
EUROFUSION WP15ER-PR(16) 15853

NT Tronko et al.

Second order Gyrokinetic theory for
Particle-In-Cell codes

Preprint of Paper to be submitted for publication in
Physics of Plasmas

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



1

Contents

I. Introduction 3

II. Gyrokinetic dynamical reduction on particle’s phase space: sources of

polarisation and magnetisation. 6

A. Gyrokinetic orderings 7

B. Gyrokinetic particle’s Lagrangian 7

1. Local particle’s coordinates 8

2. Gyrogauge dependence 9

C. Dynamical reduction, first step: guiding-center dynamics 10

D. Dynamical reduction, second step: gyrocenter dynamics 11

1. Polarization effects: relationship between coordinate transformation and reduced

Hamiltonian dynamics 12

2. Second order reduced Hamiltonian 13

3. Symplectic and Hamiltonian representations of gyrocenter reduction 16

4. Field-particles coupling on the reduced phase space 17

III. Eulerian second order variational principle: general method 18

A. First variation of the action functional 20

1. Constrained Eulerian variations 21

2. Fields contributions 22

3. Vlasov contributions 23

B. Equations of motion: implicit weak form 24

C. Noether method and energy conservation law 25

IV. Eulerian second order action functional: explicit derivation 27

A. Dynamical and Noether’s terms 29

B. Equations of motion 30

1. Gyrokinetic Vlasov equation 30

2. Gyrokinetic Poisson equation 30

3. Gyrokinetic Ampère equation 31

C. Conserved energy density 32

1. Final expression for conserved energy density 32



2

V. Eulerian variational principle for the ORB5 code model 32

A. Second order action functionals 33

1. The quasi neutrality approximation 33

2. Perturbed magnetic field approximation 34

3. Particle dynamics approximation 34

B. ORB5 Maxwell-Vlasov model 34

C. Quasineutrality equation 35

D. Ampère’s equation 36

1. Vlasov equation 36

VI. Energy conservation diagnostics 37

VII. Conclusions and perspectives 41

VIII. Acknowledgments 43

A. Explicit derivation of the full second order Maxwell-Vlasov equations 43

a. Fields contributions. Parallel magnetic perturbation 44

b. First order Vlasov contributions 45

c. Second order Vlasov contributions 45

B. Hamiltonian first order characteristics and ORB5 code diagnostics 49

C. Noether’s method 51

d. First order gyrocenter displacement 53

References 54
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Natalia Tronko1, Alberto Bottino1 and Eric Sonnendrücker1
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The main idea of Gyrokinetic dynamical reduction consists in systematical removing of

fastest scale of motion (the gyro motion) from plasma’s dynamics, resulting in a considerable

model simplification and gain of computing time.

Gyrokinetic Maxwell-Vlasov system is broadly implemented in nowadays numerical ex-

periments for modeling strongly magnetized plasma (both laboratory and astrophysical).

Different versions of reduced set of equations exist depending on the construction of the

Gyrokinetic reduction procedure and approximations assumed while their derivation.

The purpose of this paper is to explicitly show the connection between the general sec-

ond order gyrokinetic Maxwell-Vlasov system issued from the Modern Gyrokinetic theory

derivation and the model currently implemented in global electromagnetic Particle in Cell

code ORB5.

Strictly necessary information about the Modern Gyrokinetic formalism is given together

with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from the first

principle of dynamics. Variational formulation of dynamics is also used for simultaneously

obtaining the corresponding exact energy conservation law. The result of that explicit deriva-

tion is used for verification of the energy conservation diagnostics currently implemented in

ORB5 code.

This work subscribes into the context of codes verification project VeriGyro currently run

in IPP Max Planck Institut in collaboration with others European institutions.

I. INTRODUCTION

For more than five decades, magnetized plasmas have been investigated in order to achieve

self-sustained nuclear reaction process in fusion devices. The complexity of these systems urges

numerical simulations to understand the dynamical behavior of the plasma. However, numerical

simulations rely on theoretical models which have to reach a compromise between an accurate

description of the dynamics and a restrained number of numerical operations to keep simulations

tractable in current computing facilities.

Gyrokinetic theory aims at this compromise by taking advantage of the specific motion of the

plasma. More precisely, the presence of a strong background magnetic field in such devices makes

possible the separation of different scales of motion. The main idea is to separate the fast motion
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of charged particles around magnetic field lines (referred to as gyromotion) from their slower drift

motion, in order to reduce the number of dynamical variables needed to describe the dynamics. The

cyclotron frequency Ω = eB/mc, where e and m are respectively the charge and mass of particles,

B is the magnetic field amplitude and c is the speed of light, sets the scale of the gyromotion.

Mathematical tools and approximations allowing for the splitting out of this fast scale define a

particular gyrokinetic dynamical reduction.

The gyromotion is described by a fast gyroangle variable θ, to which corresponds a canonically

conjugate slowly varying magnetic moment µ, called adiabatic invariant of the system. At the

lowest order of approximation µ = mv2⊥/2B, where v⊥ is the perpendicular velocity of particles

respective to background magnetic field lines. In early works [7], an iterative gyro-averaging proce-

dure has been used in order to remove the θ-dependency directly from the Vlasov equation. Such a

procedure allowed for the derivation of non-linear gyrokinetic equations. However, the major issue

was the impossibility to obtain an energy-conserving model from this procedure.

The Modern Gyrokinetic theory [5, 13] makes use of differential geometry (perturbative Lie-

transformation techniques) to build up a new set of phase-space variables, such that the fast

gyroangle variable θ becomes uncoupled from the description of particle’s motion and the corre-

sponding moment has trivial dynamics µ̇ = 0. Therefore, the particle phase space is reduced from

6 dimensions to 4+1 dimensions, which already represents a significant simplification for numerical

simulations.

However, one of the main difficulties is then to find a rigorous way for coupling the reduced

particle dynamics to those of the dynamical electromagnetic fields induced by particles, in order

to obtain a self-consistent description of the reduced system.

Two variational formulations exist, Lagrangian [16] and Eulerian [3], both providing a common

framework for the description of Gyrokinetically reduced self-consistent field-particles dynamics

allowing for the derivation of energy and momentum conservation laws. In these formulations,

particles are described on the reduced phase space, while dynamical fields are still being evaluated

at the non reduced space positions. One of the main advantages of the variational formulation is

contained in the fact that polarization and magnetization effects arise naturally as a result of the

dynamical reduction from coupling with reduced particle’s dynamics.

In the Lagrangian formulation, dynamics of particles is represented via the characteristics, from

which the Vlasov equation is reconstructed a posteriori. It allows to choose a reduced model for

particle’s dynamics (i.e. linear polarization approach) and to systematically couple this reduced

model to the dynamical electromagnetic fields. However, additional calculation of moments is
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required in order to reconstruct energy and momentum densities allowing for the derivation of

conservation laws through Noether’s theorem [15]. The Lagrangian formulation is the natural

framework for Particle-in-Cell (PIC) code discretization [12], [1].

Within the Eulerian approach, particles are represented via the Vlasov distribution function,

which is treated as one of the dynamical fields of the theory. This leads to direct derivation of

conservation laws via Noether’s method and does not require any external moments calculation [6].

This approach allows to proceed with systematic derivation of the reduced Maxwell-Vlasov model

by truncating the action functional corresponding to the Gyrokinetic system at the desirable order.

In the same time, the Eulerian formulation is well suited to handle the splitting between background

and fluctuating quantities. Such a manipulation on Vlasov distribution function is used for the

description of instabilities and could be particularly useful to keep ordering consistency within the

reduced Vlasov equation.

In this article we derive a second order Maxwell-Vlasov gyrokinetic model of reference from the

systematic variational approach, suitable for code verification. We compare the result with the

Gyrokinetic equations recently implemented in PIC code ORB5 [11], [2].

We start our derivation by writing an explicit second order expression for the Eulerian action

functional presented in [4]. From the first variation of the action functional, we derive the corre-

sponding Maxwell-Vlasov equations of motion. We then derive the energy conservation law thanks

to the Noether’s method. We finally get the Eulerian second order action principle corresponding

to the gyrokinetic model implemented in ORB5 [11] code.

This paper is organized as follows: in section II we explicit strictly necessary for the following

model’s equations derivation elements of the gyrokinetic reduction procedure for particle dynamics.

Section III begins with summarizing the main concepts of Eulerian variational principle for gy-

rokinetic Maxwell-Vlasov system. We then derive the expression for the full second order Eulerian

action and the corresponding reduced equations of motion.

Section IV starts with derivation of corresponding truncated Maxwell-Vlasov equations imple-

mented in ORB5 code from the corresponding Eulerian action functional. The obtained equations

are then compared to the result of the Eulerian variational principle implementation from the

section IV.

In section VI we are using Noether’s method to get the expression for conserved energy from the

second order Eulerian action. Then we compare the result of Noether’s derivation with quantity

implemented for energy conservation diagnostics into the ORB5.
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II. GYROKINETIC DYNAMICAL REDUCTION ON PARTICLE’S PHASE SPACE:

SOURCES OF POLARISATION AND MAGNETISATION.

In that section we focus our attention on gyrokinetic dynamical reduction procedure for a

single particle dynamics in external electromagnetic fields. This is a preliminary step necessary

for self-consistently reduced Maxwell-Vlasov model derivation. The main goal consists in exporing

the intimate link between the reduced particle’s dynamics and polarization/magnetization effects,

which will appear lately into the Gyrokinetic Maxwell equations.

Clarifying effects of particle’s dynamical reduction constitute an important preliminary step

for correct coupling of reduced dynamics with fields and therefore for the gyrokinetic field theory

construction.

The idea of gyrokinetic dynamical reduction is tightly related to existence of adiabatic invariant,

magnetic moment µ, which in the simplest case of slab magnetic geometry is given by µ = mv2⊥/2B.

Magnetic moment measures the area disclosed by particle motion while its rotation around magnetic

field line. From this geometrical meaning comes the idea of using µ as an action variable canonically

conjugated to the fast gyromotion around magnetic field lines.

In a straight uniform magnetic field, µ is an exact invariant due to the fact that while its

rotation, particle closes the loop exactly. Effects of magnetic field curvature as well as presence

of fluctuating electromagnetic field component destroy that exact conservation: particles do not

completely close the loop anymore. However, the averaged over long times magnetic moment is

still being conserved 〈µ̇〉t = 0.

The dynamical reduction can be organized in one or in two steps depending on the choice of

splitting or not contributions to the fast dynamics from the background and fluctuating fields.

Choosing the two step dynamical procedure is helpful for understanding contributions to the po-

larization and magnetization from the gyrokinetic reduction. To each step corresponds set of new

phase space coordinates such that the fast gyro motion is uncoupled from the description of slow

particle’s drifts; and the dynamics on the reduced phase space is restricted to the surface µ̇ = 0.

These new coordinates are constructed as perturbative series of near-identity phase space trans-

formations, i.e. the transformation can be inverted at each step of perturbative procedure.

Before we proceed with detailed description of reduction procedures, we need to discuss small

parameters associated with each change of coordinates.
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A. Gyrokinetic orderings

At the first step, called the guiding-center transformation, only strong nonuniform background

magnetic field effects are taken into account. We relate to that step a small parameter εB =

ρth/LB, representing ratio between the thermal ion Larmor radius and the scale LB on which

background magnetic field exhibits important changes. Remark that in early works of Northtrop

and Littlejohn, small parameter associated with the guiding-center dynamical reduction appears

as a formal parameter, which scales like the inverse of the electric charge: ε ∼ e−1.

At the second step, called the gyrocenter transformation, the reduced guiding-center system is

perturbed by external fluctuating electromagnetic fields. That leads towards mixing of time scales

and therefore breaks down the magnetic moment conservation at the order of the amplitude of

perturbation. The goal of the gyrocenter transformation is to re-establish time scales separation and

conservation of µ for the perturbed system. The small parameter related to that step of dynamical

reduction measures relative amplitude of fluctuating fields εδ = ε⊥eδφ/Ti, where ε⊥ = |k⊥ρth|; δφ

here represents the amplitude of the fluctuating electrostatic potential and Ti is the ion temperature.

For the maximal gyrokinetic ordering consistency, one should consider contributions from each

dynamical reduction procedure at the same order: εB ∼ εδ. However, in most of nowadays numeri-

cal simulations, contributions from the background magnetic field curvature are pushed at the next

order, i.e. εB � εδ, which can be relevant for example for a large aspect ratio simulations. As we

will see further on, the same approximation will allow to use the Bessel function J0 for calculation

of the gyro - averaging.

