above a certain threshold energetic electron density, propagating

poloidally in the direction of the energetic electron diamagnetic velocity (which is, for

this equilibrium, also parallel to the bulk electron diamagnetic velocity), and excited by

resonance with deeply trapped energetic electrons. Here, we will reconsider the linear

results presented in Ref. [8], where the kinetic contribution of the energetic electrons

and bulk ion was considered, by also adding the kinetic contribution of bulk electrons.

Moreover, a novel non linear analysis using test particles Hamiltonian mapping (TPHM)

techniques [13, 14] will allow us to illuminate the non linear saturation and radial

transport associated with such mode.

4.2.1. Linear dynamics In this section we will investigate the relative importance of

different driving and damping processes accounted for in the model, i.e., energetic

electrons compressibility, thermal ion compressibility and diamagnetic effects, and

thermal electron compressibility. Following Ref. [9], where the model implemented in

XHMGC has been described in detail, let’s consider the perpendicular component of

the extended MHD momentum equation:

ρb

 ∂∂t +

 b×∇P0i⊥

ρiωci︸ ︷︷ ︸
diamagnetic, bulk ions

+δvb

 · ∇
 δvb =

− (∇ ·Pe)⊥︸ ︷︷ ︸
bulk electrons

− (∇ ·Pi)⊥︸ ︷︷ ︸
bulk ions

− (∇ ·PEe)⊥︸ ︷︷ ︸
energetic electrons

+

(
J×B

c

)
⊥
, (8)

where δvb is the perturbed velocity (∝ δE × B) of the bulk ions, ρi is the bulk ion

Larmor radius, ωci is the ion cyclotron frequency and ρb is the mass density ρb = mini
of the bulk ions. In Eq. (8) the diamagnetic bulk ion contribution, and the different

kinetic contributions coming from the energetic electrons, bulk ions and bulk electrons

have been explicitly indicated. In the following simulations the toroidal mode number is

n = 1, the poloidal Fourier components retained are m = 1, ..., 6, normalized resistivity

S−1 = 3×105 and viscosity ντA0/a
2 = 3×10−8 have been considered to ensure numerical

stability (here S is the Lundquist number S ≡ 4πa2/(ηc2τA0), τA0 = R0/vA0 being the

on axis Alfvén time, η the resistivity, and ωA0 ≡ τ−1
A0 the on axis Alfvén frequency). In
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Figure 2. Growth rate (left) and frequency (right) of the electron fishbone mode vs.

nEe0/ni0. The results of considering only the energetic electron contribution (red filled

cirlces), and adding, one ofter the other, the diamagnetic bulk ion contribution (black

filled triangles), the complete bulk ion contribution (blue filled squares) and the bulk

electron one (green filled diamonds).

figure 2 the results of a scan in which the strength of the energetic electrons driving

term (∇·PEe)⊥ (which is ∝ nEe0/ni0) is varied are presented, showing the dependence of

the growth rate and the frequency of the electron fishbone mode on the strength of the

drive. Several curves are shown in figure 2, corresponding to switching on, one after the

other, the contributions isolated in Eq. (8). First, the divergence of the energetic electron

pressure tensor (∇·PEe)⊥, then the diamagnetic bulk ion term (b×∇P0i⊥)/(ρiωci) and,

subsequently, the divergence of the thermal ion pressure tensor (∇·Pi)⊥, which account

for the thermal ion Landau damping and generalized inertia, retaining consistently the

actual dynamic response of trapped and circulating thermal ions (see also section 2.2 and

appendix A of Ref. [7]). Finally, the divergence of the thermal electron pressure tensor

(∇·Pe)⊥ is also included. The contribution of energetic electrons drives the mode, which

has a clear internal kink characteristic with a dominant m = 1 component localized,

in radius, approximately inside the qmin surface rqmin
/a ≈ 0.35 (see figure 3 left); the

poloidal structure (see figure 3 center) rotates in counter clock wise direction, which

corresponds to a mode propagating in the (bulk and energetic) electron diamagnetic

velocity direction resulting in a negative real frequency (see figure 3 right), considering

the standard fast Fourier conventions used for extracting the frequency spectra from

the time dependent solution of the unknown fields (the e.s. potential φ and the parallel

component of the vector potential A‖) as obtained by the initial value code XHMGC.

Referring to the results shown in figure 2, we observe that the growth rate increases

almost linearly with the strength of the drive, ∝ nEe0/ni0, and the frequency (in absolute

value) slightly decreases. When considering also the diamagnetic bulk ion term, very

little variation is observed, both in growth rate and frequency: indeed, the absolute
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Figure 3. The Fourier components (left), the poloidal structure (centre) and the power

spectrum (right) of the of the electrostatic potential is shown, for nEe0/ni0 = 0.13 and

with the contribution of all the species treated kinetically included. In the power

spectrum plot (right) the solid lines are the upper and lower Alfvén continua.

value of this term, evaluated at its maximum radial position (r/a ≈ 0.35) is much

less (by a factor ≈ 30) than the absolute value of the frequency of the mode. When

adding the term (∇ · Pi)⊥, on the contrary, the growth rate of the mode is notably

reduced, showing as the effect of considering the thermal ion Landau damping and

enhanced inertia increases the threshold in nEe0/ni0 required to destabilize the mode;

also the absolute value of the frequency of the mode increases. Finally, when adding

the term (∇ · Pe)⊥ which accounts for the bulk electrons, an increase of the growth

rate is observed, which diminishes its importance as nEe0/ni0 is increased. Note that

the positive contribution to the growth rate of the bulk electrons appears only if the

electron fishbone is already driven unstable, indeed in absence of the energetic electrons

the system is still stable.

