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ExB mean flows in finite ion temperature plasmas

J. Madsen,1, a) J. Juul Rasmussen,1 V. Naulin,1 and A. H. Nielsen1

Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby,

Denmark

(Dated: Thursday 14th April, 2016)

The impact of ion pressure dynamics on E × B mean flows is investigated. Three

stresses in addition to the Reynolds stress are shown to modify the E × B mean

flow. These additional terms in the stress tensor all require ion pressure fluctuations.

Quasi-linear analysis indicates that these additional stresses are as important as

the standard Reynolds stress and hence must be taken into account in analysis of

E ×B mean flows.
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I. INTRODUCTION

Sheared mean flows are neccesary for the formation of transport barriers38 in magnetically

confined plasmas. Transport barriers are always accompanied by a sheared radial electric

field Er and an associated E × B mean flow38, which in combination with flows along

the magnetic field quench cross-field turbulent transport through decorrelation of turbulent

eddies3,7. Several mechanisms capable of driving mean flows have been suggested8, but it is

unclear whether the observed mean flows are due to a single motive force or whether they

are a result of an interplay between many mechanisms.

A particular mechanism for mean flow generation relies on the Reynolds stress tensor29. It

couples fluctuations and mean flows and hence renders turbulence driven mean flows possible.

In order to distinguish turbulence driven mean flows from equilibrium flows, turbulence

driven mean flows are often called zonal flows. Both types of mean flows can suppress

turbulence. In the fluid description the Reynolds stress originates from the advection non-

linearity in the fluid momentum equation. By separating the velocity field into mean and

fluctuating parts: u = 〈u〉 + ũ and averaging the momentum equation one gets for an

incompressible flow ∇ · u = 0:

∂〈u〉
∂t

+∇ · 〈ũũ〉+∇ · (〈u〉〈u〉) = L, (1)

where L represents forces, sinks, and sources. The average operation 〈·〉 is unspecified here

but is usually either a time-average, a flux surface average, or both. The Reynolds stress

tensor 〈ũũ〉 can inhibit as well as enhance mean flows, but in strongly magnetized plasmas

the approximate two-dimensional character of turbulence implies that energy is preferably

transfered from smaller to larger scales10,13,33. The energy transfer is between the kinetic

energy of fluctuations and the kinetic energy of the mean flow. Reynolds stress driven mean

flows cannot directly tap free energy but relies on conversion of free energy into fluctuating

energy by other mechanisms31. On closed magnetic surfaces in strongly magnetized fusion

plasmas, the mean convective term ∇ · (〈u〉〈u〉) is usually negligible because gradients of

the mean flow are to a good approximation perpendicular to the mean flow itself.

When a plasma is subject to a strong confining magnetic field the dynamics is strongly

anisotropic. Charged particles are approximately trapped on magnetic field lines along which

they flow unhindered. When studying mean flows it is therefore convenient to apply models

where this anisotropy is exploited a priori. The strong confining magnetic field implies
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that the magnetic dipole moment associated with the Larmor orbits of charged particles

around magnetic field lines is an adiabatic invariant1. The invariance can be used in a

dynamical reduction of the governing equations which lowers the computational costs by

orders of magnitudes5. This is exploited in turbulence models which normally only consider

dynamics on time scales longer than the inverse ion gyrofrequency5,16,17. In the resulting

equations the strong anisotropy imposed by the strong magnetic field appears explicitly.

Velocities are split into perpendicular and parallel parts. In the direction perpendicular to

the magnetic field advection is in most cases dominated by the E×B -drift: uE = E×B/B2.

Other perpendicular fluxes associated with particle drifts such as the grad-B, curvature,

and polarization drifts are inferior in comparison to the E × B flux, but are essential for

the turbulence because the corresponding currents are of equal importance in the quasi-

neutrality constraint ∇ · J = 0. In drift fluid models, which are used in this paper, the

grad-B and curvature drifts and the magnetization current are contained in the diamagnetic

drift uD
12. As in gyrokinetic5 and gyrofluid models17, the diamagnetic and E × B drifts

are assumed to be of the same order of magnitude. However, since advection of all fluid

fields by the diamagnetic drift cancels in all moment equations37, the diamagnetic flow is

not responsible for transport over macroscopic distances. Therefore, it is only the mean

E×B flow which is relevant in studies of decorrelation of turbulent eddies by perpendicular

mean flows.

In this paper we investigate how ion pressure dynamics influences E × B mean flows.