B. Gyrokinetic particle’s Lagrangian

Particle’s Lagrangian Λ is the central object of dynamical reduction procedure for uncoupled

single particle dynamics: it consists of a symplectic part Γ and a Hamiltonian part H:

Λ = Γ · Ẋ−H. (1)

The symplectic part provides the information about the symplectic structure on the reduced

phase space. The components of the symplectic matrix ω are related to the components of the

vector Γ as follows:

ωαβ =
∂Γβ

∂Zα
− ∂Γα

∂Zβ
, (2)
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where Zα represent reduced phase space coordinates, which we will explicitly define in the following

subsection.

Together the symplectic structure ω and the Hamiltonian H provide necessary information for

derivation of the equations of motion on the reduced particle phase space. Defining the expression

for the Poisson matrix as the inverse of the symplectic matrix Παβ = ω−1αβ , and the Poisson bracket

as {F,G} = ∂F
∂ZαΠαβ ∂G

∂Zβ
, we can write the reduced equations of motions Żα = {zα, H} = Παβ ∂H

∂Zβ
.

In this work, we will specify the expression for the reduced Poisson bracket and the reduced

Hamiltonian H up to the second order of dynamical reduction.

1. Local particle’s coordinates

The dynamical reduction is performed in local particle’s coordinates zα. For this purpose,

one needs to define two vector basis: the static one, which remains its position while particle’s

rotation around magnetic field line; and the dynamical one, which rotates with particle around the

magnetic field line. As a static basis we take the natural Frenet triad, associated with unitary vector

b̂ = B/B in a direction of background magnetic field. In the perpendicular to the background

magnetic field plane we use then the normalized curvature vector b̂1 = b̂ ·∇b̂/
∣∣∣b̂ ·∇b̂

∣∣∣ and we

define third basis vector as: b̂2 = b̂× b̂1. The dynamical triad is constructed from the static one

as follows: we take b̂ as its first vector and we define

ρ̂ = b̂1 cos θ − b̂2 sin θ (3)

and

⊥̂ = −b̂1 sin θ − b̂2 cos θ. (4)

Where θ is the gyrophase angle: tan θ =
(
ρ̂ · b̂2

)
/
(
⊥̂ · b̂2

)
, is now one of the coordinates into the

perpendicular plane.

We are now ready to define the local particle coordinates: zα = (x, v‖,v⊥)→ (x, v‖, µ, θ) with

performing the following coordinate decomposition for particle velocity:

v = v‖b̂ + v⊥ ≡ v‖b̂ + (2µmB)1/2⊥̂, (5)

here µ =
mv2⊥
2B is the magnetic moment of the particle.

The goal of the dynamical reduction procedure is to define a near-identity change of coordinates

on particle’s phase space, such that the fast dynamics associated with gyromotion is uncoupled
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FIG. 1: The Frenet triade, used for definition of local particle coordinates.

from the dynamical description. We define the coordinates on the reduced phase space as follows:

Zα = τεz
α, where τε is the near-identity operator defined from the general perturbative procedure.

We omit details of this general procedure here, they can be found in [17]. However, it is important

to notice that in general case, this operator τε is gyrophase, i.e. θ-dependent. In the other words, it

means that in order to rewrite dynamics into the variables, which allow to uncouple fast dynamics,

one needs to perform a coordinate transformation, which itself depends on this fast variable.

2. Gyrogauge dependence

Before we proceed further on, we need to point out an important geometrical issue: the gyro-

gauge dependence of the static basis. Indeed, the static basis in the plane perpendicular to the

b̂ direction is not defined in a unique way. On the Fig. 2 we explain this graphically. The

angle ξ makes the difference between two basis vectors (b̂1, b̂2) and (b̂′1, b̂
′
2). This angle depends

on space position, in which the static basis is defined. The following coordinate transformation

comes out from the change of the static basis origin: x→ x′ , which changes the gyrophase angle

definition θ = θ′+ξ(x′). It is evident that the dynamics should be independent from the gyro-gauge

angle, because the dynamics is intrinsic with respect to the choice of the basis vectors. The gyro-

gauge vector, associated with derivation of static basis R = ∇b̂1 · b̂2 may appear into the phase

space Lagrangian expression, undergoing the following transformation with the coordinate change:

R′ = ∇′b̂′1 · b̂′2 = R + ∇ξ, which breaks basis invariance of dynamics. However we remark that

some operations involving the gyro-gauge vector will not lead to the breaking of that invariance:

∇×R′ = ∇× (R + ∇ξ) = ∇×R, (6)
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therefore such a quantity is allowed to enter the dynamical description. In early works of Littlejohn

the gyrophase dependence invariance has not been taken into the account, that issue is corrected

in further works. We remark as well, that the norm of the gyrophase vector R is of the order of

εB.

FIG. 2: Gyrophase angle ξ dependence of stationary basis vectors.

C. Dynamical reduction, first step: guiding-center dynamics

We are now proceeding with detailed description of the dynamical reduction procedure. The

first step considers the effects of the background magnetic field only on the guiding-center dynamics.

The guiding-center dynamical reduction is time-independent. This is why it is performed on 6

dimensional phase space, consisting of the parallel kinetic momentum p‖ = mv‖, reduced (guiding-

center) position X (the effective radius of particle rotation above the magnetic field line), magnetic

moment µ and the gyroangle θ. The corresponding particle’s Lagrangian writes as follows:

Λgc =
c

e
A∗ · Ẋ + µ θ̇ −Hgc, (7)

where the symplectic part contains modified magnetic potential. In that sense, one can say that

the guiding-center change of coordinates generates mixing between space and kinetic parts of the

phase space.

A∗ = A +
c

e

(
p‖b̂−mµR

)
, (8)

with b̂ the normalized direction of background magnetic field B; the gyro-gauge vector R and the
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guiding-center Hamiltonian is given by:

Hgc =
p2‖

2m
+ µB, (9)

where B is the modulus of the background magnetic field.

We remark that the gyro-gauge vector R appears into the definition of the magnetic vector

A∗, which is defined up to the gauge transformation in any cases. This dependence is fixed with

definition of the modified magnetic field B∗ = ∇ ×A∗, which is invariant under the gyro-gauge

transformation accordingly to (6).

By inverting the symplectic matrix, which corresponds to particle’s Lagrangian (7) we obtain

the following guiding-center Poisson bracket:

{F,G}gc =
e

mc

(
∂F

∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
+

B∗

B∗‖
·
(
∇F

∂G

∂p‖
− ∂F

∂p‖
∇G

)
− cb̂

eB∗‖
· (∇F ×∇G) , (10)

Remark that the condition ∇ ·B∗ = 0 guarantees the Liouville theorem (i.e. conservation of the

phase space volume) on the reduced phase space, see for details [5].

The characteristics of the guiding-center dynamics are derived from the Hamiltonian equations

as follows:

Ẋ = {X, Hgc}gc =
p‖

m

B∗

B∗‖
+

cb̂

eB∗‖
× µ∇B (11)

ṗ‖ =
{
p‖, Hgc

}
gc

= −µ∇B · B
∗

B∗‖
(12)

θ̇ =
eB

mc
(13)

µ̇ = 0. (14)

One can immediately conclude that the fastest scale of motion (13) is totally uncoupled from

the reduced position (11) and kinetic momentum dynamics (12). In the same time, the magnetic

moment µ has trivial dynamics on the reduced phase space.

D. Dynamical reduction, second step: gyrocenter dynamics

In the framework of two-step gyrokinetic reduction procedure, external time-dependent elec-

tromagnetic fields are introduced into the system at the second step of dynamical reduction: the

gyrocenter step.

In this case, time becomes a dynamical variable of the system. Therefore, one needs to expand

the guiding-center phase space by introducing a couple of canonically conjugated variables (w, t).
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The latter leads to natural extension of particle’s phase space up to 8 dimensions. On the extended

phase space, the extended non-perturbed Hamiltonian is Hgc ≡ Hgc − w and the Poisson bracket

(10) has an additional canonical term:

{F,G}ext =
e

mc

(
∂F

∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
+

B∗

B∗‖
·
(
∇F

∂G

∂p‖
− ∂F

∂p‖
∇G

)

− cb̂

eB∗‖
· (∇F ×∇G)− ∂F

∂w

∂G

∂t
+
∂F

∂t

∂G

∂w
. (15)

In this work, we choose to keep the latter expression for the Poisson bracket free from introducing

any fluctuating fields. This is the common choice, which has been already adopted while derivation

of the model for the code ORB5. Therefore, all the effects from the dynamical reduction must be

accounted inside the expression for the reduced gyrocenter Hamiltonian Hgy.

The expression for Hgy, which we are using further on for constructing coupled model with

electromagnetic fields is derived in the following section up to the second order in εδ.

Before we proceed with that derivation, here we discuss the relationship between using new

reduced particle position (the gyrocenter position), obtained via the reduction procedure and the

polarization corrections, it induces into the reduced gyrocenter Hamiltonian Hgy.

1. Polarization effects: relationship between coordinate transformation and reduced Hamiltonian dynamics

As we have already mentioned above, the systematic reduction procedure applied to the particle

phase space Lagrangian provides us a set of new coordinates, in which we describe the reduced

particle dynamics. Following that general reduction procedure which involves the Lie derivatives

techniques [5], we discover that the definition of new coordinates and identification of polarization

corrections due to the dynamical reduction into the reduced Hamiltonian are intimately related to

each other. We do not aim to expose the general Lie-transforms reduction procedure here, it can

be found in compact form in [5], detailed derivation or the guiding- center part of the reduction

can be found in [17].

Here we adopt the general attitude for code models derivation: we push the curvature effects of

magnetic field at the next order with respect to the amplitude of the electromagnetic fluctuations:

εB = ε εδ, where ε < 1 is a free small parameter, which can also depend on εδ. Of course, from the

point of view of transition to the limit different choices of ε will lead to a different model from the

general point of view. Here we will drop our series decompositions at the second order in εδ and

the first order in εB, which lead to the same result while εB = ε2δ or εB = ε εδ. Remark that the

norm of the ρ0 is O(ε0B) and those of ρ0 ·∇ρ0 is O(εB).
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In this subsection we are concentrating on the explicit derivation of the reduced Hamiltonian, by

assuming that we have performed the dynamical reduction at the lowest order of the guiding-center

and the gyrocenter transformations.

In the other words, it means that the transition between the initial non-reduced particle position

x and the reduced particle position X is defined as follows:

x ≡ X + ρ0(X, µ, θ) + ρ1(X, µ, θ), (16)

with ρ0 corresponding to the lowest order guiding-center displacement and ρ1 the lowest order of

the gyrocenter displacement. Let us now define each of them explicitly.

The lowest order guiding-center displacement is given by:

ρ0 ≡
mc

e

√
2µ

mB
ρ̂ ≡ ρ0ρ̂. (17)

This displacement takes into account the background magnetic field B, which is locally uniform.

We emphasize that the amplitude of background magnetic field B is evaluated at the reduced

guiding-center position X and ρ̂, is one of the dynamical basis vectors, defined in (3). All the

following corrections to the guiding-center displacement are related to the magnetic curvature.

The expression for the first order gyrocenter displacement is given by:

ρ1 ≡ −2
e

mΩ2
(ρ̂ρ̂ ·∇ψ1(X)) , (18)

here ψ1 = φ1 − e
mc pzA1‖ represents linear electromagnetic potential, it means that ρ1 contains

both gyroaveraged and fluctuating parts.

Deriving the reduced expression for the Hamiltonian is the key point in derivation of the reduced

Maxwell-Vlasov model. Namely, it will allow us to define the polarization effects (i.e. effects due

to the dynamical reduction) into the reduced Maxwell equations later on from the variational

principle.

We will show that for identification of the second order corrections in εδ to the Hamiltonian

requires coordinate transformation of the first order in εδ.

First, we proceed with explicit derivation of the first order gyrocenter displacement ρ1 in the

following section.

2. Second order reduced Hamiltonian

We will show the effects of two coordinate transformations (16) into the reduced Hamiltonian.
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We start with constructing the perturbed electromagnetic Hamiltonian Hgy of the second order

in εδ.

We perform the following transformation of the guiding-center Hamiltonian Hgc (9): first, we

introduce the definition of new perturbed canonical momentum coordinate:

pz = p‖ +
e

c
A1‖(X + ρ0 + ρ1︸ ︷︷ ︸

≡ρε

), (19)

second, we also add a perturbed electrostatic potential φ1(X + ρ0 + ρ1). Remark that this change

of coordinates will not affect the definition of the Poisson bracket (15) because ∂pz ≡ ∂p‖ . In

the other words, we decide here to add the perturbed part of the magnetic potential A1‖ into

the Hamiltonian and not into the Poisson bracket. This is the Hamiltonian representation of the

gyrocenter dynamics. We discuss other possible representations of the gyrocenter dynamics below.