Some more insight on the linear dynamics of the electron fishbone driven by

energetic electrons with density profile peaked on-axis can be gained considering the

power exchange between the various particle species and the wave. In figure 4 the power

exchange in the (v‖,M) space is shown, for several radial shells, in a simulation which

considers all the particles species treated kinetically. The dominant drive contribution

comes from the deeply trapped energetic electrons (the solid and dashed curves in each

plot refer to the approximative boundary between trapped and circulating region in the

phase space, for the inner (solid curve) and outer (dashed curve) radii of the radial shell

considered, respectively). Note that in the plots shown in figure 4 the normalized parallel

velocity u refers to the parallel velocity the simulation markers (“macro-particles”) will

have when crossing the equatorial plane at the poloidal angle θ = 0; in particular, for

trapped particles, the external “leg” of the “banana” orbit is chosen. Let’s first consider

the power exchange relative to the energetic electrons: as already stated in Ref. [8], the

drive is given by the deeply trapped electrons, figure 4, upper-left plot. Making use of

the test particle Hamiltonian mapping techniques [14], we can gain some insight on the

characteristic resonances of the energetic electrons. As stated in section 4.1, the code

HMGC can be used to evolve a set of test particles in the time dependent e.m. fields
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Figure 4. Power exchanges (red to green colors refer to power from the particles to

the wave, light blue to purple refer to power from the wave to the particles) in the

normalized (û ≡ v‖/vth,s,0, M̂ ≡ Mωcs0/Ts0, with s=Ee, i, e) space are shown for the

energetic electrons (top row), bulk ions (center row) and bulk electrons (bottom row);

three radial shells are considered: 0.17 . r/a . 0.22 (left), 0.23 . r/a . 0.28 (center),

0.442 . r/a . 0.47 (right).

computed by a self-consistent simulation [14]. A suitable choice will be to choose the set

of test particles as the ones with strongest resonance with the wave during linear growth

phase. This can be done by choosing the particles which belong to the phase space region

where the maximum power exchange between energetic particles and wave occurs (see,

e.g., figure 4). Once the coordinates of such a region have been selected (i.e., r = r0,

M = M0, v‖ = v‖,0), we can define, following Ref. [13, 14], the quantity C ≡ ω0Pφ−nE,

with Pφ ≡ msRv‖+esR0(ψ−ψ0)/c being the canonical toroidal angular momentum. The

quantity C is a constant of the (perturbed) motion, provided that the perturbed field

is characterized by a single toroidal mode number n and a constant frequency. At the

leading order [14], we can approximate Pφ ' msRv‖+ esR0(ψeq−ψeq,0)/c ≡ Pφ(r, θ, v‖),
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and C ≡ ω0Pφ−n(msv
2
‖/2+Mωcs) ≡ C(r, θ,M, v‖) (here, ψeq is the equilibrium poloidal

flux function). Thus, the initial (t = 0) coordinates of the test particles can be chosen

by varying (r, v‖) under the condition that M = M0 and C = C0; moreover, θ = 0

and equispaced values of φ in the interval [0, 2π[ are also assumed. Figure 5 shows the

results obtained during the linear growth phase of the simulation for a set of particles

with C = C0 and M = M0, with C0 and M0 which corresponds to the maximum

power exchange between energetic electrons and wave (θ = 0, r/a = 0.195, M̂ = 3,

û = −0.328, and ω0/ωA0 ≈ −0.1, see figure 4): indeed, the resonant condition for
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Figure 5. Radial dependence of the resonant frequency ωres(r) = nω̄d(r) of the

energetic electron test particles (solid red curve) compared with the mode frequency

ω0(dashed black line). Over imposed is the radial dependence of the test particle power

exchange, (blue dot-dashed curve).

trapped particles ω0 = ωres(r) = nω̄d(r) + `ωb(r), for n = 1, ` = 0 (with ` denoting the

“bounce harmonics”), is satisfied in correspondence of the peak of the power exchange

between the (test) energetic electrons and wave, confirming that the precession frequency

ω̄d of deeply trapped energetic electrons is driving the mode. Note also that the radial

profile of the test particles resonant frequency ωres(r), after a strong variation with radius

for r/a . 0.15, is quite flat and close the value of the (linear phase) mode frequency ω0:

this feature will be relevant for the evolution of the mode during non linear saturation

(see section 4.2.2).