Reynolds stress driven mean flows have been studied extensively9 and studies including ion

pressure dynamics are numerous6,11,18,25,30,32,33. A common feature of these studies is that

they do not consider ”pure” mean flows but rather mean flows with multiple components. In

gyrokinetic and gyrofluid treatments6,11,18,25,32, the results concern mean flows, actually mean

gyro-center momentum densities, in gyro-center coordinate space. Gyro-center space is a

mathematical construction which provides tractable equations describing the dynamics down

to gyro-radius length scales. The use of gyro-center coordinates is motivated by the notorious

tedious expressions18,36 associated with gyro-radius length scale dynamics entering models

expressed in standard coordinates. However, gyro-center coordinates are by construction

not only functions of position and velocity but also of the electromagnetic potentials. To

illustrate this point we express the zeroth order gyro-center moment, the gyro-center density

N , in terms of physical quantities such as the particle density n, the ion scalar pressure pi,
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and the electric potential φ. In a quasi-neutral plasma ni = ne we get21,22

Ni = ni −∇2
⊥

(
pi

2miΩ2
i

)
−∇ ·

(
ni
BΩi

∇⊥φ
)

(2)

where only terms to second order in k⊥ρi are retained. Here, k⊥ is a characteristic inverse

gradient length scale,ρi is the ion gyro-radius, pi is the ion pressure, and Ωi = qiB/mi is the

ion gyro frequency, where qi and mi are the ion charge and mass, respectively. The perpen-

dicular projection of the gradient operator is defined as ∇⊥ = −b̂×(b̂×∇), where b̂ = B/B

is a unit vector parallel to the magnetic field B. Results formulated in gyro-center coordi-

nates are therefore only directly relevant for the dynamics of gyrocenters, which is of course

highly relevant, but in order to translate these results to measureable quantities the results

must be transformed to well-known physical variables, a process which is tedious18,35. In

low-frequency fluid models16 another but related issue appears. Here, the dominant perpen-

dicular drifts are the fluid E×B and diamagnetic velocity fields. In previous works25,27,30,33

only the momentum and mean flow equations for the combined E×B and ion diamagnetic

flow were considered. This approach is problematic because the mean flow then includes the

diamagnetic flow, which is not responsible for transport on the macroscopic length scale.

The main objective of this paper is to investigate the E × B mean flow and hence to

disentangle the E ×B and ion diamagnetic parts. Considering the pure E ×B mean flow

significantly complicates the governing equations. We have therefore deliberately chosen a

paradigmatic, electrostatic drift fluid model in two-dimensional slab geometry, where dy-

namics along the magnetic field has been omitted. The model is presented in Sec. II. Even

in this simplistic setup we show in Sec. III that the E ×B mean flow can be modified by

four terms: i) The pure E × B Reynolds stress 〈ũEũE〉 and ii) a diamagnetic Reynolds

stress33 proportional to 〈uy∂ypi〉”, where the uy denotes the ”azimuthal” component of the

E×B drift. iii) We also show that E×B mean flows may be driven by a term proportional

to 〈ξpiux〉 in the stress tensor which is only finite when the magnetic field is inhomogeneous

ξ = 1/R 6= 0, where R is the major radius. iv) Lastly we demonstrate the existence of a com-

ponent proportional to 2/3〈ξpi∂ype〉 of the stress tensor, which does not require E×B drift

fluctuations. The corresponding energy transfer terms, also commonly denoted production

terms, are analyzed and conditions for enhancement and attenuation of E ×B mean flows

for the individual energy transfer channels are determined. Next, in Sec. IV we proceed

with a quasi-linear analysis which reveals that that none of the four mean flow generation
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mechanisms are negligible. Lastly, our results are summarized and discussed in Sec. V.

II. MODEL

The fundamental assumptions in drift fluid models15,16,20,30 are that the pressure force and

the Lorentz force balance and that the dynamics evolve on a time-scale whose characteristic

frequency is much smaller than the ion gyro-frequency ω/Ωi � 1. These models are well-

suited for studies of low-frequency turbulence in strongly magnetized plasmas particularly

in the edge and scrape-off layer regions. An advantage of drift fluids, and all models which

are based on the drift approximation, is that algebraic expressions for the perpendicular

part of the odd fluid moment equations, e.g. momentum density, can be derived using an

iterative procedure. Neglecting collisional effects the zeroth and first order perpendicular

drifts, omitting species labels, are given as:

u⊥,0 = uE + uD =
b̂×∇φ
B

+
b̂×∇p
qnB

, (3)

u⊥,1 = up + uπ =
1

Ω
b̂× d

dt
u +

b̂×∇ · π
qnB

, (4)

respectively. Here, φ is the electrostatic potential and Ω = qB/m is the gyro-frequency,

where q denotes charge, m is the species mass, and B is the magnetic field amplitude.

The zeroth order drifts are the familiar E × B -drift uE and the diamagnetic drift uD.

The first order drifts comprise of the polarization drift up and a gyroviscous drift uπ due

to gyroviscosity entering the off-diagonal part of the pressure tensor π. The first order

drifts are linear functions of mass and hence due to the electron ion mass ratio the first

order electron drifts are neglected. The main effect of the gyroviscous drift is to cancel

the advection of momentum by the diamagnetic drift. This cancellation is in the literature

refered to as the gyro-viscous cancellation2,4,16,36. The polarization drift describes inertia.

