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Abstract. We investigate theoretically how sheath radiodescy (RF) oscillations
relate to the spatial structure of the near RF llghralectric field E;, emitted by lon
Cyclotron (IC) wave launchers. We use a simple rhaafe Slow Wave (SW)
evanescence coupled with Direct Current (DC) plasmasingvia sheath boundary
conditions in a 3D parallelepiped filled with honemgous cold magnetized plasma.
Within a “wide sheaths” asymptotic regime, valid farge-amplitude near RF fields,
the RF part of this simple RF+DC model becomesalinthe sheath oscillating voltage
Vgr at open field line boundaries can be expressedliagar combination of individual
contributions by every emitting point in the indigld map. SW evanescence makes
individual contributions all the larger as the warmission point is located closer to the
sheath walls. The decay d¥gH with the emission point/sheath poloidal distance
involves the transverse SW evanescence lengthhancdial protrusion depth of lateral
boundaries. The decay &g} with the emitter/sheath parallel distance is gjtiad as a
function of the parallel SW evanescence length thedparallel connection length of
open magnetic field lines. For realistic geometiaes target SOL plasmas, poloidal
decay occurs over a few centimeters. Above thigcatilength, the poloidal structures
of Vge reflect those oE, near the parallel extremities of the input fielépn Typical
parallel decay lengths fo¥df are found smaller than IC antenna parallel exbens
Oscillating sheath voltages at IC antenna sidetdiraiare therefore mainly sensitive to
E, emission by active or passive conducting elemeags these limiters, as suggested
by recent experimental observations. Parallel pnityi effects could also explain why
sheath oscillations persist with antisymmetricst@oidal phasing, despite the parallel
anti-symmetry of the radiated field map. They cofitclly justify current attempts at
reducing the RF fields induced near antenna boxesttenuate sheath oscillations in

their vicinity.
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1. CONTEXT AND MOTIVATIONS

In magnetic fusion devices, non-linear wave-plagntaractions in the Scrape-Off
Layer (SOL) often set operational limits for Radicequency (RF) heating systemg
impurity production or excessive heat logsterdaemel1993Peripheral lon Cyclotron (IC)
power losses are generally attributed to RF shesttification. How this non-linear process
depends on the geometry and electrical settingheflC wave launchers remains largely
unknown, despite crucial technological implications low-frequency small capacitive
plasma discharges, sheath rectification has beeoessfully modelled in analogy with a
double Langmuir probe driven by an oscillating agk /” [Chabert2011] In the absence of
more elaborate theory in realistic tokamak geometrgr large scale lengths, this simple
formalism was also widely applied near IC antennegighout strong justification (e.g. in
[Perkins1989). Along this line of thought, the RF field paralte the confinement magnetic
field By, integrated along isolated open magnetic fielddiii=|/E,.dl|, has often been used as
a quantitative indicator of local RF sheath intgn&n the vicinity of IC antennas, e.g. in
[D’lppolito1998], [Colas2005] [Mendes2010], [Garrett2012], [Milanesio2013], [Qui3],
[Campergue2014] In this exercise one often usds, fields from full-wave linear
electromagnetic simulations where the plasma idiiact contact with metallic walls (i.e.
without sheathg)Milanesio2009]Jacquot2015]

In tokamak experiments, qualitative correlation wasiced between the evolution of
V=||E;.dl] and that of heat load intensit§olas2009], [Campergue201di plasma radiation
[Qin2013] [Colas2009]Yet recent tokamak measurements challenge theamte of” as an
indicator of RF sheath intensity. For example time lintegralis expected to vanish in
presence of a RF field map anti-symmetric alongodn@llel direction. This is nearly the case
with anti-symmetric toroidal phasing of the IC pdial strap arrays. Although the wave-
plasma peripheral interaction is experimentally kegavith two straps phased {f) than with
[0,0] phasing[Colas2009] [Bobkov2015] it is not suppressed. Similar experimental rasult
were obtained with more strafiserche2009], [Jacquet2011], [Jacquet2013], [Wuii@13]
The magnetic field pitch with respect to the toabidirection is often invoked to interpret the
persistence of RF sheaths, in particular near aatéox corners, where tilted magnetic field
lines do not pass in front of all the stra@®las2005] However on ASDEX-Upgrade, closing
the box corners with metallic triangles did not prgss the local impurity production
[Bobkov2010] To mitigate the effect of magnetic field pitch fiald-aligned antenna was
designed for ALCATOR C-mod. In comparison with aofdally-aligned antenna, it was
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predicted to reducd’] on open flux tubes with large toroidal extensioneither sides of the
IC wave launcher (“long field lines)Garrett2012] The expected reduction was significant
with [0000] phasing of the 4-strap array. Experitaéwomparisons on ALCATOR C-mod
revealed a reduced Molybdenum contamination wheimgushe field-aligned antenna
[Wukitch2013] But the plasma potential measured on magnetid fiees connected to the
antenna hardly varied, and the wave-SOL interacias not suppressed with [0000] strap
phasing.

At CEA, a prototype Faraday Screen (FS) was dedigmeeducel]| over “long field
lines”, by interrupting all parallel RF current paton its front facéMendes201Q] When
compared to an antenna equipped with standard H®@Supra (TS), the new FS exhibited
similar heat load spatial distribution, but the s\wwad RF wave-SOL interaction was more
intense and more extended radidiBplas2013] In a series of TS experiments, the left-right
ratio of strap voltage amplitudes was varied byedéint means. Over this scan, the antenna
side limiter near the strap with higher voltage tedaup, while the remote limiter cooled
down. A similar toroidal dissymetrization on ASDBEXpgrade produced opposite variations
of shunt RF current amplitudes measured at two sipp@antenna limiterfBBobkov2015] In
this experiment with [@] phasing, in order to minimize the collected RKrent, the RF
voltage imposed on the remote strap was approxiynatece higher than the voltage on the
strap near the side limiter. These trends can ydvdl explained using a single physical
parameter simultaneously relevant at both extresitif the same open magnetic field lifie,
or any other one. Besides, in the expressioH, @l the points along the integration path play
the same role. The experimental observations ratiggest that the toroidal distance between
radiating elements and the observed walls might aleole in the RF-sheath excitation. From
this paradigm, an alternative heuristic proceduras wroposed to mitigate RF-sheath
generation on new ASDEX-Upgrade antennas, by maingi the local RF electric field
amplitudes near the antenna limiters, still evadain the absence of RF sheaths
[Bobkov2015] This alternative procedure also deserves juatifia from first principles.

The “double probe” analogy implicitly assumes teach open magnetic field line
behaves as electrically isolated from its neighb®lss is questionable in highly conductive
plasmas, although the conductivity is far largengiB, than transverse to it. The exchange of
currents between neighboring flux tubes likely dgaes the sheaths at the two extremities of
the same open field line, as attest early atteraptsnproving the “double-probe” models
[Rozhansky1998], [NGadjeu2011], [Faudot2013], [1ex¢td011] The self-consistent spatio-

temporal description of RF electric fields and Rifrents, i.e. electrodynamics, has been long
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developed in the context of IC antennas radiatmghagnetized plasmas, but in the absence
of sheathgdMilanesio2009], [Jacquot2015], [Lu2016dlhe RF plasma conductivity is then
incorporated in a time-dispersive dielectric teng&tix1992] Unlike capacitive RF
discharges, tokamak field maps feature spatialhoinogeneous RF electric fields in the
guasi-neutral plasma surrounding the wave launchigslas2005], [Mendes2010],
[Bobkov2010], [Garret2012] The distances between radiating elements andrism
points, parallel and transverseBg then arise naturallyia the propagation of RF waves.