From figure 4 the bulk ions are shown to contribute to the damping of the mode,

mainly with co- and counter-passing particles, whereas the bulk electrons, depending

on the radial shell considered, contribute to damping the mode with both passing and

trapped particles in the internal radial shells, but strengthen the drive some where

outside the qmin radius. Indeed, applying the same TPHM technique used above,

it is possible to show that, in correspondence with the positive contribution of the

bulk electrons in the radial shell r/a ≈ 0.46, which exhibit a maximum for the power

exchange at M̂ ≈ 0 and û ≈ 2.375, it exists a radial double resonance with co-passing
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bulk electrons ω0 = ωres = nω̄d + [`+ (nq −m)σ]ωb, for n = 1, m = 1, ` = 0,

σ = sign(v‖) and q the average of the safety factor over the particle orbit (see figure 6).

Similarly, for the bulk ions, in the radial location where the damping is maximized
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Figure 6. Radial dependence of the co-passing resonant frequency ωres(r) = nω̄d(r)+

(q− 1)ωb of the bulk electron test particles (solid red curve) compared with the mode

frequency ω0(dashed black line). Over-imposed is the radial dependence of the test

particle power exchange, (blue dot-dashed curve).

(r/a ≈ 0.28, M̂ = 0. and û − 2.5), a resonance can be found with counter-passing

particles ω0 = ωres = nω̄d + [`+ (nq −m)σ]ωb, for n = 1, m = 1, ` = −2.

4.2.2. Non linear dynamics In the present section we will consider the non linear

dynamics of the electron fishbone driven by energetic electrons with density profile

peaked on-axis. We will refer, in this section, to a set of simulations in which only the

contribution of the thermal ions treated kinetically will be considered beside the one of

the energetic electrons, neglecting thus kinetic response by thermal electrons, as in the

case of the simulations presented in Ref. [8]. In figure 7 the time evolution of the total

(kinetic plus magnetic) volume integrated MHD energies Wtot; m,n for the various Fourier

components considered in the simulation are shown, for the case of nEe0/ni0 = 0.12 (the

weakest simulation shown in figure 2).

As already discussed in Ref. [8], the saturation is characterized by a pronounced

downward (in absolute value) frequency chirping, as it is shown in figure 8, where the

frequency spectra of the electrostatic potential ϕ(r, ω) are shown at several times of

the simulation (during linear phase (tωA0 ≈ 400), end of the earlier phase of saturation

(tωA0 ≈ 800), late saturation (tωA0 ≈ 1000)). In figure 8, superimposed on the frequency

spectra, the instantaneous resonant frequency ωres = ωres(r, t;C0,M0) is also reported: it

is worthwhile noting that the instantaneous resonant frequency ωres(r, t) changes in time,

being always close to the local lower Alfvén continuum, and that the radial extension
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Figure 7. Total (kinetic plus magnetic) volume integrated MHD energies Wtot;m,n for

the various Fourier components considered in the simulation are shown, for the case

of nEe0/ni0 = 0.12.

Figure 8. Frequency spectra of the electrostatic potential ϕ(r, ω) at several times

(during linear phase, end of the earlier phase of saturation, late saturation); over

imposed is the resonant frequency ωres(r;C0,M0) of the test particles.

of the power spectrum |ϕ(r, ω)|2 is almost unchanged during the downward (in absolute

value) chirping, as a consequence of the stiffness of radial shape of the internal kink

eigenfunction. Furthermore, the mode, although chirping down, is always superimposed

to the instantaneous ωres(r, t) curve, thus suggesting phase-locking with the energetic

particles identified by C = C0,M = M0.

In figure 9 the spectrogram of the mode is shown at the radial location where the

electrostatic potential has its peak: the frequency chirps down (in absolute value) as

the simulation leaves the exponential growth of the linear phase (for tωA0 & 600, see

figure 7). In the subsequent strongly non linear regime (tωA0 & 1000) a second dominant

frequency appears (|ω/ωA0| ≈ 0.15), in correspondence to bursts observed in the total

MHD energy.
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Figure 9. Frequency spectrogram, r/a = 0.3; note that the color scale is logarithmic.

By following the same set of test particles considered in section 4.2.1 also in the

non linear phase of the simulation, we can further investigate the saturation mechanism

of the mode and the associated radial transport of resonant particles. In figure 10 (left)

the radial density profiles of the test particles are shown, for several times during the

simulation (tωA0 = 400, during the linear growth phase, and tωA0 = 700, 800, 900, 996,

during the saturation phase). Radial flattening is strongly evident in these resonant
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Figure 10. Density profile (left), and ω0(t) − ωres(t, r) (right) from test particles

evolution at several times of the simulation.

particles, starting at the radial position where the power exchange between energetic

particles and wave is stronger (r/a ≈ 0.185, see figure 5). It is worthwhile noting that

this strong radial transport of the energetic particles can become much less evident

after averaging (summing) over the total (resonant plus non resonant) energetic particle
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radial density profile. From figure 10 (left) it can also be observed that the flattening

of the radial profile, that starts at time tωA0 ≈ 600 around r/a ≈ 0.185, propagates

inward, up to r/a ≈ 0.1, and outward, up to r/a ≈ 0.3. In figure 10 (right) the curves