The first order drifts in u⊥,1 depend on the species mass, and hence only the ion drifts are

retained. We are here concerned with studying the influence of a dynamically evolving ion

pressure on the generation, sustainment, and damping of mean flows. For this purpose and

for the convenience of exposition we neglect the time-evolution of the parallel momentum and

consider only the drift fluid vorticity equation and the electron and ion pressure equations
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for an electrostatic, quasi-neutral (n ≡ ni = ne) plasma20,24,28:

∇ · (nupi) +∇ · (nuπi) +∇ ·
(
n(uDi − uDe)

)
= Λw,

(5a)

3

2

∂

∂t
pi +

3

2
∇ ·
(
pi[uE + uDi + upi + uπ]

)
+ pi∇ · [uE + uDi + upi + uπ] +∇⊥ · q∗i = Λpi ,

(5b)

3

2

∂

∂t
pe +

3

2
∇ ·
(
pe[uE + uDe]

)
+ pe∇ · [uE + uDe] +∇⊥ · q∗e = Λpe ,

(5c)

where the diamagnetic heat flux is given as

q∗a =
5

2
pa

b̂×∇Ta
qaB

. (6)

The terms Λw,Λpi and Λpe on the right hand sides of Eqs. (5a)-(5c) represent, unspecified,

parallel dynamics, collisional effects, and sources and sinks. The vorticity equation (5a) is

derived from the quasi-neutrality constraint ∇ · J = 0. Notice that the polarization heat

flux26,36 is not kept in the pressure equation even though it enters with the same order

as the polarization drift terms. However, we deliberately omit the polarization heat flux

because it does not alter the governing equations for the mean flow and the corresponding

kinetic energy. In the same spirit we reduce the model equations (5a)-(5c) further. The

simplifications of the model equations aim at formulating an energy conserving, minimal

model for investigations of the influence of ion pressure changes on the generation of mean

flows. First, in the vorticity equation (5a) we invoke the thin-layer approximation which

resembles the Boussinesq approximation19 in neutral fluid dynamics. In this approximation

the particle density entering the polarization and gyro-viscous fluxes is taken to be constant.

Together with this assumption the first order ion drift ui⊥,1 must be simplified as

∇ · (nupi) +∇ · (nuπi) ' −∇ ·
[
n0

Ω0

(
∂

∂t
+
B

B0

uE · ∇
)(∇⊥φ

B0

+
∇⊥pi
qn0B0

)]
(7)

in order to conserve energy20. This approximation is routinely invoked in reduced models

to reduce the computational cost of solving the model equations. The electric potential and

the ion pressure entering Eq. (7) represent the ion inertia when the E×B and diamagnetic

drifts change in the comoving frame of reference. The vorticity equation is a current com-

pression balance equation, but it is termed the vorticity equation because the compression
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of the ion polarization flux in equation (7) contains the magnetic field aligned E ×B and

ion diagmagnetic vorticities b̂ · ∇ × u⊥,0i. The first order drifts u⊥,1i entering the vorticity

equation (5a) originate from the ion particle density equation. Equivalently the first order

drifts must be retained in the ion pressure equation in order to conserve energy and even-

tually because they modify E × B mean flows. Also, it has been demonstrated that the

correspondence between the drift fluid and gyrofluid ion pressure equations requires that

the first order drifts are retained in the ion pressure equation35. Consistency requires that

the thin-layer approximation and the subsequent simplification of the first order drifts in the

vorticity equation must be invoked in ion pressure in exactly the same manner20. In the ion

pressure equation we neglect the compression of the first order fluxes 3
2
∇ · (piu⊥,1i) because

they do not alter the energy theorem and do not directly enter the equation governing the

time evolution of the mean flow. In the pressure equations (5b) and (5c), advection by the

diamagnetic drifts vanishes as a consequence of the diamagnetic cancellation

3

2
∇ · (puDa) + pa∇ · (uDa) +∇ · q∗⊥a = ∇×

( b̂

qaB

)
· ∇(paTa). (8)

The resulting curvature terms are neglected in the pressure equations because they neither

alter the mean flow energy equation nor the mean flow time-evolution equations. We take

the magnetic field entering the E ×B drift to a constant, and hence only retain the energy

exchange term p∇ ·uE in the pressure equations (5b)-(5c). Lastly, we restrict the model to

a 2D slab geometry (x, y, z) at the outboard midplane with the unit vector ẑ aligned with

the inhomogeneous magnetic field B = B(x)ẑ. Periodic boundary conditions are invoked

in the y-direction. It is convenient to express the model in Gyro-Bohm normalized units

Ωi0t→ t,
x

ρs
→ x,

pe,i
pe0
→ pe,i,

eφ

Te0
→ φ, (9)

where Ωi0 = qiB0/mi is the characteristic ion gyro frequency, ρs =
√

Te0
mi

is the hybrid

thermal gyro-radius, n0 and Te0 are characteristic particle density and electron temperature

values. The normalized, minimal three-field model is given as:

∇ ·
( d
dt
∇⊥φ∗

)
+ ξ

∂

∂y
(pe + pi) = Λw, (10a)

3

2

d

dt
pi − piξ

∂φ

∂y
+ piξ

∂

∂y
(pe + pi) = Λpi , (10b)