In magnetic Fusion devices, steady-state (DC) otsrparallel and transverse By
have also been reported in various SOL self-biaskperiments by sheath rectification near
active IC antenngd/anNieuwenhovel992], [Gunn2008], [Bobkov201®]ith a non-linear I-

V characteristic, sheaths couple RF and DC fieldls.the one hand sheaths behave for RF
waves as dielectric layers between the main plaamd the conducting walls, whose
thickness depends on the DC sheath voltage. Owttie¥ hand, rectification of oscillating
sheath voltages produces a self-biasing of the DC flasma by RF waves. Coupling RF
wave propagation and DC plasma biaswig non-linear RF and DC sheath boundary
conditions, within a minimal model closer to thesfiprinciples, motivated the development
of the Self-Consistent Sheath and Waves for lonldywmn Heating (SSWICH) code
[Colas2012], [Jacquot2014Fimilar models were developed [ikohno2012], [Jenkins2015]
but presently they do not allow the circulationd® currents in the SOL. Besides, Kohno's
RfSOL model cannot presently handle realistic amsn

Realistic SSWICH simulations of the Tore Supra anéeenvironment, limited to the
Slow Wave (SW), already reproduced qualitatively kft-right asymmetric heat loads and
other experimental observatiofkacquot2014]Similar efforts are underway to interpret the
ASDEX-Upgrade measurementstivska2015] [Jacquot2015]n SSWICH-SW simulations
of the ITER antenna, parallel proximity effects eedready evidenced numerically, but not
interpreted[Colas2014] Using the SSWICH-SW formalism, within restrictiassumptions
on simulation domain shape, radial profiles, waweplitude and polarization, this paper
evidences and quantifies such asymmetries, exptawwhy they appear. Calculus is easier in
a “wide sheath” regime, for which the excitationsbieath RF oscillations becomes a linear
problem. Within this asymptotic limit, valid for tense DC biasing, the amplitude of the
sheath oscillating voltages can be quantified asemhtedintegral of E,. This offers an
alternative toV for assessing RF-sheath excitation, with strorigeoretical justification. In
the integral, proximity effects arise from the splatdependence of the weight function (a

Green’s function for the linear problem). The SWamescence between its emission point
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and the sheath spatial location appears to straaffgygt this spatial dependence. After briefly
recalling the SSWICH-SW formalism, the paper iniggges the Green’s functions in two and
three dimensions for a parallelepipedic simulatimmain filled with homogeneous plasma
and Bp normal to the lateral walls. The geometrical prtips of the Green’s functions are
quantified using characteristic scale-lengths @& pnoblem. In light of this new model we
finally re-interpret the experimental observatisasnmarized above. Concrete implications of

the results are discussed, as well as some lignistf the proposed model.

2. COUPLING SLOW WAVE PROPAGATION AND DC PLASMA BIASIN G BY
RADIO-FREQUENCY (RF) SHEATHS

2.1 Outline of SSWICH-SW asymptotic model

Our minimal model of coupled RF wave propagatiord ddC plasma biasing,
SSWICH-SW, was detailed in referencéSolas2012], [Jacquot2014bhnd is briefly
summarized here. The simulation domain, sketchedrigore 1,features a collection of
straight open magnetic flux tubes in a slab idedilin of a tokamak SOL plasma. Two
versions of the geometry will be used: a three dsi@al (3D) model with boundaries
parallel to the poloidal directiory) as well as a 2D cut into the above 3D model glthre
radial direction X) and parallel to the confinement magnetic fi@g (direction z). Both
simulation domains are filled with cold magnetizgdsma homogeneous along directign
with possibly radial variation. Inner and outer bdaries of the domain are normalavhile
material boundaries of the fusion device are eitbemallel or normal tdy. This allows
versatile geometries with radial profiles of thaggha parameters and private SOLs, sketched
as gray levels, as well as protruding material dbjee.g. IC antenna side limiters (see

[Jacquot2014)] intercepting the magnetic field lines and depeig sheaths.

FIGURE 1: 2D (radial/parallel) cut into
SSWICH general 3D simulation domain (not to

Main plasma, radiating BCs

R ' Sy scale). Main equations and notations used in the
S| A* =
BlE l ; m ITwall £703 paper. The gray levels are indicative of the local
“Is Aperture E =E g , ,

1 P @p) plasma density. Light gray rectangles on

boundaries normal 18, feature the presence of
sheaths, treated as boundary conditions in our

formalism.
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In this domain, the simulation process couplesepsself-consistently.

Step 1: Slow Wave propagation The physical system is excited by a 2D (toroidal,
poloidal) map of the complex parallel RF electield E;ayy,2), radiated by an IC antenna
and prescribed at an aperture in the outer radahttary of the simulation domain. The input
RF field map presently needs to be compuaegkriori, generally without sheaths, by an
external antenna code. It carries the informatibaua antenna geometry and its electrical
settings. From the aperture, a time-harmonic cdlwvSmnagneto-sonic Wave (SW) with

pulsationay propagates across the whole simulation domainrdicgpto equationStix1992]
eDE, +&,0,E, +kig,E.E, =0 (1)

With Ay.=0,,°. the parallel Laplace operatdg=ay/c the vacuum wavenumber, and
(&1,&0) the diagonal elements of the local cold plasnetedtric tensofStix1992]

In 3D Ap.=04’.+ dyy°., While in 2D An.=0,’.-k/, wherek, is a wavevector in the
ignorable (poloidal) directioy. These transverse derivatives couple adjacent etiagineld
lines, unlike the simplest “double probe” modelguation (1)is subject to radiating
conditions at the inner radial boundary, metallimditionsE, = 0 on material boundaries
parallel toBy, and RF sheath boundary conditions (RF SBCs)eap#rallel boundaries (see
Figure 1. RF SBCs, first proposed in referernbelppolito2006], will be further discussed.

Step 2: RF oscillations of the sheath voltag&Vhen reaching the extremities of the
open magnetic field lines, the SW fieleig generate oscillationgrr of the sheath voltage at
the RF pulsatiorw. Vg is generally a complex quantity incorporating ataple and phase
information. The definitionEg=+0Vrr at the sheath/plasma interface, combined with the
relation [J.(eE)=0 valid all over the plasma, usingtgEg=0 for the SW, yield a diffusion
equation for the sheath oscillating voltayfes along the boundaries normalBg, including a
source term due to the SW@olas2012]

EqDVee ( XY Zyai ) =%¢,0,E, ( XY Zyai )
Vee (X V.2, ) = Oat boundaryextremities

@)

Since the quantitygr is only meaningful at sheaths, equat{@p applies only at the
domain boundaries normal By (seefigure (1)).

Step 3: Redctification of the sheath oscillations.Due to the non-linear I-V
characteristics of the sheattihe RF oscillations of the sheath voltage are fiedtiinto
enhanced DC biasing of the SOL plasma. Several 2€irfg models exist in the literature.