ω0(t)−ωres(t, r), as computed from the test particle evolution are shown, at several times

during the simulation: the intersections of the curves with the reference zero line identify

the resonance radial location. Until tωA0 = 700 the radial location of the resonance is

almost unchanged (r/a ≈ 0.185), as is the shape of the curve ω0(t) − ωres(r, t), which

just begin to flatten around the resonant radius. At later times (tωA0 = 800, 900, 996),

the instantaneous resonance frequency profile ω0(t) − ωres(r, t), as computed from the

test particles evolution, continues to flatten in radius with respect to the linear phase

and extends outward, but also, because of the frequency chirping of the mode, it shifts

up: as a consequence, the resonant radius moves outward, i.e., toward higher values

of the canonical toroidal angular momentum Pφ. In figure 11 the kinetic Poincaré

Figure 11. Kinetic Poincaré plots with test particles colored corresponding to their

birth value of Pφ. Note that the extension of the Θ axis has been doubled and test

particle markers has been replicated in the domain 2π 6 Θ < 4π to enhance the

readability of the plots. The arrows in the first plot indicate the direction of the particle

drift along Θ above and below the resonant layer P̂φ, res ≡ Pφ, res/(meavth,e,0) ≈ 7.

plots are shown for the same times of simulation of figure 10 with test particles colored

accordingly to their initial Pφ value: here, whenever a test particle completes a full

banana or transit orbit in the poloidal plane at t = t̂, by crossing the outer equatorial

plane (θ = 0), the corresponding values of the canonical toroidal angular momentum
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Pφ(t̂) and the wave-particle phase Θ(t̂) are computed, with Θ(t̂) =
∫ t̂
ω0(t)dt − nφ(t̂)

and φ being the toroidal angle. Each test particle position in the plane (Θ, Pφ) is then

updated by moving the marker in the “kinetic Poincaré” plot [13]. The extremes of the

vertical axis Pφ = [−0.13, 50] correspond to, approximately, r/a ≈ [0.1, 0.3]. Resonant

particles during linear phase have their normalized P̂φ ≡ Pφ/(meavth,e,0) = P̂φ, res ≈ 7

(violet/dark blue color), which corresponds, approximately, to rres/a ≈ 0.185. During

the linear phase of the simulation, when the perturbed e.m. fields are small, these

resonant particles are fixed points in time in the space (Θ, Pφ), while particles with

different values of their Pφ just drift toward higher or lower Θ, according to Θ̇ ≈ ω0−ωres,

while keeping Pφ constant (see the arrows in the first frame of figure 11, indicating the

drift direction along Θ in the two regions of Pφ). Once the e.m. fields have reached

a sufficient high level, particles begin to be displaced in Pφ (due to E × B drift) also

drifting along Θ (see figure 11, tωA0 = 700). When the sign of the perturbed field is

inverted, ∂Pφ/∂t changes its direction and if particles cross the Pφ = Pφ, res line, they

invert their drift along Θ, beginning to roll in the wave (being eventually trapped in the

wave itself). Particles that instead do not cross the Pφ = Pφ, res line, only oscillate in

Pφ without inverting their drift along Θ (passing particles in the kinetic Poincaré plots

nomenclature). In our simulation, because of the chirping mode, i.e., ω0 = ω0(t) and of

the dynamic modification of the radial profile of the resonant frequency ωres = ωres(r, t),

the resonant particles that are displaced at larger Pφ (because of E × B drift), will,

in turn, continue to drift outward (instead of drifting horizontally in Θ, and reversing

their motion toward the resonant layer when feeling a change of sign of the E × B

drift). This outward drift gives rise (see figure 11, tωA0 = 700, 800, 900, 996) to vertical

elongated structures, i.e., to a large radial transport of energetic resonant particles (see

also the almost flat test particle density profiles for the same times in figure 10 (left)),

consistent with the theoretical analysis given in section 3 [31, 34]. This process ends

when the flattening of the test particle density profile approaches the qmin radius, where

the internal kink eigenfunction sharply decreases (“radial decoupling”, see Ref. [14]);

it has to be noted that very little variation is observed in time on the shape of the

eigenfunction, being the internal kink type eigenfunction quite stiff.

Evidence of phase locking is shown in figure 12, where the average of the precession

frequency ω̄d(t) of the linearly resonant particles, weighted with their power transfer

during linear phase is shown, together with the width of its distribution (see Ref. [8]), and

compared with the time varying (chirping) frequency of the mode (see figure 9). Also,

the mode adjusts its frequency (thus keeping |Θ̇| ≈ 0, the “phase-locking” condition) in

order to remain “tuned” with the resonant particles which, meanwhile, experience their

outward displacement.