3

2

d

dt
pe − peξ

∂φ

∂y
= Λpe , (10c)
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where ξ = ρs
R

is the curvature constant and R denotes the major radius. The advective

derivatives are defined as

d

dt
=

∂

∂t
+ {φ, ·}, (11)

where the E ×B -advection is written in terms of the anti-symmetric bracket

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (12)

and the modified potential is defined by

φ∗ = φ+ pi. (13)

A. Energy theorem

The conserved energy is derived in two steps. First, the electron and ion pressure equa-

tions (10c)-(10b) are integrated neglecting surface terms. Next the vorticity equation (10a)

is multiplied by ”−φ” and integrated again neglecting surface terms. Adding the results we

get

d

dt

∫
dx E =

∫
dxS‖, (14)

where the energy density is given by

E = Ei + Ee + E∗ =
3

2
[pi + pe] +

|∇⊥φ∗|2
2

, (15)

and

S‖ = Λpi + Λpe − φ∗Λw. (16)

The energy density consists of the ion and electron thermal energy densities Ei and Ee,
respectively, and the ”drift energy” density E∗. The absence of the particle density n and

the magnetic field in the drift energy is a consequence of the thin-layer approximation invoked

in the vorticity equation (10a). The drift energy is a function of the modified potential φ∗

and can be understood as the energy associated with the E ×B and diamagnetic drifts, or

alternatively as describing the finite Larmor radius (FLR) corrected E ×B kinetic energy
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and FLR corrections to the ion thermal energy23,35,40. The time-evolutions of the individual

parts of the integrated energy densities are given as

d

dt
E∗ =

d

dt

∫
dx E∗ =

∫
dx − ξ[pi + pe]

∂φ

∂y
+ ξpi

∂pe
∂y
− φ∗Λw, (17)

d

dt
Ei =

d

dt

∫
dx Ei =

∫
dx ξpi

∂φ

∂y
− ξpi

∂pe
∂y

+ Λpi , (18)

d

dt
Ee =

d

dt

∫
dx Ee =

∫
dx ξpe

∂φ

∂y
+ Λpe . (19)

There are two types of energy transfer channels: i) the finite compression of the E×B drift34,

represented by the ξpi∂yφ and ξpe∂yφ terms, allow an interchange of thermal energy and

kinetic energy. ii) The finite compression of the first order drifts are responsible for the

second type of energy transfer channel. This effect is represented by the ξpi∂ype terms.

III. MEAN FLOWS

In this section we analyze how ion pressure dynamics influences E × B mean flows in

our two-dimensional interchange turbulence model presented in Sec. II. The analysis en-

compasses a derivation of a E ×B mean flow equation and an analysis of energy transport

between free (thermal) energy, fluctuations and mean quantities.

In this paper the averaging operation defining mean quantities is a spatial average in the

periodic y-direction direction

〈f〉 =
1

Ly

∫ Ly

0

dy f. (20)

Here, f is an arbitrary function and Ly is the domain length in the y-direction. The fluctu-

ating part is defined accordingly f̃ = f − 〈f〉. Using the vorticity equation (10a) the time

evolution30,33 of the mean and fluctuating parts of the drift energy is obtained

d

dt
E∗0 =

d

dt

∫
dx

1

2
|∂〈φ

∗〉
∂x
|2 =

∫
dx − ∂2〈φ∗〉

∂x2
〈∂φ̃
∂y

∂φ̃∗

∂x
〉 − 〈φ∗〉〈Λw〉, (21)

d

dt
Ẽ∗ =

d

dt

∫
dx

1

2
|∇⊥φ̃∗|2 =

∫
dx

∂2〈φ∗〉
∂x2

〈∂φ̃
∂y

∂φ̃∗

∂x
〉+ ξ(pe + pi)

∂φ∗

∂y
− φ̃∗Λw. (22)

The time evolutions of the energy integrals given in Eqs. (22),(18), and (19) reveal an energy

transfer between Ẽ∗ and the ion and electron thermal energy densities Ei and Ee by the term:

ξ(pe+pi)
∂φ∗

∂y
. The first term on the right hand sides of both equations, the modified Reynolds
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stress production terms, yield a energy transfer between the mean and the fluctuating drift

energies. This term includes the standard E×B Reynolds stress production term u′0〈uxuy〉,
where ux = −∂yφ̃ and uy = ∂xφ̃ denote the x and y components of the fluctuating E×B drift,

respectively, and u′0 = ∂xu0 is the shear of the mean E ×B flow

u0 =
∂〈φ〉
∂x

. (23)

The Reynolds stress production term describes an energy transfer due to fluctuating radial

transport of azimuthal momentum in the presence of a sheared mean flow. However, due to

the presence of the modified potential φ∗ in the modified production term, it is also a function

of the mean and fluctuating parts of the ion diamagnetic drift. Since no fields are advected

by the diamagnetic drift, these extra terms lack an obvious interpretation. Furthermore,

the interpretation of the drift energy density E∗ itself is not immediately obvious. Since the

particle density is advected by the E ×B drift, it is more informative to consider the time

evolution of the integrated E×B mean flow energy, the integrated fluctuating E×B energy,

and the residual drift energy defined as:

E0 =

∫
dx

u20
2
, Ẽ =

∫
dx 〈|∇⊥φ̃|

2

2
〉, E× =

∫
dx 〈 |∇⊥pi|

2

2
〉+ 〈∇φ · ∇⊥pi〉, (24)

respectively. The residual drift energy can be shown to describe an FLR correction to the

ion thermal energy density. The time-evolution of these energy integrals are derived from

the vorticity equation (10a) and the ion pressure equation(10b)

d

dt
E0 =

∫
dx

[
〈uyux〉

A

− 〈uy
∂pi
∂y
〉

B

− 2

3
ξ〈pi

∂pe
∂y
〉

C

− 2

3
ξ〈piux〉

D

]
u′0 − 〈φ〉

[
〈Λw〉 −

2

3

∂2

∂x2
〈Λpi〉

E

]
,

(25)

d

dt
Ẽ =

∫
dx

[
− 〈uyux〉

A

+ 〈uy
∂pi
∂y
〉

B

]
u′0 + ξ〈(pe + pi)ux〉

F

− 2

3
ξ〈pi∇2

⊥φ̃
∂

∂y
(pi + pe − φ)〉
G

− 〈φ̃
[
Λw −

2

3

∂2

∂x2
Λpi

E

]
〉, (26)

d

dt
E× =

∫
dx ξ〈pi

∂pe
∂y
〉

H

+

[
2

3
ξ〈pi

∂pe
∂y
〉

C

+
2

3
ξ〈piux〉

D

]
u′0 +

2

3
ξ〈pi∇2

⊥φ̃
∂

∂y
(pe + pi − φ)〉
G

− 〈piΛw〉 −
2

3
〈φ ∂2

∂x2
Λpi〉

E

. (27)

The energy integrals are accompanied by an equation for the mean E × B flow, which is

obtained by averaging the vorticity equation (10a) over the periodic y-direction making use
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of the ion pressure equation (10b)

∂u0
∂t

+
∂

∂x
〈uxuy〉
a

− ∂

∂x
〈uy

∂pi
∂y
〉

b

− 2

3
ξ
∂

∂x
〈pi

∂

∂y
pe〉

c

− 2

3
ξ
∂

∂x
〈piux〉
d

= −2

3

∂

∂x
〈Λpi〉+

∫ x

0

dx 〈Λw〉
e

,

(28)

where boundary terms were neglected. Integrating the mean flow equation in the x-direction

shows that no mean flow is generated without external sources. The time-evolution of the

energy integrals and the mean flow equation are principal results of this paper.

First, we note that the energy integrals and the mean flow equation reduce to the well-

known system of equations in two-dimensional interchange driven convection14 in the limit of

constant ion pressure. Specifically, all ion pressure dependent terms vanish, E× = 0, and the

time-evolution of the mean flow is governed by two effects: the divergence of the Reynolds

stress tensor marked ”a”, which describes radial transport of azimuthal momentum, and

collisional viscous damping marked ”e”. These two effects are accompanied by corresponding

energy transfer terms in the mean flow energy equation 25. Collisional dissipation damps

the mean flow energy through the term ”E”. The Reynolds stress production terms marked

”A” in equations (25) and (26) yield a energy transfer between the mean and fluctuating

E×B kinetic energies. From the energy integrals it is evident that the mean flow energy E0

is only altered by the Reynolds stress when the mean flow is sheared u′0 6= 0. The condition

of a sheared mean flow is necessary but not sufficient. By expanding the electric potential

into an infinite Fourier series in the periodic y-direction, the x−y component of the Reynolds

stress tensor can be written as

〈uxuy〉 = −2
∞∑

ky=1

ky|φky |2δ′φ, (29)

where |φky(x, t)| and δφ(x, t) denote the radially varying amplitude and phase, respectively,

and δ′φ = ∂xδφ. The mean flow energy is therefore only altered if the mean flow is sheared and

if the phase of the electrostatic potential varies radially. The thermal and fluctuating energies

are coupled through the term marked ”F” whose origin is magnetic field inhomogeneity.

This energy transfer describes fluctuating radial transport of thermal energy. The spectral

representation of this interchange drive term is

ξ〈peux〉 = ξ

∞∑
ky=1

2ky|φky ||peky | sin(δφ − δpe) (30)
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demonstrating that the direction of the energy flux is determined by the phase difference

between electric potential and electron pressure fluctuations. Note that there is no direct

energy transfer between the integral of the electron thermal energy Ee and the mean flow

energy E0; the only path for thermal energy to the mean flow energy goes through the

fluctuating energy Ẽ.