These will not be detailed here, but the DC plapmizntialVpc is an increasing function of
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the RF voltage amplitude¥gH. The DC voltage drop across the sheaths affbeis width
via the Child Langmuir law, and consequently their &¥nittance and the RF SBCs applied
for E, [D’lppolito2006]. Therefore all steps defined above generally rteee iterated till
convergence is reachgthcquot2014]However for sheaths wider than a characteristioe
the RF SBCs were found nearly independent of tleatbhwidthdColas2012] [Kohno2012]
For Bp normal to the wall the asymptotic RF SBCs simpiifto E;=0. In realistic Tore Supra
simulations with self-consistent sheath widths, tiear RF fields were intense enough to

approach this “wide sheath” asymptotic regidecquot2014]
2.2 Green’s function description of RF-sheath exaition in the “wide sheath” regime

If sheaths are wide, or alternatively if their vindtare prescribed in a non-self-
consistent wayMyra2010] steps 1-3 are successive rather than coupleec@asistently.
Besides, while step 3 is intrinsically non-lineaguations (1) and (@re linear, together with
their asymptotic BCs. Ineference [Colas2012] semi-analytic solution to this 3D linear sub-
problem was proposed using sinusoidal eigenmodes mhsma-filled rectangular box, as
well as an iterative procedure for solving the ykdbupled non-linear problem.
Antisymmetric eigenmodes were already shown totexsheath oscillations, despite;.dl
being null in the quasi-neutral plasma. In mordisga 2D geometry, the Finite Element
Method was applied imeference [Jacquot2014Here an alternative method is followed.
Whatever the simulation domain, the superpositiomcpple indeed allows expressing
formally Vre(r) evaluated at any sheath boundary poinas the linear combination of

elementary contributions by every emitting poinpasitionrg in the input RF field map.

Vk (r ) = G(r ’rO)E//ap(rO)drO 3)

J- aperture

Relation (3)formally looks like the integralV’=|E;.dl used in the “double probe”
model, with major differences however. N}(r) relates to one sheath, wherdasvas
applied between two electrodes. Depending on thallpasymmetry of the input RF field
map, the two extremities of the same open field tan now oscillate differently. 2°) Rather
than along each open field line, integration is rmwformed over the aperture, either in 1D
or 2D depending on the considered geometry. 3°)efglating factorG(r,ro) is applied to
Eiadro), depending on the parallel and transverse dis&from the field emission poing to

the observation pointat the sheath walls.
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G(r,ro) is the solution obquations (1) and (2yith elementary excitatiok;ap(r)=4r-
ro), i.e. a Green’s function of the linear problenthMdne point source switched on in the
input field map.G(r,rg) only carries information on the geometry of thedation domain
and on the SOL plasma parameters, while the ingld fmap Ejaro) accounts for the
antenna propertie¥gHr) combines the two characteristics. Since the aiang sourcelr-
rp) can always be decomposed into a series of sidalsspatial components, a formal Fourier
correspondence exists between the Green’s funepproach and the spectral method in
[Colas2012] While the formalism imelation(3) applies for complex geometries, in presence
of radial density gradients and prescribed sheadlthe, in the most general case the Green’s
functions can only be obtained numerically. Thegslarity in the RF electric field map
related to the Dirac distribution makes this nuweritask challenging. Consequently the
Green’s function formalism is generally less e#idi than alternative methods to calculate
oscillating voltages, unless the input field magl@se to a Dirac distribution. Its main merit
is to characterize explicitly the relation @&e(r) to the spatial structure of the SW field. In
order to get insight into these geometrical prapsrive treat below simple cases that are

tractable semi-analytically.

3. PROXIMITY EFFECTS ON THE EXCITATION OF SHEATH RF
VOLTAGES BY EVANESCENT SLOW WAVES IN 2D

To ease semi-analytical calculations, we restiist the formalism to a 2-dimensional
(2D) rectangular domain of dimensions,,(Lo) in the (parallel, radial) directions, filled with
cold magnetized plasma homogeneous in all direstitm the ignorable directiop, spatial
oscillations as expKjy) are assumed for RF quantities. The geometrynmsarized infigure
2. The simulation domain is representative of thegbe SOL in front of an ICRF wave
launcher, withLy the radial protrusion of (simplified !) antennalesilimiters andL, the
parallel distance between their internal fadgsis prescribed at antenna aperture pler@
Radiating boundary conditions fdE, are enforced at the inner boundaxylLp and
asymptotic RF sheath BCs at parallel extremitied /2.

Under these conditions relati¢®) becomes

Ly /2

VRF(X’ z=%L, /2) :j E//ap(ZO)GZD (X’ ky"_"zo)dzo (4)

)
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FIGURE 2: Generic 2D simulation domain (not

Main SOL, radiating BCs

2 & Private SOL plasma(s,6) B, O to scale). Main equations and notations used in

(0: If — m
g("é &M E+6AE ke £.E/~0 o § parts 3 and 4x=0 at aperture. Light gray
<[l <
77 B 7 .
o dzz) A Metallic wall =0 |5 rectangles on boundaries normaBipfeature

<4 & e z ’

[y D LUNEYYd

FY— ) =027E @) the presence of sheath boundary conditions.
Green’s functiorG,p(X,2) is non-dimensional and can be obtained fexmationg1)
and (2) at the left boundary with excitatioB,(x=0,2)=E)aj(2)=Az-20) (seeFigure 3. The
sheath properties at the right boundary can be aetlby changing appropriate signs(4n.
Vre from relation (4) have the same magnitude at the two extremitieth@fsame open

magnetic field line only if the input field mapsgmmetric or anti-symmetric alorigp.
3.1 Characteristic scale-lengths

Introducing characteristic squared lengths
12 =[kz-k2e,[" ; 2=|e,(k2re, K2 = 26, 1 (5)

equation(1) can be recast into a standard form in the normélgpace coordinates
X=x/|Ly andZ=2Z/|L,|

Sxaix E,+s0 iz E,-ssE, =0 (6)

Wheres, (resp.s,) are the signs df,® (resp.L,?). Four cases need to be distinguished,
corresponding to the four combinations of signddth signs are the sameguation(6) is
elliptic and describes propagative (negative sigms)evanescent waves (positive signs)
qualitatively similar to those in ordinary dieldactrmaterials (i.e. the anisotropy of the
magnetized plasma is a matter of length stretchiffgsigns are oppositequation (6)
becomes hyperbolic and describes propagating waviéls resonant cone properties
comparable to Lower Hybrid waves in tokam@k#x1992] In practice s,<0 corresponds to
unrealistically low densities for IC waves in th@ISof tokamaks, for which sheaths have no
deleterious effects. F@>0, s, is the sign ok and could possibly change over the SQk0
prevails in a tenuous plasma that might exist inG@@antenna box. Numerical simulations in
[Lu2016a]suggest that the electric field there exhibits Ibswale features highly sensitive to
parametric variations, so that geometrical propsrtafG,p are likely equally sensitives,>0
corresponds to typical plasma parameters measardteiSOL surrounding IC antennas on
Tore SuprdJacquot2014hnd ASDEX-Upgrad¢Ktivska2015] Below we study specifically
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this latter case and trebf andL, as real positive quantities;=0 corresponds to the Lower
Hybrid resonance and is associated with very largalues Equation (1)implicitly assumes
a scale separation between the SW and the Fast.\@&&e to the Lower Hybrid resonance
this separation needs to be revisited to allow ssipte mode conversion between the two
wave polarizations. This is however outside thepeaaf the present paper.