Finally, we plot in figure 13 the saturation amplitude of the m = 1, n = 1 Fourier

component of the electrostatic potential ϕsat 1,1 as the strength of the energetic particle

linear drive varies. For the saturation amplitude, we took the maximum value of

ϕ1,1 at the first plateau in time (see, e.g., figure 7, where the first plateau occurs at

tωA0 ≈ 720). From the simulations we can infer that |ϕsat 1,1| ∝ (γL/|ω0|)α, with α ≈ 2
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Figure 12. Comparison between ω̄d(t) (solid black line) and ω0(t) (dashed blue line)

for the linearly-resonant particles (a). The width of the ωd distribution is also reported

by plotting the quantities ω̄d ± δωd (dotted red lines). Average (solid black line) and

distribution width (dotted red lines) for the quantity dΘ(t)/dt (b).

for γL/|ω0| . 0.15, and α . 1 for γL/|ω0| > 0.15. These results compare favorably,

for weak drive, with the findings of Refs. [52], whereas, for sufficiently strong drive,

are in fair agreement with that given in Ref. [31] and already anticipated in section 3

(|δξr/rs| ∼ |γL/ω0|), noting that |δξr||ω0| ∼ vδE×B,r ∼ |ϕ1,1|/rs.
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Figure 13. Saturation amplitude of ϕsat 1,1 vs. γL/ω0 for the peaked on-axis energetic

electron density profile.
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4.3. Energetic electrons with density profile peaked off-axis

In this section the first global hybrid MHD-Gyrokinetic simulations of electron fishbones

driven by energetic particles with density profile peaked off-axis [53] will be presented.

This kind of equilibria is closely related to the experimental configuration in which

electron fishbones have been observed in current devices. In these experiments, high field

side (HFS) off-axis heating is applied close to the qmin flux surface in the equatorial plane,

using ECRH; thus, an inverted (positive) gradient of the energetic electron density profile

is generated in the radial region of the discharge which is internal to the qmin flux surface

and in which the internal kink can develop. Moreover, because of the HFS deposition, a

selective heating on barely trapped/circulating particles will be obtained [6]. Recalling

the stability condition, ω∗Ee/ω > 0 [5], and noting that ω∗Ee depends on the sign of

the radial gradient of the energetic electron pressure profile, instability can occur only

by resonance with energetic electrons characterized by precession reversal; i.e., barely

trapped/circulating energetic particles [17, 18].

The equilibrium considered here has the same bulk density and temperature profiles

and plasma parameters of the peaked on-axis one (see section 4.2 and figure 14 right),

except for the inverse aspect ratio, ε = 0.1, and the safety factor profile q, which

also in this case is slightly reversed with q0 ≈ 1.3, but with a qmin much closer to

unity (∆q ≡ 1 − qmin = 0.0002) at the surface rqmin
/a ≈ 0.33 and qa ≈ 5.3 (see

figure 14 left). Note that qmin ≈ 1 has been used in order to minimize the continuum

damping and facilitate the occurrence of the energetic electron driven fishbone [7, 35].

Moreover, safety factor profiles with a reversed shear is known to enhance the reversal

of precessional drift [17, 18, 54].
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Figure 14. Radial profile of the safety factor q vs. r (left) and normalized profiles of

ni(ψ), Ti(ψ), nEe(ψ), TEe(ψ) vs. the normalized flux function ψ (right).

The energetic electrons radial density profile, peaked off-axis, has been chosen as
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nEe(ψ)/nEe0 = 12.1825 e−10(ψ−0.5)2 , with temperature radial profile

TEe(ψ)

TEe0
=

arctan(−30ψ + 15)− arctan(−15)

2 arctan(15)
,

and TEe0 = 50 keV (see figure 14 right). The width ∆ of the energetic electrons

distribution function in the velocity space is ∆ = 0.5, whereas cosα0 = 0 as for the

energetic electron density profile peaked on-axis, see Eq. (7), and thus the distribution

function is still symmetric in velocity space, and no net current is driven by energetic

particles. The choice of ∆ = 0.5 is such to ensure the presence in the energetic

electrons distribution function of a sufficient fraction of barely trapped/circulating

particles (see figure 15). In the following simulations the toroidal mode number is

n = 1, and the poloidal Fourier components retained are m = 1, ..., 6, normalized

resistivity S−1 = 3 × 105 and viscosity ντA0/a
2 = 3 × 10−8, as before. Besides the

kinetic contribution of the energetic electrons (∇ · PEe)⊥, both the diamagnetic bulk

ion term, and the thermal ion compressibility (∇ ·Pi)⊥ treated kinetically are retained,

whereas the contribution (∇·Pe)⊥ of the bulk electrons will be neglected for simplicity,

see Eq. (8). Moreover, the choice of a shaped energetic electron temperature profile,

which strongly decreases outside the q ≈ 1 surface, has the beneficial effect of inhibiting

the growth of modes with dominant poloidal mode numbers higher than unity, which

can be driven unstable by deeply trapped energetic electrons outside the q = 1 surface,

where the energetic electron density gradient becomes negative.

Figure 15. Energetic electrons distribution function in the plane (û, M̂), ∆ = 0.5,

cosα0 = 0; solid lines refer to the trapped/untrapped boundary at r = rqmin
.