The perturbed gyrocenter Hamiltonian is:

Hgy =
p2z
2m

+ µB +

(
e φ1(X + ρ0 + ρ1)−

1

m

e

c
pz A1‖(X + ρ0 + ρ1)

)
(20)

+
1

2m

(e
c

)2
A1‖(X + ρ0 + ρ1)

2,

where the linear perturbed gyrocenter potential :

ψ1gy ≡ φ1(X + ρ0 + ρ1)−
1

mc
pz A1‖(X + ρ0 + ρ1). (21)

Here, ρ0 represents the lowest order guiding-center contribution and ρ1 the gyrocenter contribution

correspondingly. We are performing expansion of ρ1 corrections:

ψ1gy ≡ ψ1(X + ρ0 + ρ1) = ψ1 (X + ρ0) + ρ1(X + ρ0) ·∇ψ1 (X + ρ0) +O(ε2δ) (22)

≡ ψ1gc + ρ1 ·∇ψ1gc +O(ε2δ) (23)

In what concerns the purely electromagnetic quadratic contribution A1‖(X + ρ0 + ρ1)
2, here only

corrections related to the guiding-center transformation are taken into the account, because all

the polarization effects related to ρ1 are at least of the order O(ε3δ), i.e. A1‖(X + ρ0 + ρ1)
2 '

A1‖(X + ρ0)
2.

The gyro-averaged gyrocenter Hamiltonian, corresponding to the change of coordinates from

the full particle position x to the reduced position X with taking into account highest order

displacements ρ0 and ρ1 is given by:

〈Hgy〉 =
p2z
2m

+ µB + εδ 〈ψ1gc〉+ ε2δ 〈ρ1 ·∇ψ1gc〉+
ε2δ
2m

(e
c

)2 〈
A2

1‖gc

〉
(24)
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Here the gyro averaging operations are performed with respect to the lowest order guiding-

center displacement ρ0. It means that the gyro averaging is performed on uniform circles of radius

ρ0:

〈ψ1gc〉 = 〈ψ1 (X + ρ0(X, µ, θ)〉 ≡
∫ 2π

0
dθ ψ1 (X + ρ0(X, µ, θ)) , (25)

Let us now explicitly evaluate the expression, which contains only highest order guiding-center

FLR contributions to the mixed electromagnetic term 〈ρ1 ·∇ψ1gc〉. Such a derivation will lead us

to the model, which is currently implemented into the ORB5 code. Such a model is valid within

the long wave lenght approximation, i.e. for the case with k⊥ρ� 1.

The gyro averaging of the full expression for the gyrocenter potential gives :

〈ψ1gy〉 = 〈ψ1gc〉+ 〈ρ1 ·∇ψ1gc〉+ . . . , (26)

in case, when only the lowest order contribution to ψ1gc, is taken into the account:

〈ρ1(X + ρ0) ·∇ψ1(X)〉 = 〈ρ1(X + ρ0)〉 ·∇ψ1(X).

The gyro averaged part of the gyrocenter displacement (18) is calculated with using that

〈ρ̂ρ̂〉 =
1

2
1⊥, (27)

where 1⊥ = ⊥̂⊥̂+ ρ̂ρ̂ ≡ 1− b̂b̂ is the perpendicular dyadic tensor. Therefore,

〈ρ1〉 = −
( e

mΩ2

)
∇⊥ψ1(X). (28)

The following expression accounts only highest order contributions to the nonlinear mixed elec-

tromagnetic term 〈ρ1 ·∇ψ1〉 . This is the second order Hamiltonian, which will be later compared

to the one implemented into the ORB5 code.

〈Hgy〉 =
p2z
2m

+ µB + εδ

(
e 〈φ1(X + ρ0)〉 −

1

m

e

c
pz
〈
A1‖(X + ρ0)

〉)
(29)

+
ε2δ
2m

(e
c

)2 〈
A1‖(X + ρ0)

2
〉
−
ε2δ
2

e

mΩ2

∣∣∣∇⊥φ1(X)− e

c
pz∇⊥A1‖(X)

∣∣∣2 .
This expression for the gyrocenter Hamiltonian contains gyrocenter corrections of orders O(εδ)

and O(ε2δ). The gyro averaging here is realized with respect to the lowest order guiding-center

displacement ρ0 accordingly to (25) . It means that the gyro averaged quantities contain the FLR

corrections related to the lowest order guiding-center displacement ρ0 at all orders. It takes into

account the long wave lenght approximation for the last nonlinear electromagnetic term.

The first order term represents linear gyro averaged electromagnetic potential 〈ψ1gy〉. The sec-

ond order term has two parts: the purely magnetic one
〈
A2

1‖

〉
and the electromagnetic contribution

evaluated into the gyrocenter position X, which does not contain any other FLR corrections with

respect to the guiding-center displacement ρ0.
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3. Symplectic and Hamiltonian representations of gyrocenter reduction

The electrostatic part of fields perturbation φ1 is usually accounted as a part of a perturbed

gyrocenter Hamiltonian. However, there exist several possibilities for organizing the dynamical

reduction procedure depending on where the magnetic potential perturbation A1‖ is taken into

account: into the Symplectic or into the Hamiltonian part of the phase space Lagrangian (1).

The Hamiltonian representation includes parallel magnetic perturbation A1‖ inside the expres-

sion for the perturbed Hamiltonian and leaves the guiding-center Poisson bracket (15) invariant.

As we have seen into the previous section, it uses parallel canonical gyrocenter momentum pz as

one of the phase space variables, it is therefore sometimes called ”pz representation”.

The Symplectic representation accounts the perturbed parallel magnetic moment inside the

Symplectic part of the phase-space Lagrangian, which leads to perturbation of guiding-center

Poisson bracket (15). In that case, parallel kinetic momentum is unperturbed p‖ = mv‖. The

latter facilitates identification of various physical terms and makes possible to avoid the cancellation

problem [9], related to presence of terms with several orders of difference inside the corresponding

Ampère’s equation.

In what concerns PIC codes, Hamiltonian representation is preferable, since in the symplectic

one the inductive electric field (i.e. explicit time-derivative of perturbative magnetic potential)

appears into the characteristics. It therefore requiers additional implicit time integrator. When

the Hamiltonian representation is chosen, the explicit time derivatives of perturbed potentials

are only contained into the dynamics of w-variable and therefore completely uncoupled from the

dynamics of the physical reduced phase space. Symplectic representation is used for derivation of

particles characteristics and Vlasov equation implemented in Eulerian , i.e. GENE code [10], [8].

a. First order gyrocenter characteristics First order particle characteristics in pz representa-

tion are derived from the first order in εδ gyrocenter Hamiltonian:

H(1)
gy = Hgc + e εδ 〈φ1gc〉 −

εδ
m

e

c
pz
〈
A1‖gc

〉
− w, (30)

and the non-perturbed guiding-center Poisson bracket on extended 8-dimensional phase space (15):

Ẋ(1)
gy =

{
X,H(1)

gy

}
ext

=
B∗

B∗‖

∂H(1)
gy

∂pz
+

cb̂

eB∗‖
×∇H(1)

gy (31)

ṗ(1)z gy =
{
pz,H(1)

gy

}
ext

= −B∗

B∗‖
· ∇H(1)

gy . (32)
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We give detailed derivation of characteristics equations in Hamiltonian representation as it is

implemented in ORB5 code in the Appendix B; together with ORB5 code diagnostics.

In Symplectic representation only the electrostatic part of the perturbation is included inside

the expression for the gyrocenter perturbed Hamiltonian Hsgy, while the magnetic part of the

perturbation is accounted into the symplectic part of the Lagrangian (1) through the symplectic

potential (8) and therefore into the Poisson bracket, which we name here with indice gy. The latter

makes appear explicit time derivatives of magnetic potential into the expressions for reduced phase

space characteristics (X, p‖):

Ẋ(1,s)
gy =

{
X,Hsgy

}
gy

=
B∗

B∗‖

∂Hsgy
∂p‖

+
cb̂

eB∗‖
×∇Hsgy (33)

ṗ‖
(1,s)
gy

=
{
p‖,Hsgy

}
gy

= −B∗

B∗‖
· ∇Hsgy −

e

c

∂
〈
A1‖gc

〉
∂t

We also remark that the symplectic magnetic field B∗ now contains a part of perturbed magnetic

field and therefore it enters into the Liouville condition for the phase space volume conservation

∇ ·B∗ = 0.

4. Field-particles coupling on the reduced phase space

Gyrokinetic coordinate transformation introduces a difference between positions of fields and

particles: fields are evaluated into the non-reduced spatial position r, while particles are now

replaced by gyrocentres X, whose position differs on the distance of the polarization displacement

ρε ≡ ρ0 + ρ1. In order to correctly account field-particles interaction on the reduced phase space,

one should include contributions from all gyrocenters X located at the distance ρε from the field

position r. On the figure 6 we represent this statement graphically. As we could see in the previous

section, all effects from the lowest order gyrocenter displacement ρ1 are explicitly accounted into

the reduced Hamiltonian Hgy and all the averaging operators contain contributions only from the

guiding-center displacement ρ0. Therefore, the polarization effects associated with the gyrocenter

displacement will appear into the reduced characteristics, while the polarization effects coming

from the guiding-center displacement are included into the averaged electromagnetic potentials(
〈φ1gc〉 ,

〈
A1‖gc

〉)
. To compactify our formulas in further calculations we use the following notation

to account the guiding-center polarization effects:

δ3gc ≡ δ3 (X + ρ0(X, µ, θ)− r) . (34)
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We remark that this operator is not symmetric in general with respect to the transitions between

the reduced and non-reduced coordinates: i.e. ρ0 can be seen as a function of X or x.

A point that should be clarified here is about the transitions between the reduced guiding-center

coordinate and the original particle’s position. At the lowest order of transformation, we have:

ρ0((x−X) + X) ∼ ρ0(X) + (x−X) ·∇ρ0 + . . .

The distance between the gyrocenter position X and the non-reduced particle position x is supposed

to be small (let name it ε), after all we just perform near-identinty transformations. In the same

time, the second rank tensor ∇ρ0 contains O(εB) contributions. Then, the first correction in that

series decomposition is at least of order O(εBε) and therefore can be therefore neglected in our

further calculations. Finally, we see that at the lowest order of coordinate transformation, the δ3gc

operator is symmetric. This will be important for further calculation of functional derivatives.

FIG. 3: Gyrokinetic polarization: contributions of reduced particles positions X, situated at the distance of

polarization displacement ρε from the field position r.

III. EULERIAN SECOND ORDER VARIATIONAL PRINCIPLE: GENERAL METHOD

As it has been already mentioned in the introduction, there exist two types of variational

formulation for plasma dynamics. The main difference consists in treatment of particles dynamics.

While the Eulerian formulation allows to consider Vlasov field as a dynamical field, the Lagrangian

formulation treats particles dynamics through their characteristics.
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In this section we introduce an implicit expression of the second order Eulerian action functional,

i.e. containing corrections up to the O(ε2δ) and up to the second order in guiding-center FLR

effects related to the lowest order displacement ρ0. The implicit expression of this Eulerian action

functional has been obtained in [4] via systematic truncation of full Eulerian gyrokinetic action [3].

The second order Maxwell-Vlasov action functional writes:

IE [φ1,A1,F ] ≡
∫ t2

t1

AE [φ1,A1,F ] dt =

∫
dV dt

8π

(
ε2δ |E1|2 − |B0 + εδB1|2

)
(35)

−
∫

d8Z F H1 −
∫

d6Z dt F0 H2

The first term here represents the Maxwellian part of the action with electrostatic field E1 ≡

−∇φ1−c−1∂tA1. The magnetic field is separated into background B0 and fluctuating (dynamical)

part B1 ≡∇×A1.

The second and third terms are contributions to the Vlasov part of the action. The first Vlasov

term contains dynamical part of the distribution function and it is defined on the extended 8-

dimensional phase space with d8Z ≡ B∗‖dV dpz dµ dθ dt dw,where dV represents space volume

element; while the second Vlasov term is defined on the n-dimensional reduced gyrocenter phase

space with d6Z ≡ B∗‖dV dpz dµ dθ. This manipulation is necessary to get the Vlasov equation

from the variational principle. This is also mandatory for derivation of the conservation laws via

the Noether’s method.

The second term of the action functional contains the truncated first order Vlasov distribution

on the extended phase space:

F ≡ (F0 + εδ F1) δ (w −H0 − εδH1) , (36)

while the third term keeps only a non-dynamical part of the Vlasov distribution F0. Therefore, in

our action functional the second order reduced gyrocenter dynamics, generated by the Hamiltonian

H2 is associated with background distribution function only.