Lateral boundaries at finite distance from the erois points also introduck, as a

characteristic length of the wave propagation mddetitation finally deserves normalization
Eref@=dz-20)=L; "' AZ-Z0) (7)

A similar dimensional analysis can be madedguation(2) at the left boundary, using
the normalized coordinates defined émuation(1)

aixezo - k;'—iezo = azI-zE// (8)

where from(7) LE; is non-dimensionaEquation(8) introduces the extra scale-length
k,* into the problemyia the dimension-less parametefL,’=[1-ko’g//k,’] . Besides, the
boundary conditions involvien.

In principle, all the geometrical properties@fp(x,ky,z)) can be expressed in terms of
(X, z0) and the characteristic lengths. Throughout theepéypical examples will illustrate our
calculations, with realistic geometrical, plasma &F parameters used for ASDEX-Upgrade
simulations in[Ktivska2015] Dielectric properties correspond to a standardl]Dhinority
heating scheme at frequenfgy30MHz, with local magnetic fiel8,=1.44T and L-mode SOL
densityne=8.3x1G’m™? in the antenna region. Geometry refers to ASDEX+idfg 2-strap
antennas. Simulation parameters gre 74659,5=-24.31,k,=0.63m", L,=0.66m,Lo=12mm.
For this particular cask=5.8248mm whild.,=0.3228m fork,=0. For this realistic example,
the parallel evanescence length is thus half thiallphextension of the antenna, while the

transverse evanescence length is a small fractitregoloidal height for the antenna.
3.22D electric field maps

The solution toequation (6)can be built from well-known results for the 2D
Helmholtz equation in isotropic cylindrical geometrsing modified Bessel functions of the
second kind K( integer[Angot1972). The method of imagg#1F1953] is then applied to
account for the parallel boundary conditions aitdimistance from the emitting point. Using

the normalized coordinateX ) the field map writes
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+00

En(x22)= 12 (- Fp(X.2-2) © Z,=|nL, +(1'z)iL, ©)

n=-oo

Where

F2D(X,Z):LK1(R) . RP=X2+2Z2 (10)
R
Here argumenR is the (normalized) distance to the emitting seuf€unctionF,p,
plotted in 2D onFigure 3 describes the SW evanescence from a boundary pourte in
(X,2)=(0,0), in absence of parallel boundaries. Foixadf X and Z>>X>1, F,, decays as
~exp(Z) along the parallel directioffr,p is null in X=0, except irZ=0 where the source term

creates a singularity.

_logi(Fop) : L0 FIGURE 3. 2D plot ofF,pin logarithmic scale
. \ 05 versus normalized coordinate$).

1-1.5

Figures 4map E,p versus X,2) for the ASDEX-Upgrade simulation parameters in
[Ktivska2015]and various, showing how the parallel position of the emittipgint affects
the spatial shape of the RF field maps. More spatly, the RF sheath voltage excitation in
(2) depends on the parallel derivatog(x,z=+L,/2,7;), with

azEzD( X Z Zo): L;Z Z(_l)nazl:zo(x'z _Zn)
n==e (11)

XZ
aZFZD(X’Z) Ay KZ(R)

2

Figures 4show that this gradient is generally differenttla¢ two extremities of the
same open magnetic field line, hence also the BHeB&tvoltages. Fronf¥d) one can actually
anticipate thaVgr amplitudes vary in opposite ways as the paralsitpn z; of the emitting
point is moved, qualitatively consistent with expeental observations ifColas2013]and
[Bobkov2015] We now focus on the left boundary.
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a) zlml] b) 2[m]

20.30 —0.20 —0.10 0.00 0.0 020 030 20.30 —0.20 —0.10 0.00 0.0 020 0.30

C) 2lm] d) 2[m]

FIGURE 4. 2D (parallel/radial) maps &;p(X,2,%) in logarithmic scale, for ASDEX-Upgrade
simulation parameters [iKtivska2015and (a)z,=-30cm;(b) z=-20cm; (c)z=-10cm; (d)z=0cm.
x=0 corresponds to the antenna aperture xandreases towards main plasre=0 is the mid-plane

between antenna side limiterszat0.33m

Zo=+L,/2 corresponds to a source point near the righallghrboundary of the
simulation domain. Whem=+L,/2 andz=-L /2, Z,;=Zp+1, for all p integer insummation(9)

whence
0,E,5(x,-L, /2+L,/2)=0 (12)

When the source point gets very close to the le&ath wall it is convenient to
introducedZo=(zo+L,/2)/L,, the normalized parallel distance from the soymat z=z, to the
left boundaryz=-L,/2 (seefigure 2. For sufficiently smalldZ,, n=0 andn=-1 become the

dominant terms in the summati¢®)

_ 2XJIZ
azEzo(Xl z=-L,12 Zo) = ZLZZaZFZD(X ) aZo) = TR.TLZO Kz(Ro) (13)

Z
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Formula(13) shows that,E.p(x,z=-L,/2,20) tends to 0, except perhapsx#x0, where
Ry vanishes. In the limiR<<1, Ky(R)~2/R? [Angot1972]and

4XZ

et

azEZD(X’Z:_L// /2’20):

To shed light into the limit behavi@Z,—0, X—0 let us integrate with respectXo

207

[f0.En(x2=-L, /2,zo)dx=m (15)

Integrating once again yields

z

IX 2.20220 L dX' = 22 arcta S D‘EPEP_,izwheteverX (16)
o t2|X'2+az2] 7t2 X, L

Whence in the limitzg—0, x—0

0.E,0(x2=-L,122)= 50,5(x)=2520,5(4 7)
z "

The limit 8Zp>>1, Z;>>Zyis accessible iL,>>L,. Z;>>Z, implies thatn=0 andn=-1 are
still the dominant terms in the summati{®), so that formula(15) applies. In the limit of

large arguments £R)~[172R]*%exp(R) [Angot1972] so that

0,E(xz=-L,/22)= —\/% LilX z<fZaOZ§J5/2 exp{— (X2 + azg)“] (18)

If &Zp>>X>1, thendEop(X,z=-L,/2,2)) decreases as ~expfy/L,) as the source point
moves away from the sheath wall. The characteristigthL, does not appear explicitly in
expression18). Indeed this length is related to the boundarydd@ns. Their effect on the
Green'’s function is only significant if the soungeint z, is located within a distandg from
the right hand side parallel boundary, which isreak zone in the limiL,>>L,. The distance

to the right boundary is reflected in the requirat®>>2Z,.
3.3 2D Green’s function for the sheath oscillatingoltage.