4.3.1. Linear dynamics In this section we present linear dynamics results for the

electron fishbone driven by energetic electron with off-axis peaked density profile. In

figure 16 the radial profiles of the Fourier components, the poloidal structure and the

power spectrum of the electrostatic potential are shown, for nEe0/ni0 = 0.0095: the

radial structure of the poloidal Fourier components is dominated by the m,n = 1, 1
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Figure 16. The Fourier components (left), the poloidal structure (centre) and the

power spectrum (right) of the of the electrostatic potential is shown, for nEe0/ni0 =

0.0095. In the power spectrum plot (right) the solid lines are the upper and lower

Alfvén continua.

component, which is localized in the region q . qmin, showing the characteristic shape

of the internal kink radial displacement (ξr ∝ ϕ/r). The structure of the mode in the

poloidal plane rotates in time in the clock wise direction, i.e., opposite to the direction

observed in the peaked on-axis energetic particle radial profile (see section 4.2), which

corresponds to a mode propagating in the direction of the diamagnetic velocity of the

energetic electrons (which is parallel, for a peaked off-axis energetic electrons density

profile, to the direction of the bulk ion diamagnetic velocity). The frequency of the

mode is quite low, see figure 16 (right), as expected for equilibria with low values of ∆q

(see, e.g., Ref. [35]). In figure 17 the growth rate and frequency of the electron fishbone
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Figure 17. Growth rate (left) and frequency (right) vs. nEe0/ni0 for the off-axis

peaked energetic electron density profile.

driven by energetic electrons with radial density profile peaked off-axis is shown: a

linear dependence on nEe0 is observed, above the threshold nEe0/ni0 ≈ 0.007, with a real

frequency weakly dependent on nEe0.
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From the power exchange between the energetic electrons and wave, as shown

in figure 18, it is possible to infer which fraction of energetic particles is driving the

mode. In figure 18 (left) the power exchange in the radial shell 0.33 . r/a . 0.41

is shown, with the curves approximating the trapped/untrapped boundary (solid

black) and the barely/well circulating boundary (solid red) superimposed. Here, we

follow the definition given in Ref. [7] for the barely circulating particles, defined as

(r/R)1/2 . κ2 . 1, with:

κ2 =
2(r/R0)λ

1− (1− r/R0)λ
, λ =

µB0

E
, E =

v2

2
. (9)

Indeed, the maximum power exchange occurs for particles in the region of velocity

space belonging to that of barely circulating ones (in particular the counter-circulating

ones, red pattern), with some minor contributions coming from the well circulating

particles, both co- and counter-circulating (outside the solid red curve, green pattern);

trapped particles, on the contrary, give a damping contribution (light blue to dark blue

patterns) to the mode, as expected (see figure 18 (right), where only the power exchange

due to trapped particles (κ2 > 1) is shown in order to enhance the relative size of their

contribution).

Figure 18. Power exchange between energetic electrons and wave, for nEe0/ni0 =

0.0095. Contribution from the full population in the radial shell 0.33 . r/a . 0.41

(left), and only trapped particles (right), same radial shell; black lines refer to the

boundary between trapped/untrapped particles, whereas solid red curve refers to the

boundary between barely circulating and well circulating ones (for r/a . 0.41).

An analysis, similar to the one shown for the peaked on-axis energetic electrons

density profile case, has been done for this simulation, in order to identify the

characteristic resonance responsible for driving the mode. In particular, the Hamiltonian

mapping technique has been applied to a set of test particles defined by the C0,M0

values corresponding to the region where the power exchange between energetic electrons

and the wave is maximum in linear phase. This happens, for this simulation, for

counter-passing barely circulating energetic particles at r/a ≈ 0.36, û ≈ −0.73,

M̂ ≈ 1.55 (see figure 18 left), with a frequency of the mode ω/ωA0 ≈ 0.04. In

figure 19 the radial dependence of the resonant frequency of the circulating test particles
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ωres = nω̄d + [`+ (nq −m)σ]ωb, with l = 0, m,n = 1, 1 and σ = −1 (counter-

passing particles) is compared with the observed frequency of the mode ω0; also

the radial profile of the power exchange between the test particles and the wave is

presented, showing how the maximum power exchange correspond closely to the radii

where the test particles are in resonance with the wave. In this case, the resonant
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Figure 19. Radial dependence of the resonant frequency of the counter-passing

barely circulating test particles (solid red curve) compared with the mode frequency

ω0/ωA0 ≈ 0.04 (dashed black line), for nEe0/ni0 = 0.0095. Over-imposed is the radial

dependence of the test particle power exchange, (blue dot-dashed curve).

condition is satisfied at two radial locations (“double resonance”), as a consequence

of the (q − 1) term in the resonant condition for circulating particles. Note that the

variation of ωres(r) around the resonant positions is stronger than the one observed in

the peaked on-axis energetic particle density profile (being, for the two cases considered,

|∂ωres, off−axis/∂r|/|∂ωres, on−axis/∂r| ≈ 4); the effects of this difference will be manifest

during the non linear saturation phase w.r.t. the peaked on-axis case.