In this work we aim to compare results of our derivation (i.e. equations of motion and conserva-

tion laws) for the Eulerian action functional (35) with the action functional used for construction

of the ORB5 code model. We describe that model in section (V). Finally, we aim to build up

an exactly conserved electromagnetic energy invariant via the Noether’s method. We discuss that

issue in the section (III C). In that section we proceed with implicit derivation without giving

expressions for H1 and H2. In the next section we explicit the expressions for the reduced par-

ticle dynamics model and provide explicit expressions for the corresponding equations of motion

(Gyrokinetic Maxwell-Vlasov system) and the conserved energy density.
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A. First variation of the action functional

In this section we give the procedure of the first variation calculation for the second order

Eulerian action (35). The variation calculation requires the use of the functionals derivatives.

For a functional L =
∫
dΛ L (η,∇η) depending on a scalar field η = η(x) and its gradient

∇η = ∇η(x), the functional derivative is :

δL
δη
◦ χ ≡ d

dν

∣∣∣∣
ν=0

(∫
dΛ L [η + νχ,∇η + ν∇χ]

)
=

∫
dΛ

∂L

∂η
◦ χ+

∫
dΛ

∂L

∂∇η
◦ ∇χ (37)

=

∫
dΛ

(
∂L

∂η
−
(
∇ · ∂L

∂∇η

))
◦ χ+

∫
dΛ ∇ ·

(
∂L

∂∇η
◦ χ
)
, (38)

where χ is an arbitrary test function.

Therefore, the first variation for the second order Eulerian action is:

δIE ≡
∫ t2

t1

δAE [φ1,A1,F ] dt =

∫ t2

t1

(
δAE

δφ1
◦ φ̂1 +

δAE

δA1
◦ Â1 +

δAE

δF
◦ δF̂

)
dt, (39)

Such a derivation provides two important informations: first of all, it allows one to get a system

of coupled Maxwell-Vlasov equations; second, it also provides us the expressions for the Noether’s

terms, necessary for the corresponding conservation laws derivation. The Noether’s terms are

represented by exact derivatives and do not contribute to the dynamical part.

To that purpose, while evaluating the first variation of the action functional IE [φ1,A1,F ],

we are using the following definition of the functional derivative which makes explicitly appear

dependencies on the scalar fields and their gradients.

As we will see, the equation (37) defines dynamics in a weak form, while the equation (38)

obtained via the Leibnitz rule application contains the dynamical term (multiplied by χ) and the

Noether’s term, which we are using for derivation of the conservation laws.

We remark here that from the point of view of mathematical definition δL/δη is a linear func-

tional, i.e. in order to get a numerical value, one has to apply it to the test function (we named it

χ above), which does not have a small norm a priori. In physics, this test function is traditionally

named with the same letter as the derivative, see for example [16],[5], so in our case it would be

δη. This is used in order to keep an intuitional link to the definition of Riemann’s derivative. We

will be using such a definition while deriving the equations of motion for the Eulerian action (35).

We also remark here that the spatial derivative ∇ can be also replaced by the time derivative ∂t

into the expressions (37) and (38) respectively. We will be using this fact for energy conservation

law derivation in the following section.
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1. Constrained Eulerian variations

Before proceeding with explicit first variation derivation for Eulerian action functional (35), we

need to explain how Vlasov field variations are calculated. Indeed, variation of the extended phase

space Vlasov field F is evaluated in the following constrained form:

δF ≡ {S,F}ext, (40)

where S is a generating function, not affecting the equations of motion but defining the conservation

law for the reduced system through the Noether’s theorem. In what concerns functional derivatives

with respect to the electrostatic and the electromagnetic potential, their evaluation is performed

with respect to the general rule of classical field theory. The electric and magnetic field variations

should respect the constraints imposed by electromagnetic fields definitions :

δE1 = −∇δφ1 − c−1∂tδA1 (41)

δB1 = ∇× (δA1) . (42)

For convenience of further calculations we separate the general second order action functional

on its field part and Vlasov (Vl) part :

AE [φ1,A1,F ] ≡ AE,(field)[φ1,A1] +AE,(Vl)[φ1,A1,F ] = (43)

AE,(field)
el [φ1,A1] +AE,(field)

magn [φ1,A1] +AE,(Vl)
lin [φ1,A1,F ] +AE,(Vl)

nonlin[φ1,A1]

The field part of the action is further divided into the electric Maxwellian part:

AE,(field)
el [φ1,A1] ≡

ε2δ
8π

∫
dV |E1|2 (44)

and magnetic Maxwellian part:

AE,(field)
magn [φ1,A1] ≡ −

1

8π

∫
dV |B0 + εδB1|2 (45)

We separate the linear and nonlinear contributions to the Vlasov part of the action functional in

the following way. The linear one: contains contribution from the dynamical part of the extended

Vlasov field F defined by (36) and the first order gyrocenter Hamiltonian H1 given by (30).

AE,(Vl)
lin [φ1,A1,F ] ≡ −

∫
d8Z F H1 (46)
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Finally, the nonlinear Vlasov term contains only non-dynamical part of the Vlasov field F0 and the

second order extended electromagnetic Hamiltonian H2, which will be defined below accordingly

to the different Maxwell-Vlasov gyrokinetic models we are about to derive:

AE,(Vl)
nonlin [φ1,A1] ≡ −

∫
d6Z dt F0 H2 (47)

2. Fields contributions

We start with calculating functional derivative of fields contribution to the action functional.

δAE,(field) ≡ δAE,(field)

δφ1
◦ φ̂1 +

δAE,(field)

δA1
◦ Â1, (48)

where φ̂1 and Â1 are the test functions.

First, for the electrostatic field term with E1 we have:

δAE,(field)
el

δφ1
◦ φ̂1 =

d

dν

[∫
dV

8π
ε2δ

∣∣∣E1 − ν∇φ̂
∣∣∣2] |ν=0

= −ε2δ
∫
dV

4π
E1 ·∇φ̂1︸ ︷︷ ︸

Weak dynamics

= −ε2δ
∫
dV

4π
∇ ·E1 φ̂1︸ ︷︷ ︸

Dynamical term

+ ε2δ

∫
dV

4π
∇ ·

(
E1 φ̂1

)
︸ ︷︷ ︸

Noether′s term

, (49)

an electrostatic part of functional derivative and

δAE,(field)
el

δA1
◦ Â1 =

d

dν

[∫
dV

8π
ε2δ

∣∣∣∣E1 − ν
1

c
∂tÂ1

∣∣∣∣2
]
|ν=0 = −ε2δ

∫
dV

4π
E1 ·

1

c
∂tÂ1︸ ︷︷ ︸

Weak dynamics

= ε2δ

∫
dV

4π

1

c
∂tE1 · Â1︸ ︷︷ ︸

Dynamical term

−ε2δ
∫
dV

4π

1

c
∂t

(
E1 · Â1

)
︸ ︷︷ ︸

Noether′s term

.

the magnetic field contribution.

Next, we derive a magnetic contribution with B1 = ∇×A1:

δAE,(field)
mag

δA1
◦ Â1 = − d

dν

[∫
dV

8π

∣∣∣B0 + εδ∇×
(
A1 + ν Â1

)∣∣∣2] |ν=0

= −εδ
∫
dV

4π
(B0 + εδB1) ·

(
∇× Â1

)
︸ ︷︷ ︸

Weak dynamics

(50)

= −εδ
∫
dV

4π

Â1 ·∇× (B0 + εδB1)︸ ︷︷ ︸
Dynamical term

−∇ ·
[
(B0 + εδB1)× Â1

]
︸ ︷︷ ︸

Noether′s term

 .
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3. Vlasov contributions

Let us now proceed with derivation of contribution from the Vlasov parts of the action func-

tional.

The first variation of the linear Vlasov’s part of the action writes as:

δAE,(Vl)
lin = −

(
δAE,(Vl)

lin

δF
◦ δF̂ +

δAE,(Vl)
lin

δφ1
◦ φ̂1 +

δAE,(Vl)
lin

δA1
◦ Â1

)
(51)

= −
∫
d6Z dw

(
H1 δF̂ + F

(
δH1

δφ1
◦ φ̂1 +

δH1

δA1
◦ Â1

) )
(52)

We now explicit each of those contributions with using the definition for the constrained Eulerian

variation of the extended distribution function δF where S is the generating function, which does

not affect dynamical part of variation, but defines the conservation law we derive via the Noether’s

method.

To explicit the first contribution we are using the expression for the constrained Eulerian vari-

ation of the Vlasov distribution (40), containing δF̂ . This expression can be further rewritten

with using the Leibnitz rule for the Poisson bracket on the extended phase space such that the

dynamical and the Noether contributions are:

δAE,(Vl)
lin

δF
◦ δF̂ = −

∫
d6Z dw H1 {S, F̂}ext (53)

= −
∫
d6Z dw {SH1, F̂}ext︸ ︷︷ ︸

Noether′s term

+

∫
d6Z dw S {H1, F̂}ext︸ ︷︷ ︸

Dynamical Vlasov

The first term here does not give any dynamical contributions and the second one leads toward

derivation of Gyrokinetic Vlasov equation. The two remaining terms in (52) will contribute to the

gyrokinetic Maxwell’s equations via the polarization and magnetization.

Let us now consider the contributions to the first action functional variation from the nonlinear

Vlasov part. The second order reduced dynamics in the functional (35 ) is associated with non-

dynamical part of the distribution function F0 only. it It will naturally lead to the contributions

into the dynamical equations and does not provide any Noether’s terms by construction.

δAE,(Vl)
nonlin = −

δAE,(Vl)
nonlin

δφ1
◦ δφ̂1 −

δAE,(Vl)
nonlin

δA1
◦ δÂ1 = −

∫
d6Z F0

(
δH2

δφ1
◦ φ̂1 +

δH2

δA1
◦ Â1

)
(54)

Let us now point out how the polarization and magnetization effects arise into the reduced

Maxwell-Vlasov equations. Note that the reduced particle dynamics, contained into the Hamil-

tonians H1 and H2, is evaluated on the reduced phase space at the gyrocenter position X, while
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the electromagnetic potentials φ1 and A1 are evaluated at the initial non-reduced space position

r. Therefore, the shift between both positions has to be systematically taken into account while

calculating the functional derivatives. This fact naturally leads to the appearance of polarization

and magnetization on the right hand side of the Gyrokinetic Poisson and Ampere equations.

As mentionned in the previous section, the first variation of the action functional can be rewrit-

ten in a form which contains two types of terms: those multiplied by the test functions (φ̂1, Â1)

and the generating function S, and other terms, representing exact derivatives with respect to time

and space variables. The first category of terms provides us equations of motion. The second one

will be used later for derivation of the conservation laws via the Noether’s theorem.

We proceed with explicit derivation of the polarization contributions from the reduced particles

dynamics in the next section. In that section we continue with derivation of the reduced Maxwell-

Vlasov equations in the implicit form as well as we sketch out here the general Noether procedure

for the energy conservation law derivation.

B. Equations of motion: implicit weak form

We are now ready to write the reduced Maxwell-Vlasov system corresponding to the Eulerian

second order action functional in an implicit form, i.e. without specifying expressions for the

functional derivatives of the reduced Hamiltonians of the first and the second order, essentially

representing polarization effects due to the dynamical reduction on the particle phase space. We

proceed with the explicit derivation into the following section.

We start with writing implicit equations of motion in a weak form (i.e. applied on the test

functions), which is essential for numerical implementation as well as for energy conservation

derivation.

In order to write the weak form of the second order Gyrokinetic Maxwell - Vlasov equations we

collect all the contributions to the first variation of the action functional accordingly to the (85).

We start with the gyrokinetic Poisson equation:

0 =
δAE

δφ1
◦ φ̂1 ⇒ (55)∫

dV
(
E1 ·∇φ̂1

)
= 4π

∫
dV dW (F0 + εδF1)

δH1

δφ1
◦ φ̂1 + 4π

∫
dV dW F0

δH2

δφ1
◦ φ̂1
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and for the Ampere equation:

0 =
δAE

δA1
◦ Â1 ⇒∫

dV

[
(B0 + εδB1) ·∇× Â1 +

1

c
E1 · ∂tÂ1

]
=

4π

∫
dV dW (F0 + εδF1)

δH1

δA1
◦ Â1 + 4π

∫
dV dW F0

δH2

δA1
◦ Â1 (56)

Those equations can be rewritten in a strong form integrating by parts and then using the

arbitrariness of the test functions: φ̂1 ≡ φ1 and Â1 ≡ A1. By collecting terms multiplied by φ1,

we get the Poisson equation in a strong (conventional form)

(∇ ·E1) = 4π

∫
dW e (F0 + εδF1)

δH1

δφ1
+ 4π

∫
dW e F0

δH2

δφ1
(57)

The Ampere’s equation is obtained from collecting terms multiplied by A1 :(
∇× (B0 + εδB1)− εδ

1

c

∂E1

∂t

)
= −4π

∫
dW e (F0 + εδF1)

δH1

δA1

− 4π

∫
dW e F0

δH2

δA1
(58)

Finally, with taking the test function F̂ = F the Vlasov equation is obtained in its extended phase

space bracket form from (54):

0 =
δAE,(Vl)

lin

δF
◦ δF̂ ⇒ {H1,F}ext = 0 (59)

C. Noether method and energy conservation law

Noether’s method in classical field theory is used to associate symmetries of action with con-

served quantites. The general Noether’s transport equation has the following form:

∂S

∂t
+ ∇ · J = δLE (60)

where S is the Noether’s current and J is the Noether’s density; LE is Lagrangian density of

Eulerian action:

AE ≡
∫
dV LE . (61)

The variation δLE is defined accordingly to the conservation law we are deriving.
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By collecting the Noether’s terms, which we have derived in the previous section, while rewriting

equations of motion in a strong form, we can write general expressions for S and J suitable for

conservation laws derivation:

S = −
ε2δ
4π

1

c

(
E1 · Â1

)
+

∫
dW dw F S (62)

J = −
ε2δ
4π

E1 φ̂1 +
εδ
4π

[
(B0 + εδB1)× Â1

]
+

∫
dW dw F{X, H1}S (63)

The last term in the expression for Noether’s current S and Noether’s density J is obtained from

Vlasov part of action functional, its explicit derivation from the expressions (54) are summarized

in (C).