Insertingexpression(9) into equation(2), one deduce&,p(X,ky,zg) as a convolution of

0,E(x,-L//2,20) with a Green'’s function for the diffusion equati©Colas2012]
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sin sinh
Gzo(x’ ky’zo) S//J. 0 Ezo X' -L, 12, Zo) h(:yxmm) ( ( XmaX))dX

y smh(kyLD)

(19)
WhereXqmir=min(x,X') and Xma=maxi,Xx).
For the ASDEX-Upgrade parameteFsgures 5plot Gop versusx for two values ok,
and various parallel distancég between the emission point and the left wall. Bbandary

conditions inequation(2) imposeGZD(O, y,20) OandGZD(LD, g zo) 0. Between these two

radial extremitiesG,p at fixed zy exhibits a radial maximum, whose position shitidially
inwards with increasingz,.

Figures 5show that for fixedx G,p decreases with increasing,. This is a first
evidence of parallel proximity effects in realistiokamak conditions. SW evanescence
ensures that this result is quite general: ind&Beb(x,z=-L,/2,2)) is a decreasing function of
Z. From (19) one deduces that this is also the caseGgy. When the source point moves

towards the right waflormula(13) yields

Gyo (X K, +L, /12)=0 (20)

) y’

The lower curves oRigure 5reflect this trend. When the source point getselio the

left wall the limit behavior is deduced froformula (17)

Gy (X’ Ky —Ly /2): ZILj 0y 8(X') Sinh(kyxmm) Sinh(ky(LD _ XmaX))dX'

K, sinhlk, L)
smh(k x)) oL sinhlk, (L - x))
- smh(k L ) -[0 cost(kyx)cb( smh(kyLD)
(21)

Expression (21¢orresponds to the dashed linedigares 5
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Scan 6z, k, =0
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Scan 6z, k, =200m™!

1mm
lem
2em
4em
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a)

FIGURE 5. Green’s functiorG,p(x,k,z) versusradial coordinate for increasing parallel distance

ozy=(L,I2+2,) from wave emission poirztz, to left parallel boundarg=-L,/2. x is 0 at aperture and

increases towards leading edge of antenna limiterla=12mm. Simulation with ASDEX-Upgrade

parameters used [Kiivska2015Jand (a)k,=0, (b) ky=200m1. Dashed lines: asymptotxpression
(21).

From the two limitexpressions (20) and (23ye deduce that<@,p(x,zp)<sinhky(L-
xX))/sinhL,)<1: Gop is a real positive attenuation factor.

The wayG;p decreases witldzy depends on the input parameters. To quantify these
parallel proximity effects, a first indicator is ethe-fold parallel decay lengthi,(x) of
Gop(x.ky,20) at z5=0. In a series of numerical simulationgx) was fitted numerically for 20
values ofx from O toLp. Figure 6plots A,(x) averaged ovex versus L, for various parametric
scans, exhibiting two regimes. On the lawbranch of the curves, #Z;>>X while Z;>Z,,
equation (18)shows thatd,E(x,z=-L,/2,25) decreases as ~expfy/L,) for all x and so does
Gop(X.ky,20). A saturation ofd, is however observed as gets of the order df,. Over the
scans ofg;, the saturation level on this opposite branclois@l proportional td,. Indeed if
L/<<L, &Zy<<1 for all dzo<L,, but all terms mattea priori in summation(9). However all the
relevant contributions to this summation can bednzed.Expression (20}hen ensures that

Gap(X,ky,20) decreases linearly as (/L)

GZD(X5 K,, 20): GzD(X1 k,.z,=-L, /2{1_%J

I‘//
_sinhlk, (L, - x)) &
S

(22)

J ; I—// << Lz
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Expression(22) shows that in the limit,<<L, the characteristic length plays no role

in the SSWICH-SW problem. Froriigure 6 and the above estimates, one concludes that

FIGURE 6. Parallel e-fold decay leng#y(x) of

10° P Gabp(X,ky,20) atz=0 fitted numerically and
_;4/" '; L PN averaged over 20 valuesxfversud, from eq.
% 10" B,'-’"f o o ¢, L,,=2m (5), for 6 scans of the main parameters in the
N * ! _ . . .
o «~ ¥ iy Sy =S asymptotic model, each identified by a marker
= .‘.{" "k, L,=2m . .
V107 @ A & ¢ L,=2m type. Error bars: dispersion a§(x) overx.
)/.1.‘!" * x ¢,,L,=05m
> »> L,,L,,=2m
107 :
10° 10 10 10° 10*
L,[m]

Another quantitative indicator of parallel proxigngffects, the parallel gradient length

of Gyp at dzp=0, is plotted orfigure 7. Below we seek an upper bound on this gradiemjtien
The parallel gradient db,p is expressed as

’ inh in - k, Ly - ax '
aZoGzD(X’ky’Zo):%IOL aizoEZD(X',—L,,/Z,ZO)SIn (Ii(yxm )Smhs(,ié}g(lf |_X)m ))dx
o y ,Lo
(23)

Whered?,,oE(x,-L,/2,2) is built from
X 2
azzFZD(X’Z):_ﬁ[RKz(R)_Z Ks(R)] (24)

From (23) and the above analysis one deduces that forl,, 3,0G.p scales a,”
when all other parameters are kept constant, vitile>>L,,

9, Gy (XK, 2)= ~Gpo (XK, 2= -L, 12)/L, ; L,<<L, (25)

From figure 5one also anticipates very steep gradients gsts very small. One can
show that an upper bound fGgp gradient length is given by

Lzmax = mln|:% Lz! Lz / I (%, knyjs L//:|

L sinh(k, LX) (20)
Ly/Ly X

{L—D,knyj:zjo 02, F,. (X,Z :o)ﬁdx

X y =X
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Figure 7illustrates numerically this upper bound over fauders of magnitude, for

various scans of the main parameters in the SSVASHhptotic model.

FIGURE 7. Parallel gradient length of
Goo(x,ky,20) fitted numerically abz,=0, versus

=0)[m]
S

upper bound_ . from eq.(26). For each

simulation, 19 points are plotted, fovalues

located every 5% df;. Marker types indicate

—Gyp/(dGyp/dzy) (92
(=)
o
w

P ,L,,=2m ; ; i i
10 ‘ " simulation series with one parameter scanned.
€,, L;,=0.5m
-5
10 L,,L,,=2m
107 10° 107 10" 10°

L:m tu‘[”n]

4. EXTENSION TO 3 DIMENSIONS

For more realistic description of the RF-sheathitakon, the Green’s function
formalism can be extended to 3D parallelepipeditutation domains. Throughout this part
the parallel and radial dimensiobg andL are the same as in 2D, while the poloidal extent
of the domain is infinite. The transverse Laplaperator is redefined ;. =dx.+dy,", While
both E, and Vgr are assumed to vanish fgr>+co. Equation(3) now consists of a surface

integral over a 2D input RF field m&pay(y,2)

L, /2

+00 /
VRF(X’ Y.z=%L, /2) - .L» dyo_[ E//ap(yO’ Zo)Gso (X’ y- YOFT'Zo)dZo (27)

-1, /2

Here the 3D Green’s functioBsp(X,y,20) has the dimension of a wavevector, and is
obtained for the elementary excitatiBm(y,2)=0(y)d(z-z0). The 3D model exhibits the same
characteristic scale-lengths as the 2D model, éxibet k=0 is implicitly assumed, while
coordinatey replaces the characteristic Ieng;;ﬁ.