4.3.2. Non linear dynamics The evolution of the simulation with nEe0/ni0 = 0.0095 is

shown in figure 20, where the time evolution of the total (kinetic plus magnetic) volume

integrated MHD energies Wtot; m,n for the various Fourier components considered in the

simulation are shown.

In figure 21 kinetic Poincaré plots are shown, for the test particles belonging to

the subset (C0,M0) as described in the previous section, with the test particles colored

according to their initial Pφ value: red color for the particles with P̂φ < P̂φ, res1 ≈ 125

(corresponding to r/a . rres1/a ≈ 0.35), blue color for particles with P̂φ, res1 . P̂φ .
P̂φ, res2 ≈ 162 (i.e., rres1/a . r/a . rres2/a ≈ 0.39), and yellow color for particles with

P̂φ > P̂φ, res2 (i.e., r/a & rres2/a). Note that the double resonance structure, which has

the sign of ∂ωres/∂r at one resonant radius the opposite of that at the other resonant
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Figure 20. Total (kinetic plus magnetic) volume integrated MHD energies Wtot;m,n

for the various Fourier components considered in the simulation are shown, for the

case of nEe0/ni0 = 0.0095.

Figure 21. Kinetic Poincaré plots for the case of nEe0/ni0 = 0.0095, in the plane

(Pφ,Θ). Test particles are colored according to their initial Pφ values. The arrows in

the first plot indicate the direction of the particle drift along Θ above, in between, and

below the resonant layers Pφ, res ≈ 7.

radius, makes particles in resonance at the inner radius rotating in the opposite direction

w.r.t. the ones in resonance at the outer radius (see figure 21, second frame from left).

While entering the fully non linear phase (tωA0 & 670, see figure 21, third frame from

left), we note that the two island structures tend to insinuate oneself into the other,

having a Pφ extension (or, equivalently, a radial extension) of the order of the distance

between the two resonance layers |∆Pφ, res2−∆Pφ, res1|. As the test particles are displaced

outside the resonant layer (toward r < rres1, or r > rres2), where the characteristic

resonant frequency changes rapidly with radius (see figure 19), even changing its sign

and, thus, not satisfying any more the instability condition ω∗Ee/ω > 0, the mode has

no “convenience” in adjusting its frequency to that of the linearly resonant particles.

Indeed, little variation of the frequency during the saturation phase is observed, and

the saturation of this simulation can be ascribed to “resonance detuning” (see, e.g.,

Refs. [14, 31, 34, 55]). The result of saturation on the radial density profile of the
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energetic particles is shown in figure 22: a flattening of the profile in a region somewhat

larger than the one between the two resonant surfaces rres1/a ≈ 0.35 and rres2/a ≈ 0.39

is observed, the width of the flattened region being, nevertheless, quite small w.r.t.

the rqmin
region. Note that the radial density profiles, as obtained by the test particles,

flatten around the two resonant radii at different times (in the case shown, at tωA0 ≈ 670

for rres1/a ≈ 0.35, and tωA0 ≈ 740 for rres1/a ≈ 0.39, see also the Poincaré plots,

figure 21, third and fourth frame from left).
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Figure 22. Density profile from test particles evolution: solid black curve corresponds

to linear phase profile (tωA0 = 400), red and blue curves to nonlinear saturation phase

profiles (tωA0 = 670 and tωA0 = 740).

In figure 23 the scaling of the saturation amplitude of the electrostatic potential vs.

the ratio of the linear growth rate to the frequency of the mode γL/ω0 is shown, in a scan

in which the energetic particle density is varied: a stronger scaling, ϕsat 1,1 ≈ (γL/ω0)3

is observed for values of γL/ω0 . 0.3, whereas for larger γL/ω0 the scaling approaches

ϕsat 1,1 ≈ (γL/ω0)1.5. These simulation results compare favorably with the analytic

findings given at the end of section 3, where the scaling for the saturated displacement

|δξr0| ∼ γ3
L|ω0|−3/2|∆ω|−3/2|2ω0/ω

′′
res0|1/2 was introduced, when noting that, in the case

of |∆ω| > γL (corresponding to the low γ/ω values in figure 23) that scaling gives

|ϕ1,1 sat| ∝ |δξr0||ω0|rs ∼ γ3
L, whereas for |∆ω| ∼ γL one gets |ϕ1,1 sat| ∝ |δξr0||ω0|rs ∼

γ
3/2
L .