In this section we will concentrate on the energy conservation derivation only. We leave mo-

mentum conservation derivation for further work.

The energy conservation is derived from performing infinitesimal time translations t → t + δt

on the Eulerian action AE . The explicit expression for the corresponding generating function S,

which also the defines the constrained variations of Vlasov field is given by S = −w δt. Then, the

expressions of electromagnetic field and Lagrangian density variations are defined as:

δφ1 = −δt ∂φ1
∂t

(64)

δA1 = −δt ∂A1

∂t
= c δt (E1 + ∇φ1) (65)

δLE = −δt
(
∂LE

∂t
− ∂′LE

∂t′

)
, (66)

where X is the gyrocenter poistion; the ∂′t means time derivative with respect to the background

fields only. In general, the background non-dynamical fields B0 and F0 could explicitely depdend

on time. In this case their explicit time-dependencies should be removed from the conservation

law. In our case, both of those fields are explicitly time-independent, so the variation of Lagrangian

density is simply given by δLE = −δt ∂tLE .

Remark that, only Maxwellian part of AE and the Vlasov part associated with non-dynamical

part of the distribution function will contribute to δLE , because formally the Vlasov part∫
d8Z F H ≡ 0 for H ≡ δ(w −H).

In the following section, we derive explicit expression for energy density, which contains FLR

terms up to the second order.

The Lagrangian density time derivative is given by:

δLE = −δt ∂

∂t

[
1

8π

(
ε2δ
∣∣E1

∣∣2−∣∣B0 + εδB1

∣∣2)− ∫ dW F0 H2

]
. (67)
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It means that in the case of the energy conservation derivation through the infinitesimal time

translations, the Maxwell part of the action as well as the truncated non-dynamical Vlasov part,

contributes to the energy density.

We can now write an implicit expression for the energy density E , which corresponds to the

Eulerian action (35). With choosing the test functions, corresponding to the conservation law we

are about to derive: φ̂1 = δφ1 and Â1 = δA1, we get:

E = − 1

8π

(
ε2δ |E1|2 + |B0 + εδB1|2

)
− ε2δ

∫
dW (F1 H1 + F0 H2) (68)

−
ε2δ
4π

E1 ·∇φ1 (69)

J =
εδ
4π

(B0 + εδB1)×E1 −
∫
dW F1Ẋ

(1) (70)

+
ε2δ
4π

[
E1

∂φ1
∂t

+ c (B0 + εδB1)×∇φ1

]
(71)

One more manipulation should be done before we proceed with an explicit derivation for some

particular choice of the reduced particle model with a particular choice of H2.

The terms (69) and (71) can be rewritten with using the weak form of the equations of motion

(56) and (56), derived for this model.

With using the test function φ̂1 ≡ φ1 in the Poisson equation (57) and Â1 ≡ ∇φ1 in (58) we

introduce polarization and magnetization effects into the expression for the energy density E and

the energy flux J:

E = − 1

8π

(
ε2δ |E1|2 + |B0 + εδB1|2

)
− ε2δ

∫
dW (F1 H1 + F0 H2) (72)

−
∫
dW εδ (F0 + εδF1)

δH1

δφ1
◦ φ1 (73)

J =
εδ
4π

(B0 + εδB1)×E1 − εδ
∫
dW F1Ẋ

(1)
gy (74)

− εδ

∫
dW (F0 + εδF1)

δH1

δA1
◦∇φ1 − εδ

∫
dW F0

δH2

δA1
◦∇φ1 (75)

In the following section we proceed with derivation of the explicit expressions for equations of

motion and the energy conservation laws.

IV. EULERIAN SECOND ORDER ACTION FUNCTIONAL: EXPLICIT DERIVATION

The aim of this section is to provide an explicit form of the reduced Maxwell-Vlasov equations

in their weak form (56, 56) and in their strong (57, 58) form.
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To start the explicit derivation we are implementing the standard approximation of the Gyroki-

netic theory concerning the electromagnetic fields.

First, we take into account the low frequency approximation for the electric field: E1⊥ ≡ −∇⊥φ1
for the perpendicular component and E1‖ = −b̂ ·∇φ1 − c−1∂tA1‖ for the parallel one. Therefore,

the parallel electric field component is of the next order of smallness with respect to the gyrocenter

parameter εδ than the perpendicular one: |E1‖| ∼ εδ|E1⊥|.

In the same time, we suppose that the magnetic perturbation is given by:

B1 = ∇× (b̂ A1‖), (76)

i.e. the magnetic potential perturbation has only a parallel component. We keep here the full

expression of the perturbed magnetic field (76), which respects the Maxwell constraint ∇ ·B1 = 0

and therefore conserves the Liouville theorem necessary for the phase space volume conservation

on the reduced phase space. The latter leads to appearance of magnetic curvature terms in the

Ampère’s law and the conservations laws. We also remark that, taking into account only parallel

fluctuations of the perturbed magnetic potential, leads to the derivation of only parallel component

of Ampère’s law from the variational principle.

Finally, in what concerns the particle dynamics a choice of the reduced model is realized ac-

cordingly to the gyrocenter Hamiltonian (29). The detailed derivation of that expression is done

in sec. (II D 2).

The H1 is the first order correction to the general gyrocenter Hamiltonian (29):

H1 = εδ

(
e 〈φ1(X + ρ0)〉 −

1

m

e

c
pz
〈
A1‖(X + ρ0)

〉)
≡ εδ

(
e 〈φ1gc〉 −

1

m

e

c
pz
〈
A1‖gc

〉)
(77)

While the H2 is represented by the O(ε2δ) corrections to the (29): we truncate the gyro aver-

aging up to the second order in guiding-center FLR corrections for the squared parallel magnetic

potential:
〈
A1‖(X + ρ0)

2
〉
:

〈
A1‖(X + ρ0)

2
〉

=
〈
A1‖(X)2

〉
+ ρ20

〈(
ρ̂ ·∇A1‖(X)

) (
ρ̂ ·∇A1‖(X)

)〉
(78)

+ ρ20 A1‖ 〈ρ̂ ρ̂〉 : ∇∇A1‖.

Next, with taking into account the expression for the gyroaveraged tensor (27) and the expres-

sion for the lower order guiding-center displacement (17), we can write the explicit expression for

the second order Hamiltonian H2:
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H2 =
e2

2mc2
A2

1‖ +
µ

2B

∣∣∇⊥A1‖
∣∣2 +

1

2

µ

B
A1‖∇2

⊥A1‖ −
mc2

2B2

∣∣∣∇⊥φ1 − pz
mc
∇⊥A1‖

∣∣∣2 (79)

The first and the second terms are the first order guiding-center FLR corrections to the aver-

aged gyrocenter magnetic potential, and the third term is the second order guiding-center FLR

contribution.

The last term here represents the lowest order gyrocenter polarization correction, associated

with the gyro averaged gyrocenter displacement ρ1 (28). The latter is related to the gradient

of the electromagnetic potential in general Gyrokinetic theory. We emphasize that most of the

physical models consider only its electrostatic part. In the sec. (V) we make a comparison between

this full second order model and the ORB5 model, which contains only the electrostatic part of

the polarization.

Remark that the electromagnetic part of the polarization contains only the FLR corrections of

the first order, which does not contradict to the general gyrocenter ordering consistency.

A. Dynamical and Noether’s terms

Taking into account assumptions on the electromagnetic fields as well as on truncated particle’s

dynamics discussed in the section above, we can write an explicit expression for the Eulerian action:

I‖E
[
φ1, A1‖,F

]
≡
∫ t2

t1

A‖E
[
φ1, A1‖,F

]
dt (80)

=

∫
dV dt

8π

(
ε2δ |∇⊥φ1|

2 −
∣∣∣B0 + εδ ∇×

(
A1‖b̂

)∣∣∣2) (81)

−
∫
d8Z F

[
H0 + εδ e 〈φ1gc〉 − εδ e

pz
mc

〈
A1‖gc

〉
− w

]
(82)

+
ε2δ
2

∫
d8Z

mc2

B2
F0

∣∣∣∇⊥φ1 − pz
mc

∇⊥A1‖

∣∣∣2 (83)

−
ε2δ
2

∫
d8Z F0

(
1

m

(e
c

)2
A2

1‖ +
µ

B

∣∣∇⊥A1‖
∣∣2 +

µ

B
A1‖∇2

⊥A1‖

)
, (84)

where we have used the definition of the extended Vlasov function (36).

We are following the same procedure of the first variation calculation as in the previous section

within the implicit derivation.

δI‖E ≡
∫ t2

t1

δAE
[
φ1, A1‖,F

]
dt =

∫ t2

t1

(
δA‖E

δφ1
◦ φ̂1 +

δA‖E

δA1‖
◦ Â1‖ +

δA‖E

δF
◦ δF̂

)
dt. (85)
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We summarize the details of that calculation into the appendix A. Here we provide the final

form of the gyrokinetic Maxwell-Vlasov equations in weak and strong form as well as the expression

for the conserved energy density.

B. Equations of motion

1. Gyrokinetic Vlasov equation

The Vlasov equation follows from the variational principle in the form of an exact derivative ac-

cordingly to the (59). This is equivalent to the statement that the Vlasov equation is reconstructed

from the first order gyrocenter characteristics (31). We explicit this equation as follows:

∂F1

∂t
= −{F1, H0}gc − {F0, H1}gc − εδ{F1, H1}gc,

where the two first terms represent linear drive in the system (first term: coupling between back-

ground dynamics and dynamical part of the Vlasov field; second term: coupling of the background

(non-dynamical) distribution with the first order fluctuations), the last term represents the non-

linear coupling between the dynamical part of the Vlasov field with the first order Hamiltonian.

2. Gyrokinetic Poisson equation

The Poisson equation in a weak form is given by:

0 =
δA‖E

δφ1
◦ φ̂1 ⇒

εδ
1

4π

∫
dV ∇⊥φ1 ·∇⊥φ̂1 = εδ

∫
dV dW

(
mc2

B2
F0

)[
∇⊥φ1 −

pz
mc

∇⊥A1‖

]
·∇⊥φ̂1

− e

∫
dV dW (F0 + εδF1)

〈
δ(X + ρ0 − r) φ̂1

〉
(86)

Here we define the guiding-center gyro-averaging operator J gc
0 as follows:〈

δ(X + ρ0 − r) φ̂1

〉
≡
∫ 2π

0
dθ δ(X + ρ0 − r) φ̂1(r) (87)

=

∫ 2π

0
dθ φ̂1 (X + ρ0) ≡ J gc

0

(
φ̂1

)
(88)

And therefore,

∫
dV dW (F0 + εδF1)

〈
δ(X + ρ0 − r) φ̂1

〉
≡
∫

dV dW (F0 + εδF1) J gc
0

(
φ̂1

)
. (89)
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we can make it acting on the distribution function F0 + εδF1 rather than on the test function

φ̂1 as follows:

0 =

[
−εδ

1

4π
∇2
⊥φ1 + εδ

∫
dpz dµ ∇⊥ ·

[
mc2

B2
B∗‖ F0 ∇⊥

(
φ1 −

pz
mc

A1‖

)]
−e
∫

dpz dµ B
∗
‖ J

gc†
0 (F0 + εδF1)

]
(90)

This is the strong form of the Poisson equation. Remark that the requirement for the gyroaveraging

operator being hermitian, i.e. J gc
0 = J †gc0 is not necessary in case of the finite-element discretisation

performed for construction of PIC code, because in that case we are discretising equations in their

weak form and we do not need to shift the gyroaveraging operator from the test function φ̂1 to the

distribution function. However, an example of the hermitian gyroaveraging operator can be found

in [14].