4.1 Green'’s function in 3D

The 3D RF field patterisp(X,y,z,2) is obtained using the same method as in 2D. It is
most easily expressed using the normalized quesitix/Ly, Y=y/Lx andZ=2/L,

+00

B ¥22)= L Y (1 Fo(X.Y.2-2,) ¢ Z,=|, +(-1rz)re,

n=-oo

(28)

with
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F3D(X,Y,Z):%T@exp(—R) . R=VX2+Y2+Z? (29)

Figure 8mapsF3p in Z=0 versus(X,Y). F3p is null in X=0, except inY=2=0 where it

exhibits a singularity. Decay as ex)is found for larger.

—r———t20(Fap) . FIGURE 8. 2D (radial, poloidal) map of
Nl § Fao(X,Y,Z20) fromformula(29) in logarithmic
) 0 P 1 K., scale, versus normalized transverse coordinates
e (X, V).

0-E3p(X,y,2,20) is computed using

XZ[3+3R+RE) {-R)

aZF3D(X’Y’Z):_ 2R

(30)
whence

Gyp (%, ¥ zo)=% [T 0.E0(X.y.2=-L, 12 2)H(x X, y- ¥ ) ey
O

(31)
With the 2D solution oéquation (2)given by[Durand1966]p.265
sin(7x/ L )sin(7% / L.)
H(x x,y)=argt - v 32
(xx,y)=arg an{cosr(ry/LD)—cos(m/LD)cos(m'/LD) (32)

Figures 9map Gsp(X,y,z0) versus (x,y) as obtained numerically for the ASDEX-
Upgrade simulation parameters and three valuedofAt given §,z)) Gsp is a decreasing
function of the poloidal distancg| from wave emission point to observation pointeOthis
scanVgr at a given altitude involves tit,, values within less than 1.5cm from this altitude.
Figures 9also illustrate howGsp decreases in magnitude, expands in the poloidattion
while its radial maximum moves away from the apertwith increasing parallel distance

from wave-emitting point to sheath wall. Let us nguantify these properties.
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Gap [m 1] G;;D[mill

16 200.0 16
42.0
14 175.0 14
36.0
12 150.0 12
=10 125.0 10 00
£ 5
E s 100.0 £ 3 24.0
® 6 75.0 = s
4 50.0 12.0
2 25.0 6.0
00 2 1 6 8 10 12 00 0 2 4 6 8 10 12 00
a) z [mm] b) z [mm]
Gyp[m'] FIGURE 9. 3D Green’s functioGsp(X,Y,Z)
16 6.4 .
" ) versustransverse coordinatesy), as evaluated
12 48 numerically using ASDEX-Upgrade simulation
10 4.0

parameters ifK fivskd2015]Jand parallel
distances (adzo=(L,/2+25)=2.5cm; (b)dz;=10cm

y [mm]

L6 and (c)dz,=33cm. Contour lines are located every

5% of the maximum value over the map.

4.2 Evolution with dz

SW evanescence ensures thatp, decreases withdzy at fixed §y). Since
ES(y):%TJ‘_mexp(iky y)dlg/ the 2D and 3D Green’s functions are Fourier trams$oof each

other
Gy (X, %1% —_I Gzo(xik Zo)eXp(|k Y)
= 7_7__[0 ) Gy (X’ Ky, ZO)COS(ky Y)dky

(33)

From our 2D analysis ipart Ill, one deduces th&sp is null for z=+L,/2. In the

opposite limitz;—-L,/2, one gets fromelation(21) [Gradshteyn1980p.504

v 1 peesinhlk, (L, - X))
Gap (%, ¥,L, 12)= 2nj—°° smh(k L) exp(l W (34)
1 sin(7x/L,,)

“oL cosHry /L, )-codrx/L,))

And if L>>L; while Y?<<1, one anticipates a linear decay with paralsiathcedz,.
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)~ 1-d, /L, sin(7x/L,.) (35)
2L, cosHmy/L,)-cod7/L,)

Gsp (X’ Y 4,

Figure 10illustrates the limit expression @sp(Xy,-L//2) in (34). Since the emission
point is infinitely close to the sheath waBgp exhibits a singularity inxy)=(0,0). No wave
evanescence is involved:x and L, disappear from the problem, all coordinates can be

normalized by the only remaining characteristiqgltérn_ .

. logiy(L ,Gyp) S FIGURE 10. 2D (radial, poloidal) map of
‘ I s L:Gan(Xy,-L/2) fromformula (34)in
(iz.s logarithmic scale, versus normalized coordinates
16 (¥/Lg, y/Lp).

z/L,

Poloidal integration 063p yields

[ Gux wz)dy=6y, (xk,=02) (36)

From the 2D analysis, one deduces thatdefl,>>(+y?) L, andL,/2-z>>L 2, the
poloidal integral ofGsp decays as expdgl/L,) for large dzp. The upper bound  max from

expression (26is also valid.
4.3 Poloidal decay lengths, relevance of 2D simuiahs

Surface integral27) can be seen as a weighted sum of line integrads saveral open
magnetic flux tubes instead of one in the previapproaches. It is worth estimating how
many of these open magnetic field lines do realsttar inexpressior(27). A related issue is
the validity of 2D SSWICH-SW simulations part 11l in comparison with the more accurate,
but more computationally demanding 3D simulatiamgart IV. This amounts to evaluating
the poloidal extent oB3p at fixed ,zo).

For dz,=0 formula (34) features a minimal poloidal extent@%p in the absence of SW

evanescence. The half-width at 1/e can be eval@talytically as

y 1 acos{e+ (1-¢) CO{LZH (37)

Ly, 7 0
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Expression37) is plotted onfigure 11 showing thatly<0.7_5 over the whole radial

range of the simulation domain.

0.8 ; FIGURE 11. Half poloidal width at 1/e fosp
X4 S . at dz=0, fromformula (37) versus<L.. Added

are a linearized formula fofL;<<1 and the

maximal value of the function

— full formula
- Ve-lz
acosh(2e—1)/m

0'%.() 0.2 0.4 0.6 0.8 1.0
z/L

As the wave emission point moves away from the tbheall, SW evanescence
broaden$s;p in the poloidal direction-ormula(31) presentsssp(X,y,Z0) as the convolution of
0,E3p (X',y,2=-L1/2,20) with H(x,X,y). 9;E3p scales as R° for smallR and as ~expR) for

largeR. An upper bound for its poloidal extent is therefo
&O 2 )(' 2 &O 2 )(' 2
Leax\X, 32, )=min| O.7L,. || — | +| — | ,L,[1+2,|| —| +| —

The poloidal half-width oH can be expressed explicitly as

L, (xx)= arccos?ESin(m/ Lo)sin{r / Lo) + co{zj CO{LE,H (39)

tanHH (x,x 0)/ €] . .

Ly is an increasing function ofK|. The source term fdBsp at pointx is present from
x'=0 to X=min(x+Ly, Lp) (pessimistic estimate). One can then put an uppend on the half-

poloidal with forGsp
Ay<max|[Ly(x,0), Lu(X, min(x+Ly, Lo)), Lemax(Min(x+Ly, L), dzo)]  (40)

The above estimates are assessed numericafigwe 12 In this exercise 2D (radial,
poloidal) maps ofGsp at constanty were simulated numerically over several scanshef t

main simulation parameters. From each hgpvas fitted at several radial positions. Over the
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tested parametric domainequality (40)is well verified, and the upper bound is sometimes

pessimistic by a factor 2 or 3.