When the assumption of constant ion pressure is relaxed, additional mean flow sources

emerge. First, the Reynolds stress in the mean flow equation (28), marked ”a”, is accompa-

nied by a diamagnetic Reynolds-stress-like term, marked ”b” and corresponding production

terms marked ”B” in the mean and fluctuating energy integrals equations 25 and 26. Like

the Reynolds stress production term, a finite energy transfer by the diamagnetic Reynolds

energy transfer term requires a sheared mean flow u′0 6= 0. The spectral representation in

the y-direction

〈uy
∂pi
∂y
〉 =

∑
ky>0

2ky

[
sin(δφ − δpi)|piky ||φky |′ + cos(δφ − δpi)|piky ||φky |δ′φ

]
(31)

shows that the diamagnetic Reynolds stress and the corresponding production term may

modify the mean flow both when φ and pi are in and out of phase. Furthermore, the ability

of the diamagnetic Reynolds stress production term to modify the mean flow does not

require that the phase of the electric potential is radially inhomogeneous as is required for

the standard Reynolds stress. We also note that if φ = −pi+const., which is an approximate

steady state solution to the vorticity equation 10a, then the Reynolds and the diamagnetic

Reynolds stresses cancel.

In addition to the diamagnetic Reynolds stress, two transfer terms marked ”c” and ”d”

enter the mean flow equation (28) when the ion pressure is non-constant. These transfer

terms differ from the standard and diamagnetic Reynolds stresses because of their ability to

modify the mean flow rely on an inhomogeneous magnetic field ξ 6= 0. The corresponding

energy transfer terms, marked ”C” and ”D” in equations (25) and (27), couple the mean flow

energy E0 and the residual energy E×. In the constant ion pressure limit, the fluctuating

kinetic energy and therefore also instabilities can only grow because the fluctuations can

feed on the thermal energy through the interchange drive term marked ”F”. When the ion

pressure is not constant, an additional energy transfer emerges. The term marked ”H” in the

residual energy integral equation (27) allows energy exchange between the residual energy

and the ion thermal energy. In many respects the generation of mean flows in interchange

12



driven turbulence is therefore potentially fundamentally different when ion temperature

dynamics is taken into account. The energy transfer channels are schematically depicted in

figure 1. We note that the appearance of the terms ”C”,”D”, and ”H” in the energy integral

Electron
thermal

energy Ee

Ion thermal
energy Ei

ExB
fluctuations

Ẽ

Residual
drift

energy E×

mean flow E0

ξpi∂ype

ξpiux

ξpeux

2
3ξpi∂y(φ− pe)u′0

〈(ux − ∂ypi)uy〉u′0

Figure 1. Diagram illustrating the energy transfer channels between the five energy integrals in

equations (18)-(19) and (25)-(27). Energy transfer channels are shown as uni-directional arrows;

the corresponding energy transfer terms label the arrows.

equations and the terms ”c” and ”d” in the mean flow equation is a direct consequence of

consistently keeping the first order drifts in the ion density and in the ion pressure equations.

The terms in equations (26) and (27) marked ”G” yield a energy transfer between the

fluctuating E × B energy and the residual drift energy. We do not analyze these terms

further in this paper. A detailed analysis most likely requires that the residual drift energy

is split into mean and fluctuating components. We leave this analysis for future work.

The term marked ”d” in the mean flow equation (28) originates from the finite compres-

sion of the E ×B drift in the ion pressure equation 10b. The spectral decomposition

2

3
ξ〈piux〉 =

4

3
ξ
∞∑

ky=1

ky|φky ||piky | sin(δφ − δpi) (32)

shows that a finite phase difference between the potential and ion pressure fluctuations

is required for modification of the mean flow. It is interesting that this term apart from a

factor ”2/3” shares the same functional form as the interchange drive term ”F” in the energy

integral equation (27), and hence they are always simultaneously active. The direction of

the energy flux by the corresponding energy transfer terms marked ”D” in Eqs. (25) and

(27) is determined by the phase shift and the mean flow shear.

Finally, we analyze the transfer mechanisms described by the terms ”C” and ”H” in

the energy integral equations (25) and (27) and the corresponding term ”c” in the mean

flow equation (28). A remarkable feature of these terms is that they are independent of

13



the fluctuating part of the E ×B drift, and hence may alter the mean flow when E ×B -

drift fluctuations vanish ux = uy = 0. As illustrated in Fig. 1, ion thermal energy Ei can be

transferred to the mean flow energy E0 via the residual energy E× by these transfer channels.

Common to all these terms is the appearance of

ξ〈pi
∂pe
∂y
〉 = −ξ

∞∑
ky=1

2ky|peky ||piky | sin(δpe − δpi), (33)

showing that they are only active if the phase shift between electron and ion pressure fluc-

tuations is finite. It is important to keep in mind that these terms vanish in the isothermal

limit; electron or ion temperature fluctuations are required. The direction of the energy

flux through the transfer channel ”H” between the ion thermal energy Ei and the residual

drift energy E× is solely determined by the phase-shift δpe− δpi . Specifically, energy is trans-

ported from the ion thermal energy to the residual drift energy when sin(δpe − δpi) < 0,

and is maximal when δpe − δpi = −π/2. For the residual drift energy to flow simultaneously

from the residual drift energy E× to the mean flow energy E0, the shearing rate u′0, entering

the transfer term 2/3ξu′0〈pi∂ype〉 marked ”C” in equations (25) and (27), must be negative

u′0 < 0.