3. Gyrokinetic Ampère equation

The weak formulation of the Ampère equation writes:

0 =
δA‖E

δφ1
◦ Â1‖ ⇒

0 = −
∫
dV

4π
εδ |B0 + εδB1| ·∇×

(
Â1‖b̂

)
(91)

− ε2δ

∫
dV dW

mc2

B2
F0

∣∣∣∇⊥φ1 − pz
mc

∇⊥A1‖

∣∣∣ ·∇⊥Â1‖ − ε2δ
∫
dV dW F0

(
e2

mc2
A1‖Â1‖

+
µ

B

[
|∇⊥A1‖| ·∇⊥Â1‖ +A1‖∇2

⊥Â1‖ + Â1‖∇2
⊥A1‖

])
+ εδ

∫
dV dW (F0 + εδF1)

pz
mc
J gc
0

(
Â1‖

)
.

We remark that the choice of a parallel component of perturbed magnetic potential A1‖ naturally

leads toward derivation of only a parallel component of the strong Gyrokinetic Ampère equation:

0 =

[
1

4π
b̂ ·∇× (B0 + εδB1)− εδ

∫
dµ dpz∇⊥ ·

[mc
B2

B∗‖ F0
pz
m

∇⊥
(
φ1 −

pz
mc

A1‖

)]
+εδ

e2

mc2

∫
dW F0 A1‖ + εδ

∫
dµ dpz∇⊥

( µ
B
B∗‖ F0

)
∇⊥A1‖ (92)

−
ε2δ
2

∫
dµ dpz ∇2

⊥

( µ
B
B∗‖F0

)
A1‖ +

∫
dW

e pz
mc
J gc†
0 (F0 + εδF1)

]
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C. Conserved energy density

1. Final expression for conserved energy density

By substituting variations associated with time translations (64, 65, 66) into the general expres-

sions for the Noether density S, using the equations of motion associated with AE , derived into the

previous section, we get the expression for energy density into the implicit form:

E =

∫
dV

8π

(
ε2δ |E1|2 + |B0 + εδB1|2

)
+

∫
dV dW F0

(
H2 + ε2δ

mc2

B2
|∇⊥φ1|2

)
+

∫
dV dW (F0 + εδF1) (H0 + εδH1 − εδ e 〈φ1gc〉) . (93)

This expression contains information about the gyrocenter dynamical reduction up to the second

order, i.e. ε2δ and keeps the FLR corrections at all orders.

The explicit expression for the energy density with second order FLR corrections into the

nonlinear terms is obtained by substituting the explicit expressions into (93):

E2 =

∫
dV dW (F0 + εδF1)

(
H0 − εδ e

pz
m

〈
A1‖gc

〉)
(94)

+
ε2δ
2

∫
dV dW F0

(
e2

c2
1

m
A2

1‖ +
µ

B

(
∇⊥A1‖

)2
+
µ

B
A1‖∇2

⊥A1‖

)
+
ε2δ
2

∫
dV dW F0

mc2

B2

(
|∇⊥φ1|2 −

( pz
mc

)2 ∣∣∇⊥A1‖
∣∣2)

+
1

8π

∫
dV
(
ε2δ |∇⊥φ1|2 + |B0 + εδB1|2

)
.

We remark, that in the electromagnetic case, there is a part of energy provided by the magnetic

field (background and fluctuating) in the system. Therefore the field energy contribution can not

be completely removed via using the quasineutrality approximation, as it was previously possible

in the electrostatic case. The field part of energy should be then included into the code diagnostics.

V. EULERIAN VARIATIONAL PRINCIPLE FOR THE ORB5 CODE MODEL

In a previous section we have explicitly derived equations of motion and the conserved energy

density corresponding to the Eulerian action functional (80), which contains up to the O(ε2δ) terms

together with the second order FLR corrections. In this section we rewrite the second order Eulerian

variational functional in a more compact form and then perform on it all necessary approximations

in order to be able to access throughout the first variation calculation the gyrokinetic Maxwell-

Vlasov system of equations currently implemented into the ORB5 code. In the same time, we aim
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to compare the conserved energy density corresponding to the variational principle with diagnostics

of the code. Our main goal here is to make a comparison between the gyrokinetic Maxwell-Vlasov

models issued from a different first principle derivations.

A. Second order action functionals

IEfull ≡
∫ t2

t1

AEfull dt =

∫
dV

8π

(
ε2δ |∇⊥φ1|

2 −
∣∣∣B0 + εδ ∇×

(
A1‖b̂

)∣∣∣2) (95)

−
∑
sp

∫
d8Z F H1 −

∑
sp

∫
d6Z F0 H

full
2

To get the ORB5 code model, two physical approximations should be performed on this full

second order action principle: one on the Maxwellian part of that action functional and the another

one on this particle’s part.

1. The quasi neutrality approximation

Let us start with considering the most common physical reduction: the quasi neutrality ap-

proximation, which is implemented into the ORB5 model. Considered at the action functional

level, this approximation can be made without making loose of the energetic consistency in further

derivation.

The quasi-neutrality approximation allows to neglect the |E1|2 term in Maxwell part of the

Eulerian action. The latter term is usually ordered small comparing to the second order polarization

term, contained in H2 proportional to ∇⊥φ1. As we have already mentioned in previous section,

standard gyrokinetic ordering pushes parallel component of electric field at the next order of

smallness comparing to its perpendicular component |E1‖| ∼ εδ|E1⊥|. The Eulerian action (96)

does not contains parallel component of electric field. In addition to that we are now taking into

account one of the characteristic spatial scales separation in fusion plasmas, resulting from the fact

that the ion sound Larmor radius ρ2s ≡ 2kBTemc
2

e2B2 is larger than the Debye length λ2d ≡
kBTe
4πne2

:

ρ2s
λ2d

=
8πnmc2

B2
=
c2

v2A
� 1, (96)

where vA is the Alfvèn velocity.

In electrostatic approximation:∫
dV

8π
|∇⊥φ1|2 +

∫
dV dW F0

mc2

2B2
|∇⊥φ1|2 =

1

8π

∫
dV

(
1 +

ρ2s
λ2d

)
|∇⊥φ1|2. (97)
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Therefore, the electrostatic contribution to the Maxwell’s part of the action functional can be

omitted.

2. Perturbed magnetic field approximation

The next approximation which has to be made, concerns again the Maxwellian part of the

action: it is about the perturbed part of the magnetic field.

Most of the physical models omit curvature contributions to the perpendicular part of magnetic

field perturbation B1, i.e. the term B⊥ = b̂×∇A‖. The latter leads to violation of the divergence

free Maxwell constraint up to the second order in εB, referred earlier as the small parameter related

to the background fields non-uniformities.

3. Particle dynamics approximation

The last approximation should be performed on the particle’s level of dynamics.

To get the ORB5 code model, which at the moment does not take into account coupling between

the reduced Poisson and Ampère equations, the second order Hamiltonian H2 should not contain

any ”mixed” electromagnetic potential perturbation.

This is why the ORB5 model uses linear polarization approximation:

HORB5
2 ≡ e2

2mc2
〈
A1‖gc

〉2 − mc2

2B2
|∇⊥φ1|2 , (98)

which is different to H2 issued from the direct derivation within the Gyrokinetic reduction (79).

The final expression of the action functional providing the system of the Maxwell-Vlasov equa-

tions corresponding to the ORB5 model is:

IEORB5 ≡
∫ t2

t1

AEORB5 dt = −
ε2δ
8π

∫
dV
∣∣∇⊥A1‖

∣∣2 (99)

−
∑
sp

∫
d8Z F H1 −

∑
sp

∫
d6Z F0 H

ORB5
2

B. ORB5 Maxwell-Vlasov model

In order to make a comparison between the system of the gyrokinetic Maxwell-Vlasov equations

issued from the full second order derivation and those currently implemented into the ORB5 codes
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we truncate the FLR decomposition in (98) for the gyroaveraged magnetic potential
〈
A1‖gc

〉
at the

second order as in (A9).

Using the Taylor expansion in the vicinity of the guiding-center position X and keeping the

guiding-center polarization corrections up to the second order:

A1‖gc = A1‖(X) + ρ0 ·∇A1‖(X) +
1

2
ρ0ρ0 : ∇∇A1‖(X), (100)

where the lowest order guiding-center displacement ρ0 is given by (17).

The first term in (98) writes:〈
A1‖gc

〉2
=

(
A1‖ +

1

2
〈ρ0ρ0〉 : ∇∇A1‖

)2

= A2
1‖ +m

(c
e

)2 µ

B
A1‖ ∇2

⊥A1‖, (101)

while the (79) contains additional first order FLR contribution:〈
A2

1‖gc

〉
=

〈(
A2

1‖ + ρ0 ·∇A1‖ +
1

2
ρ0ρ0 : ∇∇A1‖

)2
〉

= A2
1‖ +m

(c
e

)2 µ

B

(
∇⊥A1‖

)2
+m

(c
e

)2 µ

B
A1‖ ∇2

⊥A1‖ (102)

In what concerns the second terms into the expressions (79) and (98), the first one contains

electromagnetic corrections, while the second expression is restricted to the electrostatic corrections

only.

As we have already mentioned above, the presence of the electromagnetic contribution in H2,

results in coupling between the reduced Poisson (quasi-neutrality) and Ampère equations.

Note that coupling of gyrokinetic Maxwell equations can be of particular interest for further

numerical studies with canonical Maxwellian initialization (asymmetric background distribution).

Such an implementation has a particular interest for energetic particles investigation, for example.

Let us now analyze in details the corresponding equations of motion.

C. Quasineutrality equation

We start with comparing the quasi neutrality equations. First, the one which follows from the

second order Eulerian action:

− εδ
∑
sp

∫
dW

1

B∗‖
∇⊥

[
B∗‖F0

mc2

B2
∇⊥

(
φ1 −

pz
mc

A1‖

)]
=
∑
sp

e

∫
dW J gc†

0 (F0 + εδF1)(103)

In the same time, the quasi neutrality condition, following from the ORB5 action writes:

−
∑
sp

∫
dW

1

B∗‖
∇⊥

[
B∗‖F0

mc2

B2
∇⊥φ1

]
=
∑
sp

e

∫
dW J gc†

0 F1 (104)
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D. Ampère’s equation

Taking into account the same approximation as in the ORB5 model with B1 = b̂×∇A1‖ and

b̂× b̂×∇A1‖ = −∇2
⊥A1‖, the Ampère equation, which follows from the Eulerian action:

1

4π
∇2
⊥A1‖ = −

∫
dW

epz
mc
J gc†
0 F1 +

∫
dW

e2

mc2
(
A1‖F0

)
+

1

2

∫
dW

1

B∗‖
∇2
⊥

(
B∗‖

µ

B
F0

)
A1‖

−
∫
dW

1

B∗‖
∇⊥

(
B∗‖

µ

B
F0

)
∇⊥A1‖ −

∫
dW

(
F0
c pz
B2

)
∇⊥

[ pz
mc

∇⊥A1‖ −∇⊥φ1
]

−
∫
dW

1

B∗‖
∇⊥

(
F0B

∗
‖
c pz
B2

)
·∇⊥

[ pz
mc

∇⊥A1‖ −∇⊥φ1
]

(105)

while the Ampere equation, which follows from the physical action is:

1

4π
∇2
⊥A1‖ = −

∫
dV dW

epz
mc
J gc†
0 F1 +

∫
dW

e2

mc2
(
A1‖F0

)
+

1

2

∫
dW

1

B∗‖
∇2
⊥

(
B∗‖

µ

B
F0

)
A1‖

+

∫
dW

µ

B
F0 ∇2

⊥A1‖. (106)

We can see that Ampère’s law issued from the physical Eulerian action neglects coupling with

electrostatic potential φ1. Terms proportional to ∇2
⊥A1‖ differ due to the differences identified in

the expressions for the second order Hamiltonians H full
2 and HORB5

2 . The same issue results in

differences in terms proportional to the gradient of the background distribution function ∇F0.

A slightly different version of (106) is implemented in the ORB5, the last term (only for ions

contribution) is written down in the following form:∫
dW ∇ ·

( µ
B
F0∇⊥A1‖

)
, (107)

which is more convenient for weak formulation of Ampère’s equation suitable for numerical imple-

mentation into the PIC code. The final Ampère’s law for ORB5 neglects the third term in the

r.h.s. of (106):∑
sp

1

d2sp
A1‖ +

1

2

∑
sp6=e

∇ ·
(
βsp∇⊥A1‖

)
−∇2

⊥A1‖ =
∑
sp

4π

∫
dV dW

e pz
mc
J gc†
0 F1 (108)

where we have defined dsp ≡ 4πe2n0e
mc2

and βsp =
8πµnsp

B2 ≡ 8πnspkBTsp
B2 .