101 - FIGURE 12. Half poloidal widthAy at 1/e,
: : GLL A‘{/. fitted numerically from simulated 2D
A4 ‘:&" (radial,poloidal) maps fdBsp. For each
Elo-z : : fi” - * simulationAy was fitted at 9 radial positions
5 ,“:g” ranging fromx/L;=0.1 to 0.9 and plotted versus
s '4 :0"“‘ maXLumaxs LEmay fromformula (40) Each series
10.130_,3 d 2 o of points refers to a scan of one simulation

maz(Lgae L imas) [M] parameter indicated in the legend.

For poloidal structures larger than miax{ax Lemay in the input field mapGsp can be

considerably simplified usin@3).
Ga (% ¥ 20) = Gy (x K, =0,2,5(y) (41)

Surface integra(27) then reduces to a weighted integral along one sifigld line,
located at the same altitude as the observatiant.goonsequently above a critical length, the
poloidal structures o¥rr reflect those o,y near the parallel extremities of the input field
map. Smaller scales below the critical length ia thput RF field map are smoothed and

contribute less t&Wrr.
5. DISCUSSION AND CONCLUSION
5.1 Practical implications

Within the asymptotic SSWICH-SW model, RF oscitbas Vgr of the sheath voltage
at any open field line extremity can be expressed sum of individual contributions by each
emitting point in the parallel RF electric field mByaYo, Z0) radiated by an IC antenna. This
offers a simple alternative to the “double probatecion 7=|/E,.dl| for assessing sheath RF
voltages closer to the first principles. For preaitiapplications with realistic input field maps,
the formalism developed here is generally lessciefit numerically than the Fourier
technique iColas2012]or the Finite Element Method {dacquot2014]It allows however
to reveal and quantify spatial proximity effectsie excitation of oscillating sheath voltages.
Indeed, for the first time to our knowledge, progab$ormula (3) consists of aweighted
integral ofEj.p Slow Wave (SW) evanescence causes point-sourdelmations (or Green’s

functions for Vrg) to decrease with increasing parallel and polodiatances from wave
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emission point to sheath walls. As a test case ipagallelepipedic box filled with
homogeneous cold magnetized plasma, 2D and 3D Grdenctions were determined
explicitly in the limit of an emission point veryose to the sheath walls, and their spatial
variations were quantified numerically as a furctod characteristic lengths in our model.

Poloidal decay lengths fMfkr involve the radial protrusiob; of antenna side limiters,
as well as the transverse SW evanescence lépgttith extra broadening due to the parallel
evanescence. In realistic situations, these pdladaay lengths are much lower than the
typical vertical extent of ICRF antennas, e.g. l&san 1.5cm for our ASDEX-Upgrade
example. This is qualitatively consistent with esipeental observations that RF-induced SOL
modifications are mainly observed on magnetic flalds passing in front of the antenna box,
while they are absent on field lines connecting vabmr below the box aperture
[Jacquot2014], [Cziegler2012], [Kutd013] If poloidal structures in the input field map are
larger than the decay length, independent 2D SS\A3@Hsimulations at each altitude fairly
approximate the full 3D models, while the 2D infRiE field map retains 3D information
about the global antenna geometry.

The parallel decay lengths fUkr involve the minimum between the connection length
L, and the parallel SW evanescence lerigthThe role ofL, was already pointed out in
[Myra2010] L, is related to the transverse coupling of adjacpein magnetic field linegia
&in equation 1.Such transverse coupling was absent in the “doptwee” model. In SW
propagation, decoupling is only obtained at thereblbonanceg=0) and leads to infinité..
Typical parallel decay lengths are always smalt@nttypical antenna parallel extensions.
Consequently, when the radiatég,, map exhibits parallel anti-symmetry, an attenuatio
factor prevents the cancellation of the relevariegral for Vgg in equation(4). Sheath
oscillationstherefore persist with anti-symmetric strap torbighasing, while the previous
formula predicts thd€,.dI=0. Besides, the sheaths at the two ends of the sparefield line
can oscillate differently, depending on the pafadigmmetry of Ejap map. Vrr at an IC
antenna side limiter appears mainly sensitivE,tg emission by active or passive conducting
elements near this limiter, as experimental obs$ems suggest in[Colas2013]
[Bobkov2015] For the realistic simulations of ASDEX-Upgrade [Kiivska2015] a
correlation was found betweérke at antenna side limiters and RF field amplitudesha
same altitude, averaged over ~10cm from the siaeteis along the parallel direction,
whereas the antenna toroidal extension was 66cis. ddirelation was independent of the

altitude, of the antenna type and of the electsediings, and mainly depended on the plasma
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parameters. Toroidal proximity effects could therefjustify current attempts at reducing the
local RF fields induced near antenna boxes to adtenthe sheath oscillations in their vicinity
[Bobkov2015] Although the proposed heuristic procedure doesfully coincide with our
Vrecancellation rule, in both cases the optimal sgttiequires more power on the remote
straps than on the close ones phasenl.[@ince one cannot cancekr everywhere on the
antenna structure, one should carefully choosespiatial locations where to optimize RF-
sheaths. Experiments ifColas2013] and [Bobkov2015] showed that with two straps,
improving the situation at one parallel side of @menna box likely degrades the situation on
the opposite side. Using a 3-strap antenna potignteanoves this constraifiBobkov2015]

In addition to the antenna geometry and its elegitsettings, th&g~cancellation rule
also involves the local plasma near the antenmasugh the dielectric constanés and &;
governing the SW evanescence. Therefore replatiagptasma by a vacuum layer thicker
thanLy in the radial direction could modify the optimadttings. This sensitivity, observed
numerically in [Colas2005] [Milanesio2013][Colas2014] [Lu2016a] [Jacquot2015k a
challenge for quantitative RF-sheath evaluationsthB.x and L, decrease with increasing
local density near the antenna, which might hetluceng the RF-sheath excitation. Although
not modelled in this paper, a high local SOL dgnalso eases Fast Wave coupling, resulting
in lower RF field amplitudes at the aperture ategivcoupled powefMilanesio2013],
[Lu2016a] Experimentally, reduced Langmuir probe floatingtgmtials were evidenced
during ICRH at high SOL density on Tore Supkaibic2011] High density operation was
also used to reduce tungsten sputtering on ASDEXrage [Bobkov2010] A major
drawback at high SOL densities is however highetigla fluxes onto the antenna side
limiters, with detrimental consequences on the Heatls [Colas2009], [Jacquet2011],
[Jacquet2013], [Colas2014]

Although the above conclusions were reached in rallpepipedic box filled with
homogeneous plasma in the “wide sheath” limit, vedielve that they persist qualitatively
with more complex geometry, density gradients andef sheath widths. Although Green’s
functions are harder to determine in these morésteasituations, they still exist in any
geometry and in presence of prescribed sheath svidticluding the self-consitent sheath
widths distribution, as long as the physics modwhains linear. Within the asymptotic
framework in [Colas2012] finite-sheath-width effects are small correctidonsthe “wide
sheaths” solution. For Tore Supra, the fully-codpsémulation results with self-consistent
sheath widths irjJacquot2014jwere found close in magnitude and spatial strectarthe
asymptotic first guess provided by the wide shegiroximation.
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5.2Physical limitations and prospects