IV. LINEAR ANALYSIS

In this section we investigate the additional terms, beyond the Reynolds stress and asso-

ciated production term, in the mean flow and energy integral equations which arise when ion

temperature dynamics is taken into account. The analysis is carried out by means of linear

and quasi-linear analysis. This approach allows us to estimate under which conditions these

additional terms are active and to some extend to estimate their magnitude and whether

they act as to inhibit or enhance mean flows

Neglecting dissipative effects assuming a local plane wave solution exp(ik · x − iωt) to

the model equations (10a)-(10c), the linearized equations are

ωk2⊥(φk + pik) + ξky(pek + pik) = 0, (34)

−3

2
ωpik + φkky(

3

2
κi − ξ) + ξky(pek + pik) = 0, (35)

−3

2
ωpek + φkky(

3

2
κe − ξ) = 0, (36)
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with the dispersion relation

λ

[
λ2 + λ(κ̄i −

4

3
) + (

2

3
κ̄e −

4

9
) +

1

k2⊥
(κ̄e + κ̄i −

4

3
)

]
= 0, (37)

where λ = ω
ξky

, κ̄i = κi/ξ, κ̄e = κe/ξ, and κi and κe denote the ion and electron inverse

profile gradient length scales, respectively. Besides the trivial solution λ = 0, the dispersion

relation has the solutions

λ =

4
3
− κ̄i ±

√
(κ̄i − 4

3
)2 − 4k−2⊥ (κ̄i + κ̄e − 4

3
)

2
. (38)

The unstable part of the solution for which: Im(λ) > 0, is plotted in Fig. 2 for various

parameters. The waves are unstable when κ̄i + κ̄e > 4/3. Notice the well-known ion FLR
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Figure 2. Dispersion diagram for the unstable solution. By comparing the red and green curves,

we see the effect of ion FLR stabilization.

stabilization39 by the first term in the radicand in Eq. (38). The stabilizing effect is clearly

illustrated by the blue and green curves in Fig. 2 which have the same interchange drive

”κ̄i + κ̄e” but when κ̄e > κ̄i (blue) the growth rate is significantly higher than when κ̄e < κ̄i

(green). Only for very low k⊥ (not visisble in Fig. 2) the growth rate of the green curve

exceeds the blue curve.

The linear fluctuations are related by

φk

pik
=
|φk|
|pik|

ei(δφ−δpi ) =
3λ(3λ− 2ξ−1)

3λ(3κ̄i − 2) + 2(3κ̄e − 2)
, (39)

pek
pik

=
|pek|
|pik|

ei(δpe−δpi ) =
(3κ̄e − 2)(3λ− 2)

3λ(3κ̄i − 2) + 2(3κ̄e − 2)
. (40)
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Figure 3. Quasi linear calculation of the phase shift between a) ion pressure and electric potential

fluctuations, b) electron pressure and electric potential fluctuations, and c) ion and electron pressure

fluctuations as functions of k⊥. Line colors are defined in the caption of Fig. 2.

From these expressions the corresponding phase shifts can be calculated (see Fig. 3). As

expected the phase shifts between pressure and electric potential fluctuations plotted in

Figs. 3a and 3b show that the interchange drive term in Eq. (26) according to Eq. (30)

transforms thermal energy into fluctuating energy when the waves are unstable, see Fig. 2.

We also observe that in the cases where the inverse profile gradient length scales κ̄e = 1/3

(cyan) and κ̄i = 1/3 (red) are below unity, the direction of the energy flux is reversed even

though the waves are unstable.

For the analysis of the diamagnetic Reynolds stress given in Eq. (31), we employ the

quasi-linear approximation. By expressing the ion pressure fluctuations in terms of the

potential fluctuations, we get

〈uy
∂

∂y
pi〉 = −2

∑
ky>0

ky

(
|φky |2δ′φ Re

[
piky
φky

]
+

1

2
(|φky |2)′ Im

[
piky
φky

])
. (41)

The first term (see Eq. (29)) equals the Reynolds stress times the real part of the ratio of the

ion pressure to the potential. The magnitude of the first term in the diamagnetic Reynolds

stress relative to the standard Reynolds stress is therefore simply given by the magnitude

of Re[piky/φky ]. In the quasi-linear treatment this factor can be calculated using Eq. (39)

employing the solution given in Eq. (38). When the absolute value of Re[pik/φk] exceeds

unity, the first term in the diamagnetic Reynolds stress exceeds the standard Reynolds stress

and equivalently the diamagnetic Reynolds stress production term dominates. Quasi-linear

calculations of Re[pik/φk] as a function of k⊥ and κi are shown for two values of κe in Figs. 4a

and 4c. In Figure 4a κ̄e = 1. In this case |Re

[
pik
φk

]
| > 1 when κ̄i < 1.8. When steepening
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Figure 4. Comparison of diamagnetic and standard Reynolds stress. Quasi-linear calculations of

Re

[
pik
φk

]
for (a) κ̄e = 1 and (c) κ̄e = 10, and Im

[
pik
φk

]
for (b) κ̄e = 1 and (d) κ̄e = 10. When

the absolute value of the real part in (a) and (c) is above unity, the first term in the diamagnetic

Reynolds stress given in Eq. (41) exceeds the standard Reynolds stress.

the electron pressure gradient κ̄e = 10, the region were |Re

[
pik
φk

]
| > 1 is extended and holds

for all κ̄i < 4.5 as shown in Fig. 4c.