1. Vlasov equation

Let us now compare Vlasov equations, we can derive from both Eulerian action functionals via

variational calculation.
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As we have seen, the full second order Eulerian action provides Vlasov equation with non-linear

drive terms (86), while the Eulerian action functional containing physical reduction uses first order

gyrocenter characteristics (31) to reconstruct Vlasov equation and does not contain the nonlinear

drive term.

Finally, the following equation is solved in the ORB5:

dF

dt
≡ {H1,F}ext = 0 (109)

which represents basically the same equation as (86), where we have taken into account that the

background distribution is non-dynamical {F0, H0}gc = 0 and static ∂tF0 = 0, which leads to the

following:

dF1

dt
= −{F0, H1}gc (110)

In the other words, the dynamics of the dynamical part of the distribution function F1 is defined

from the linear evolution of the background distribution.

VI. ENERGY CONSERVATION DIAGNOSTICS

The energy diagnostics implemented in electromagnetic version of code ORB5 are derived from

the energy conservation law, which corresponds to the electromagnetic Lagrangian (100).

Intuitively, the conserved energy density can be written down as follows:

EORB5 =
∑
sp

∫
dW dV H0 (F0 + εδF1) +

∑
sp

∫
dW dV H1 (F0 + εδF1)

+
∑
sp

∫
dW dV HORB5

2 F0 +

∫
dV
|∇⊥A1‖|2

8π
(111)

which is equivalent to the result coming out from the direct Noether method application in

the framework of the Eulerian variational principle, once we have taken into account the Poisson

equation corresponding to the truncated Lagrangian. Below we give a detailed explanation.

First, we explicitly write the expression for the second term∫
dV dW H1 (F0 + εδF1) =

∫
dV dW (F0 + εδF1)J gc

0 (φ1) (112)

−
∫
dV dW

epz
mc

(F0 + εδF1)J gc
0

(
A1‖
)
, (113)

where we have used the explicit definition for the gyrocenter gyro-averaging operator (88) to expand

the expression for H1 as follows: 〈φ1gc〉 ≡ 〈φ1(X + ρ0)〉 = 〈φ1(r)δ (X + ρ0 − r)〉 ≡ J gc
0 (φ1)



38

Next, with using the quasi neutrality equation and integrating by parts:∑
sp

∫
dV dW F0

mc2

B2
|∇⊥φ1|2 = −

∑
sp

∫
dV dWJ gc†

0 (F0 + εδF1) φ1 (114)

= −
∑
sp

∫
dV dW (F0 + εδF1)J gc

0 (φ1) (115)

Finally, with taking into account the expression for the second order Hamiltonian HORB5
2 , we

get:

EORB5 =
∑
sp

∫
dV dW

(
H0 − εδ e

pz
m
J gc
0

(
A1‖
))

(F0 + εδF1) +
∑
sp

∫
dV

∣∣∇⊥A1‖
∣∣2

8π
(116)

+
∑
sp

∫
dV dW

(
e2

2mc2
A2

1‖ +
mc2

2B2
|∇⊥φ1|2

)
F0 ≡ Ek + EF

which corresponds to the energy density obtained from the direct application of the Noether method

in Eurlerian variational framework with truncated Hamiltonian corresponding to the ORB5 model.

We refer the first term, which contains only the unperturbed Hamiltonian H0 as a kinetic energy

Ek and the other terms as a field energy EF .

Let us now proceed with code diagnostics derivation. What can be measured in the PIC code

in order to control the quality of the simulations?

It is well known that into the PIC code particles and fields are evaluated in two different ways.

Particles are advanced along their characteristics without use of any grid, while fields are evaluated

on the grid.

So, to control the quality of the simulation the contributions from particles energy and the field

energy should be calculated independently.

This is why we are considering the power balance equation, called also the E × B transfer

equation:

dEk
dt

= −dEF
dt

(117)

The contributions from the particles dynamics are contained into the kinetic part Ek of the

conserved energy density E .

dEk
dt

(t) =
∑
sp

∫
dW dV

dH0

dt
(F0 + εδF1) +

∑
sp

∫
dW dV H0

dF

dt︸︷︷︸
≡0

(118)

The first term here represents explicit time derivative of the guiding-center Hamiltonian H0.

The last term here vanishes because of the Liouville theorem. And the remaining terms do not

contain any dynamical fields.
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To derive the diagnostics for the field part of the energy, as it is measured in the simulations,

we need to use both: the corresponding quasineutrality and the Ampère equations, but this time

to replace polarization terms related to the background distribution F0 by the moments of the

distribution function F0 + εδF1.

We start with writing the quasi neutrality equation in a weak form, taking into account addi-

tional integration by parts in order to replace the guiding-center gyro averaged operator J gc
0 from

the electrostatic potential to the distribution function (F0 + εδF1)∑
sp

∫
dV dW

(
mc2

B2
F0

)
|∇⊥φ1|2 =

∑
sp

∫
dV dWJ gc†

0 (F0 + εδF1) φ1 (119)

Next, we reconstruct the Ampère’s equation corresponding to the ORB5 code in a weak form

by combining the field terms in the energy density expression (111) and with using again the

integration by parts to change place of the gyroaveraged operator J0

−
∫
dV dW F0

e2

2mc2
A2

1‖ +

∫
dV dW

|∇⊥A1‖|2

8π
=

1

2

∫
dV dW

epz
mc
J gc†
0 (F0 + εδF1)A1‖(120)

That operation leads to the following expression for the field energy term associated with the

second order reduced dynamics, implemented into the energy balance equation (117) :

EF =
∑
sp

1

2

∫
dV dW J gc†

0 (F0 + εδF1) φ1 −
∑
sp

1

2

∫
dV dW J gc†

0 (F0 + εδF1)
epz
mc

A1‖. (121)

Therefore, the final expression for the energy density E can be rewritten as:

E =
∑
sp

∫
dV dW (F0 + εδF1)

[(
p2z
2m

+ µB

)
+
e

2
J gc
0 (φ1)−

pz
2mc
J gc
0

(
A1‖
)]

(122)

We evaluate the time derivative of the kinetic energy Ek with using the first order gyrocenter

characteristics for the phase space coordinates ṗz and Ẋ:

dEk
dt

(t) =
∑
sp

∫
dV dW (F0 + εδF1)

[
pz
m

ṗ(1)z gy +
∑
sp

µẊ(1)
gy ·∇B

]

=
∑
sp

∫
dV dW (F0 + εδF1)

[
− e∇J gc

0 (ψ1) · Ẋ
∣∣∣
0

+
1

c
J gc
0

(
A1‖
)( ṗz

m

)∣∣∣∣
0

]
(123)

The details of that calculation can be found in the appendix B.

For practical reasons, in numerical simulations, it is particularly useful to consider the power

balance equation in the following form (i.e. normalized by the field energy EF ):
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1

EF
dEk
dt

= − 1

EF
dEF
dt

(124)

FIG. 4: Time evolution of the right-hand side and the left hand side of the power balance equation (124)

for the linear CYCLONE base case simulations with ORB 5 code.

In linear simulations, the power balance equation (124) not only gives an indication about

quality of the simulation but also can be used for measuring the instantaneous growth rate of the

instability:

γ =
1

2

d

dt
log EF =

1

2

1

EF
dEF
dt

. (125)

Hence, with taking into account (123):

γ =
1

2EF

∑
sp

∫
dV dW (F0 + εδF1)

[
e∇ 〈ψ1gc〉 · Ẋ

∣∣∣
0
− 1

c

〈
A1‖gc

〉( ṗz
m

)∣∣∣∣
0

]
(126)

We present on the two following figures examples of the diagnostics implementation for a different

type of instabilities: Electromagnetic ITG and the KBM .

The different contributions to the growth rate γ arising from the different terms in the unper-

turbed guiding-centre characteristics Ẋ|0 and ṗz|0 can be separated in the power balance equation

and give a clear vision of which type of the instability is present in the system: that diagnostics is

suitable for both linear and nonlinear simulations:
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γ =
1

2EF

∑
sp

∫
dV dW (F0 + εδF1)∇J0gc (ψ1)

(
v‖ + v∇P + v∇B

)
− 1

2EF

∑
sp

∫
dV dW (F0 + εδF1)∇J0

(
A1‖
)(

µB∇ · b̂ +
µc

eB∗‖
pzb̂×

(
b̂× ∇×B

B

)
·∇B

)

where

v‖ ≡
pz
m

b̂ (127)

v∇P ≡ −
(pz
m

)2 mc

eB∗‖
b̂× ∇P

B2
(128)

v∇B ≡
(
µB

m
+
(pz
m

)2) mc

eB∗‖
b̂× ∇B

B
(129)

FIG. 5: The Ion Temperature Gradient instability: time evolution of different contributions to the instan-

taneous growth rate for the most unstable mode of the linear CYCLONE base case.

VII. CONCLUSIONS AND PERSPECTIVES

In this work we have presented two variational derivations of self-consistent gyrokinetically

reduced systems of Maxwell-Vlasov equations containing the second order corrections with respect
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FIG. 6: The Kinetic Balooning Mode instability: time evolution of different contributions to the instanta-

neous growth rate for the most unstable mode of the linear CYCLONE base case.

to the small parameter related to the gyrocenter dynamical reduction εδ and up to the second order

with respect to the FLR corrections. The first system issued from the direct derivation uses second

order truncated Eulerian variational action functional for gyrokinetic Maxwell-Vlasov system. The

second system of the reduced gyrokinetic Maxwell-Vlasov equations uses physical approximation

and derives from the Lagrangian variational principle, suitable for PIC codes implementations.

The main results of this work can be summarized in the following way. The electrostatic limit

of both models coincides. The electrostatic model, implemented into the ORB5 is energetically

consistent. In what concerns the electromagnetic case, here several differences exist. First of all,

due to the differences in choice of the second order Hamiltonian (direct second order gyrokinetic

dynamical reduction for particles or the physical model), the gyrokinetic equations for fields may

or may not be coupled. Also terms proportional to ∇2
⊥A1‖ have different expressions.

Neglecting magnetic field curvature into the model issued from the physical approximation

violates the Maxwell constraint ∇ · B = 0, which can be a potential issue while implementing a

phase space preserving numerical scheme.

Finally, the reduced Vlasov equations coincide up to the non-linear term {F1, H1}gc, issued from

the direct second order derivation, which is absent in a physical model.

At the next step of our work we aim to proceed with derivation of the weak form for (90) and
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(92) suitable for the finite element method discretization necessary for further implementation of

new coupled system into the ORB5.

In the same time, further comparison of the established second order reference model (90,

92) with gyrokinetic equations implemented into other codes involved into the Enabling Research

project is one of our highest priorities.
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Appendix A: Explicit derivation of the full second order Maxwell-Vlasov equations

We use the same organisation of the action functional (80) into the field and Vlasov parts as

given by (44) in the section (III A), while deriving equations of motion and conservation laws into

the implicit form. In addition to that we separate the nonlinear Vlasov part in two terms:

AE,(Vl)
nonlin[φ1, A1‖] ≡ A

E,(Vl)
polmix

[
φ1, A1‖

]
+AE,(Vl)

polmag

[
φ1, A1‖

]
. (A1)

Those two nonlinear Vlasov terms are associated to the second order Hamiltonian H2 truncated at

the second order of the FLR decomposition. and contain two different polarization contributions:

the electromagnetic part AE,(Vl)
polmix

[
φ1, A1‖

]
, given by (83) and a purely magnetic contribution with

the first and the second FLR corrections AE,(Vl)
polmag

[
φ1, A1‖

]
, given by (84).

The first variation of the Eulerian action functional contains three parts, each one corresponds

to the functional dependence in variational fields (φ1, A1‖,F):

δAE
[
φ1, A1‖,F

]
=
δAE

δφ1
◦ φ̂1 +

δAE

δA1‖
◦ Â1‖ +

δAE

δF
◦ F̂ , (A2)

where δAE
δφ1

is the functional derivative with respect to the electrostatic potential φ1,
δAE
δA1‖

with

respect to the parallel magnetic potential perturbation A1‖, and finally δAE
δF contains functional
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derivatives with respect to the extended Vlasov field, given by (36). We remind that all of those

objects are linear functionals and need to be implied to some test function.

a. Fields contributions. Parallel magnetic perturbation

Taking into account the expression for perturbative magnetic field (76) we calculate functional

derivatives with respect to the parallel component of the magnetic potential A1‖; we choose the

test function Â1 ≡ Â1‖b̂.

Following the implicit derivation presented into the section (III A), we start by calculating

functional derivative with respect to A1‖(50).