The SSWICH-SW model predicts that the direct eticiteof sheath oscillations by the
evanescent SW is only intense in the IC antennaREdield[Jacquot2014] [Colas2014hd
loses efficiency beyond a parallel distance smahlanL, from the radiating elements. The
experiments in the introduction involved privateiitiers in this near field. However, RF-
induced SOL modifications have often been obseesgrerimentally at parallel distances far
larger thanL, [Colas2013], [Bobkov2015], [Cziegler2012], [Klepg6d3], [Kub&2013],
[Lau2013], [Ochoukov2013]To interpret these measurements, extra physiemhanisms
not discussed in the present paper need to bedsradi

In very tenuous SOLs below the lower hybrid resa@eathe SW becomes propagative
[Lu2016a] and can possibly excite RF sheaths at large phrdistances[Myra2008]
Propagative SW can be handled using the Green'stiftumformalism introduced in this
paper. However instead of decreasing monotoniweilly parallel and poloidal distances, the
Green’s functions may rather oscillate in a complay.

At higher densities, the Fast Wave (FW) becomepggative. It can excite so-called
“far-field RF-sheaths” iB is not strictly normal to the wal[®’lppolito2008] [Kohno2015]
The FW can also be incorporated into a general@estn’s function formalism in the “wide
sheaths” asymptotic limit. For that purpose thengstptic RF-sheath boundary conditions
need to be extended to account for all RF fieldapphtions[D’Ippolito2006]. In addition to
E/ap, the input RF field map should also include theiatadl poloidal electric field. Each RF
field component is expected to generate a speGfaen’s function. Evanescent FW likely
exhibit proximity effects. But each polarization Iwieature specific characteristic decay
lengths. Besides the wave equation for the FW dahaorecast into the generierm (6).
Finally FW and SW will likely be coupled upon refteon onto tilted wall§D’Ippolito2008]
[Kohno2015] Extension of the SSWICH code to full-wave RF #lecfields and shaped
sheath walls in 2D is ongoirjgu2016b]

While this paper discussed the sheath oscillatolitagesVrr, the deleterious effects in
tokamaks ultimately arise from a local DC biasifighe SOL. The sheath rectification in step
3 of SSWICH is intrinsically non-linear and cant& described with Green’s functions. A
transport of DC current likely couples one sheaithvits neighbors and the one at the
opposite extremity of the same open field line.the absence of propagating RF waves,
Jacquot’s papddacquot2014showed that DC current transport can still spre@Cabias to

remote areas from the near-field regions where $®@¢idsheath excitation is efficient. Along
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this line of thought, in order to significantly nacke the rectified DC plasma potential on a
given open field line, one should redud&g at its two extremities as well as on the
neighboring field lines. Reducinyde at only one extremity likely drives the circutati of
DC current from the high/ke sheath to the low/ks sheath, with limited effects on the DC
plasma potentiglacquot2011]

A European project, outlined ifColas2014] is ongoing to include all these extra
physical mechanisms into more realistic models amfpted RF wave propagation and DC
plasma biasing. Comparison with plasma measurem#tguot2014], [Kvska2015]proved
essential for code assessment. The test of a newag@-antenna on ASDEX upgrade
[Bobkov2015] the restart of the ITER-like antenna on JHDurodié2012] the
commissioning of new antennas on WERHillairet2015], as well as dedicated test beds
[Faudot2015] [Crombé2015kill provide new opportunities to assess the SSWidbdel
over a large diversity of antenna types and plasgenes, before it can be used to predict the

behavior of future antennas.
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FIGURE 1: 2D (radial/parallel) cut into SSWICH general 3inslation domain (not

to scale). Main equations and notations used ip#per. The gray levels are indicative of the

local plasma density. Light gray rectangles on lolauies normal t®, feature the presence of
sheaths, treated as boundary conditions in ourdtsm.
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FIGURE 2: Generic 2D simulation domain (not to scale). Maquations and
notations used iparts 3 and 4x=0 at aperture. Light gray rectangles on boundaroemal to
B, feature the presence of sheath boundary conditions
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FIGURE 3. 2D plot ofF,pin logarithmic scale versus normalized coordin¥€s).
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FIGURE 4. 2D (parallel/radial) maps d&>p(x,z,2) in logarithmic scale, for ASDEX-
Upgrade simulation parameters [idfivskd2015and (a)z=-30cm; (b) z=-20cm; (C)z=-

10cm; (d)z=0cm. x=0 corresponds to the antenna aperture,>xamtreases towards main

plasmaz=0 is the mid-plane between antenna side limitezs£0.33m
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Scan 0z, k, =0

x[mm]

FIGURE 5. Green’s functionGyp(x,ky,z0) versusradial coordinatex for increasing
parallel distancedzy=(L,/2+z) from wave emission poird=z, to left parallel boundary=-
L,/2. x is O at aperture and increases towards leading efigntenna limiter at=L-=12mm.
Simulation with  ASDEX-Upgrade parameters used[Kitivska2015] and (a) k=0, (b)
ky:200m'1. Dashed lines: asymptotxpression (21)
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FIGURE 6. Parallel e-fold decay lengthy(x) of Gap(x,ky,20) atz=0 fitted numerically
and averaged over 20 valuexpfrersud.; from eq.(5), for 6 scans of the main parameters in

the asymptotic model, each identified by a maripet Error bars: dispersion a(x) overx.
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FIGURE 7. Parallel gradient length &,p(x,ky,2) fitted numerically atz=0, versus
upper boundL,max from eq.(26). For each simulation, 19 points are plotted, Xovalues

located every 5% dfy. Marker types indicate simulation series with paeameter scanned.
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FIGURE 8. 2D (radial, poloidal) map ofFsp(X,Y,Z0) from formula (29) in
logarithmic scale, versus normalized transversedinates X, Y).
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FIGURE 9. 3D Green’s functiorGsp(x,y,Z0) versustransverse coordinatesg,y), as
evaluated numerically using ASDEX-Upgrade simulatfarameters ifiKivska2015]and
parallel distances (ajo=(L//2+2)=2.5cm; (b)dzy=10cm and (cyz=33cm. Contour lines are

located every 5% of the maximum value over the map.
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FIGURE 10. 2D (radial, poloidal) map ofiGsp(Xy,-L//2) from formula (34)in

logarithmic scale, versus normalized coordinaxs( y/Lp).
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FIGURE 11. Half poloidal width at 1/e fofG3p at dz,=0, from formula (37) versus

X/Lg. Added are a linearized formula 0t o<<1 and the maximal value of the function
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FIGURE 12. Half poloidal widthAy at 1/e, fitted numerically from simulated 2D
(radial,poloidal) maps foGsp. For each simulatioAy was fitted at 9 radial positions ranging
from x/L=0.1 to 0.9 and plotted versus miaxfax Lemay from formula (40) Each series of

points refers to a scan of one simulation parameticated in the legend.
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