5. Conclusions

In present days, e-fishbones have been observed on a variety of devices: they are internal

kink-type instabilities driven by energetic electrons generated by, e.g., electron cyclotron

and/or lower hybrid heating/current drive. A brief summary of experimental evidences

have been given in section 2. Similarly to the well known ion fishbones, e-fishbones
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Figure 23. Saturation amplitude of ϕsat 1,1 vs. γL/ω0 for the peaked off-axis energetic

electron density profile.

are driven by wave-particle interaction at magnetic toroidal precession frequency of

energetic electrons: they are characterized by linear dispersion relation similar to that

of ion-fishbones (see section 3 for a brief summary of the theory of linear and non-

linear dynamics of e-fishbones). The large interest raised about the e-fishbones is

also related to the fact that the radial transport, induced by fluctuations driven by

magnetically trapped resonant particles, due to precession resonance, depends on energy

and not mass of the particles themselves. Also, the energetic electrons on present

devices are characterized by having much smaller resonant particle orbit width w.r.t.

the characteristic scale length of the fishbone instability (which is of the order of the

rigid radial displacement of the internal kink-like eigenfunction) similarly to what is

expected for energetic ions (e.g., fusion α-particles) in burning plasmas, because of large

plasma current, and differently from what can be obtained for energetic ions in present

experiments. Thus, e-fishbones offer the opportunity to study both experimentally and

numerically linear and non-linear dynamics of wave-particles interactions relevant for

fusion plasmas also on present, not ignited devices, and to compare with theory.

In the present paper, linear and non-linear numerical simulations of fishbones

driven by energetic electrons have been presented, using the hybrid MHD-Gyrokinetic

code XHMGC [9]. Equilibria with both on-axis [8] and off-axis [53] peaked energetic

electron radial density profile have been considered. For the on-axis peaked energetic

electron radial density profile case, it has been enlightened the effects of considering

the kinetic thermal ion compressibility and diamagnetic effects (in order to allow for

an entirely novel treatment of enhanced inertia response and ion Landau damping) and

the kinetic thermal electrons compressibility effects. The most important effect comes

from the thermal ion compressibility treated kinetically, resulting in a considerable

enhancing of the instability threshold energetic electron density. Resonances between
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wave and energetic electrons and thermal species have been analyzed using TPHM

techniques [13, 14], clearly identifying the precession frequency ω̄d of deeply trapped

energetic electrons in driving the mode [8]. Non-linearly, the mode experiences a strong

downward frequency chirping, adjusting its frequency in order to remain tuned with the

resonant particles which are displaced outwardly; this results in keeping |Θ̇| ≈ 0, the

phase-locking condition, and induces the simultaneous flattening of the radial density

profile of the resonant energetic particles together with the outward displacement of the

resonance radial location. The process ends when the flattening of the resonant particles

density profile approaches the qmin radius, where the internal kink eigenfunction, that

remains almost unchanged in its shape during non-linear phase, sharply decreases

in amplitude (“radial decoupling”, see Ref. [14]). Note that some of these features

(chirping frequency, ejection of resonant particles) are consistent with previous findings

of ion fishbone simulations [56]. The non-linear saturation of the dominant Fourier

component (m/n = 1/1) of the electrostatic potential, ϕsat 1,1, has been shown to scale

almost proportional to the strength of the ratio of the linear growth rate to the mode

frequency, ϕsat 1,1 ∝ γL/ω0, for sufficiently strong drive (γL/ω0 & 0.15, for this particular

simulation case), whereas stronger dependence is obtained in the weaker drive regime.

The scaling obtained for strong drive, when the finite interaction length of the phase

space zonal structures is of the order of the qmin radius, rs, is consistent with the

analytical findings [31], as reported in section 3.

In this paper we have also presented the first global hybrid MHD-Gyrokinetic

simulations of electron fishbones driven by energetic particles with density profile peaked

off-axis. Equilibria with off-axis peaked energetic electrons radial density profile are

more closely related to the experimental conditions in which e-fishbones have been

observed in current devices, where HFS off-axis heating using, e.g., ECRH forms barely

trapped and/or barely circulating energetic electrons. These particles, because of the

the toroidal precession reversal of their motion, can fulfill the instability condition

ω∗Ee/ω > 0; the mode is observed to rotate poloidally in the direction of the diamagnetic

velocity of the energetic electrons (which is parallel, for a peaked off-axis energetic

electrons density profile, to the direction of the bulk ion diamagnetic velocity). In this

equilibrium the radial structure of the resonance for the energetic electrons driving the

mode is dominated by the (q − 1) term entering in the expression of the resonance

of circulating particles, see Eq. (3), thus having a double resonance in the vicinity of

the qmin radial location rs. Non-linearly, kinetic Poincaré plots show a double island

structure, one rotating in the opposite direction of the other, and shifted by π along

the wave-particle phase Θ. Local flattening of the radial density profile of the resonant

particles is observed in the radial positions of the double resonance, and no major

frequency chirping is observed during saturation, which can be attributed to resonance

detuning [14, 55]. The scaling of the saturated amplitude, for this equilibrium, is in

good agreement with the predictions given in section 3: ϕsat 1,1 ≈ (γL/ω0)3 for weak

drive, and ϕsat 1,1 ≈ (γL/ω0)3/2 when |∆ω| ≡ ωres0 − ω0 ∼ γL.

It is worth noting that in this paper we have neglected the role of MHD
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nonlinearities, which are known to increase their importance near marginal stability [36,

57]. Thus, a more complete simulation study will be required to explore in detail the

non linear dynamics also in these regimes of weak energetic electron drive.
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