The magnitude of the second term of the diamagnetic Reynolds stress given in Eq. (41)

depends on the radial gradient of the fluctuating kinetic energy and is therefore only able

to drive or damp the mean flow if the fluctuating kinetic energy is radially inhomogenous

1
2
(|φk|2)′ 6= 0. The magnitude of the fluctuating kinetic energy is not readily accessible

through quasi-linear calculations and must be obtained via non-linear numerical calculations.

However, the fluctuating energy is multiplied by Im

[
pik
φk

]
, and hence regardless of the radial

structure of the fluctuating kinetic energy this must be finite for this part of the diamagnetic

17



Reynolds stress to play a role. Quasi-linear calculations of Im

[
pik
φk

]
for κ̄e = 1 and κ̄e = 10

are shown in Fig. 4b and d, respectively. In both cases the magnitude is small for high k⊥

and κ̄i but exceeds unity for low k⊥ for all values of κ̄i. Increasing κ̄e by a factor of 10 implies

a broadening of the region where Im

[
pik
φk

]
exceeds unity towards higher κ̄i. In conclusion

the quasi-linear treatment predicts that both parts of the diamagnetic Reynolds stress are

mainly active at low k⊥ where the interchange modes are most unstable (see Fig. 2). In

these active regions the ability of the diamagnetic Reynolds stress to modify mean flows is

as strong or even stronger than the standard Reynolds stress.

Finally, we consider the terms marked ”c” and ”d” in the mean flow equation (28)

and the corresponding terms marked ”C”,”D”, and ”H” in the energy integrals (25)-(27).

The spectral representations given in Eqs. (32)-(33) show that finite contributions by these

terms require that the sines of the phase shifts between ion pressure and electric potential

as well as between ion and electron pressure fluctuations are finite. Figures 3a and 3c show

that, according to linear theory, these terms yield finite contributions for a wide range of

parameters. This observation entails that these mechanisms must be taken into account in

the description of mean flows. Specifically, the linear results shown in Fig. 3c reveal that

the energy transfer term ”H”, between the ion thermal energy and the residual energy, for

most parameters yields an energy transfer from the residual to the ion thermal energy except

when electron pressure profiles are nearly flat. The quasi-linear analysis does therefore not

indicate the existence of an energy flux from the ion thermal energy via the residual energy

to the mean flow energy which bypasses the fluctuating kinetic energy.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated how ion temperature dynamics influences azimuthal

mean E ×B flows in 2D, electrostatic, interchange driven convection. We consider the dy-

namics of the pure E ×B mean flow disentangled from the diamagnetic fluid drift, which

is not responsible for transport over macroscopic distances. Our investigations show that

E×B mean flows may be modified by additional mechanisms beyond the standard Reynolds

stress. The standard Reynolds stress is accompanied by a diamagnetic Reynolds stress,

which modifies the mean flow in the presence of E ×B and ion pressure fluctuations and a

sheared azimuthal E ×B mean flow. Quasi-linear analysis indicates that the standard and
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diamagnetic Reynolds stresses are equally important. We also demonstrate that taking ion

temperature dynamics into account implies two additional mechanisms capable of modifying

mean flows. Both mechanisms rely on the magnetic field inhomogeneity. The first mech-

anism takes the same form as the interchange energy exchange term, which is responsible

for feeding free energy from the free thermal energy into E ×B fluctuations in interchange

driven instabilities. This mechanism and the interchange energy exchange term are there-

fore simultaneously active. The second mechanism relies on phase shifted ion and electron

pressure perturbations and is in that respect unique because electric potential fluctuations

are not needed. This mechanism provides energy transfer between the ion thermal energy

and the mean flow energy completely bypassing electric potential fluctuations. However,

quasi-linear analysis shows that the direction of the energy flux inhibits mean flows for most

parameters.

Our analysis was carried out in a simplified two-dimensional drift fluid model describing

interchange driven turbulence in the absence of dynamics parallel to the magnetic field.

Naturally our results cannot readily be generalized to a toroidal configuration where parallel

dynamics play an important role especially for the turbulence which in that case is more

drift-wave like. The introduction of drift wave turbulence most certainly changes the phase

shift between electron pressure and electric potential fluctuations which inevitably alter the

quasi-linear results presented here. However, our analysis points out that the paradigm

of Reynolds stress driven mean flows is incomplete and must be supplemented by other

mechanisms apparently equivalently capable of modifying E ×B mean flows.
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