Thus, the expression for the dynamical and the Noether’s terms of the A1‖, the functional

derivative of Maxwell’s part of the action functional AE :

δAE,(field)
magn

δA1‖
◦ Â1‖ = −εδ

∫
dV

4π
(B0 + εδB1)×∇ ·

(
Â1‖b̂

)
(A3)

= εδ

∫
dV

4π
Â1‖ b̂ · (∇× [B0 + εδB1]) (A4)

+ ε2δ

∫
dV

4π
∇ ·

(
Â1‖

[
∇⊥A1‖ +A1‖ b̂×∇× b̂

])
.

As we can see, the dynamical term is now multiplied by the unitary vector of the background

magnetic field b̂, it means that the resulting Ampere’s equation will be projected on the parallel

direction. This is a direct consequence of the perturbed magnetic field choice (76).

For the Noether’s term we have used the following decomposition:

(B0 + εδB1)× Â1‖ ≡ (B0 + εδB1)×
(
b̂ Â1‖

)
= −Â1‖

(
∇A1‖ × b̂

)
× b̂ − Â1‖A1‖

(
∇× b̂

)
× b̂.

In order to get explicit expressions for the reduced Maxwell-Vlasov equations of motion we need

to explicitly evaluate contributions from H1 and H2, chosen to represent reduced particle dynamics

into the Eulerian action.
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b. First order Vlasov contributions

The direct calculation from the second order Eulerian action gives us the following form of the

first order Vlasov contributions:

δAE,(Vl)
lin

δφ1
◦ φ̂1 = −εδ

∫
dV dW (F0 + εδF1)

〈
δ(X + ρ0 − r) φ̂1(r)

〉
(A5)

δAE,(Vl)
lin

δA1‖
◦ Â1‖ = εδ

∫
dV dW (F0 + εδF1)

pz
mc

〈
δ(X + ρ0 − r) Â1‖(r)

〉
, (A6)

where we have used:

δH1

δφ1
◦ φ̂1 =

δ 〈φ1gc〉
δφ1

◦ φ̂1(r) =
δ 〈φ1 (X + ρ0〉)

δφ1(r)
◦ φ̂1(r) (A7)

=
〈(
δ3(X + ρ0 − r)φ̂1(r)

)〉
=
〈(
φ̂1(X + ρ0)

)〉
≡ J gc

0 (φ1)

δH1

δA1‖
◦ Â1‖ =

pz
mc

δ
〈(
A1‖gc

)〉
δA1‖

◦ Â1‖ =
pz
mc

〈(
Â1‖ (X + ρ0)

)〉
≡ pz
mc
J gc
0

(
A1‖
)
(A8)

c. Second order Vlasov contributions

Let us now explicitly calculate contributions from the nonlinear Vlasov terms associated with

the second order Hamiltonian H2. We separate the latter in two parts: H2polmix and H2polmag, which

will generate AE,(Vl)
polmix and AE,(Vl)

polmag nonlinear Vlasov contributions to the Eulerian action defined in

(A1). Splitting the expression (79) of H2 we get:

H2polmix = −mc
2

2B2

∣∣∣∇⊥φ1 − pz
mc

∇⊥A1‖

∣∣∣2 (A9)

and

H2polmag =
e2

2mc2
A2

1‖ +
µ

2B

∣∣∇⊥A1‖
∣∣2 +

1

2

µ

B
A1‖∇2

⊥A1‖ (A10)

The H2polmix part of Hamiltonian will contribute into the δφ1 and δA1‖ parts of the first deriva-

tive of H2, while purely magnetic part H2polmag will naturally provide only δA1‖ associated contri-

bution:

δH2 =
δH2polmix

δφ1
◦ φ̂1 +

(
δH2polmix

δA1‖
+
δH2polmag

δA1‖

)
◦ Â1‖ (A11)

Let us start with the contributions from H2polmix given by (A9) contributions:

−
∫
dV dW F0 δH2polmix ≡

δAE,(Vl)
polmix

δφ1
◦ φ̂1 +

δAE,(Vl)
polmix

δA1‖
◦ Â1‖ (A12)
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We compute the first variation using the functional derivative definition (38):

−
∫
dV dW F0 δH2polmix =

= ε2δ
d

dν

[∫
dV dW

mc2

2B2
F0

∣∣∣(∇⊥φ1 + ν ∇⊥φ̂1
)
− pz
mc

(
∇⊥A1‖ + ν ∇⊥Â1‖

)∣∣∣2]∣∣∣∣
ν=0

= ε2δ

[∫
dV dW

mc2

B2
F0 ∇⊥

(
φ1 −

pz
mc

A1‖

)
·∇⊥

(
φ̂1 −

pz
mc

Â1‖

)]
This is the weak form of the Vlasov contribution from (A9).

In order to separate dynamical and Noether’s contributions, we integrate that expression by

parts. Let us analyse in details the electrostatic term with test function φ̂1, then the parallel

magnetic potential contribution with Â1‖ could be obtained in a similar way. First, we remind

that the phase space volume dV dW ≡ d3X B∗‖ dpz dµ appearing in integrals contains guiding-

center Jacobian B∗‖ = B∗‖(X, pz, µ), so we need to pay attention on that phase-space functional

dependence while using Leibnitz rule.

δAE,(Vl)
polmix

δφ1
◦ φ̂1 =

∫
B∗‖ dV dpz dµ

(
mc2

B2
F0

)[
∇⊥φ1 −

pz
mc

∇⊥A1‖

]
·∇⊥φ̂1

=

∫
dV dpz dµ ∇⊥

[
B∗‖

(
mc2

B2
F0

)(
∇⊥φ1 −

pz
mc

∇⊥A1‖

)
φ̂1

]
(A13)

−
∫
dV ∇⊥

[∫
B∗‖ dp‖ dµ

(
mc2

B2
F0

)(
∇⊥φ1 −

pz
mc

∇⊥A1‖

)]
φ̂1 (A14)

Here (A13) is a Noether contribution and (A14) is a dynamical part.

Similarly, for the parallel magnetic potential perturbation contribution, we have:

δAE,(Vl)
polmix

δA1‖
◦ Â‖1 =

∫
B∗‖ dV dpz dµ

(
mc2

B2
F0

)
pz
mc

[
−∇⊥φ1 +

pz
mc

∇⊥A1‖

]
∇⊥Â1‖

=

∫
dV dpz dµ ∇⊥

[
B∗‖

(
mc2

B2
F0

)
pz
mc

(
−∇⊥φ1 +

pz
mc

∇⊥A1‖

)
Â1‖

]
(A15)

−
∫
dV ∇⊥

[∫
B∗‖ dpz dµ

(
mc2

B2
F0

)
pz
mc

(
−∇⊥φ1 +

pz
mc

∇⊥A1‖

)]
Â1‖ (A16)

With introducing the equilibrium fluid density n0 and the equilibrium current J0:

n0 ≡
∫
B∗‖dpz dµ F0 (A17)

J0 ≡ c
∫
B∗‖dpz dµ

pz
mc

F0, (A18)
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we can write:

δAE,(Vl)
polmix

δφ1
◦ φ̂1 =

∫
d3X ∇⊥

[
mc2

B2

(
n0∇⊥φ1 −

1

c
J0∇⊥A1‖

)
φ̂1

]
(A19)

−
∫
d3X ∇⊥

[
mc2

B2

(
n0∇⊥φ1 −

1

c
J0∇⊥A1‖

)]
φ̂1 (A20)

Then by proceeding with the similar calculation, and defining the moment of the equilibrium

distribution function weighted by
( pz
mc

)2
as

J̃0 ≡ c2
∫
B∗‖dpz dµ

pz
mc

F0 (A21)

we can write the electromagnetic part as:

δAE,(Vl)
polmix

δA1‖
◦ Â1‖ =

∫
d3X ∇⊥

[
mc2

B2

(
−1

c
J0∇⊥φ1 +

1

c2
J̃0∇⊥A1‖

)
Â1‖

]
(A22)

−
∫
d3X ∇⊥

[
mc2

B2

(
−1

c
J0∇⊥φ1 +

1

c2
J̃0∇⊥A1‖

)]
Â1‖ (A23)

Let us now analyse dynamical and Noether contributions coming from purely magnetic Vlasov

part of the action, corresponding to the second order Hamiltonian H2polmag, which contains first and

second order FLR corrections, given by first two terms in (79) and the third term correspondingly:

−
∫
dV dW F0 δH2polmag ≡

δAE,(Vl)
polmag(1)

δA1‖
◦ Â1‖ +

δAE,(Vl)
polmag(2)

δA1‖
◦ Â1‖, (A24)

where AE,(Vl)
polmag(1) contains the first order FLR correction from H2polmag and AE,(Vl)

polmag(2), the second

order one.

Therefore, the contribution from the variation of the first order FLR term:

δAEpolmag (1)

δA1‖
◦ Â1‖ = − d

dν

ε2δ
2

{∫
dV dW F0

[
1

m

e2

c2

(
A1‖ + ν Â1‖

)2
+
µ

B

∣∣∣∇⊥A1‖ + ν∇⊥Â1‖

∣∣∣2]∣∣∣∣
ν=0

.

= −ε2δ
e2

mc2

∫
dV dW F0 A1‖ Â1‖ − ε2δ

∫
dV dW

µ

B
F0 ∇⊥A1‖ ·∇⊥Â1‖ (A25)

= −ε2δ
e2

mc2

∫
dV dW F0 A1‖ Â1‖ + ε2δ

∫
dV dµ dpz∇⊥

[
B∗‖ F0

µ

B
∇⊥A1‖

]
Â1‖

− ε2δ

∫
dV dµ dpz∇⊥

[
B∗‖ F0

µ

B
∇⊥A1‖ Â1‖

]
The second contribution, we should account here is provided via the second order FLR term:

δAE,(Vl)
polmag (2)

δA1‖
◦ Â1‖ = −

ε2δ
2

d

dν

{∫
dV dW F0

µ

B

(
A1‖ + νÂ1‖

)
∇2
⊥

(
A1‖ + νÂ1‖

)}∣∣∣∣
ν=0

= −
ε2δ
2

{∫
dV dW

(
F0
µ

B

) (
A1‖∇2

⊥Â1‖ + ∇2
⊥A1‖ Â1‖

)}
(A26)
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The second term gives directly a dynamical contribution to the Ampere’s equation. With

using the Leibnitz rule two times, we rewrite the first term in order to obtain the Noether (exact

derivative) and dynamical contributions.

−
ε2δ
2

∫
dV dW

(
F0
µ

B

) (
A1‖∇2

⊥Â1‖

)
= (A27)

−
ε2δ
2

{∫
dV dµ dpz∇⊥

[
B∗‖

(
F0
µ

B

)
A1‖∇⊥Â1‖

]
−∇⊥

[
B∗‖F0

µ

B
A1‖

]
∇⊥Â1‖

}
(A28)

= −
ε2δ
2

{∫
dV dµ dpz∇⊥

[(
B∗‖F0

µ

B

)
A1‖∇⊥Â1‖

]}
+
ε2δ
2

{∫
dV dµ dpz∇⊥

[
∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖

]}
−
ε2δ
2

{∫
dV dµ dpz∇2

⊥

[
B∗‖F0

µ

B
A1‖

]
Â1‖

}
Therefore for the second order FLR contribution we have:

δAE,(Vl)
polmag (2)

δA1‖
◦ Â1‖ = −

ε2δ
2

{∫
dV dµ dpz ∇⊥

[(
B∗‖F0

µ

B

)
A1‖∇⊥Â1‖

]}
(A29)

+
ε2δ
2

{∫
dV dµ dpz ∇⊥

[
∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖

]}
−
ε2δ
2

{∫
dV dµ dpz

[
∇2
⊥

[
B∗‖F0

µ

B
A1‖

]
+
(
B∗‖F0

µ

B

)
∇2
⊥A1‖

]
Â1‖

}
As we can see, there are two Noether contributions and two dynamical ones.

The first Noether term can be reorganized with using the Leibnitz rule as follows:

−
ε2δ
2
∇⊥

[(
B∗‖F0

µ

B

)
A1‖∇⊥Â1‖

]
= −

ε2δ
2
∇2
⊥

[
B∗‖F0

µ

B
A1‖Â1‖

]
+
ε2δ
2
∇⊥

[
∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖

]
Then we write the contributions from the two Noether’s terms together:

−
ε2δ
2

∫
dV dµ dp‖ ∇2

⊥

[
B∗‖F0

µ

B
A1‖Â1‖

]
+ ε2δ

∫
dV dµ dp‖ ∇⊥

[
∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖

]
=

ε2δ
2

∫
dV dµ dp‖ ∇⊥

[
2 ∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖ −∇⊥

(
B∗‖F0

µ

B
A1‖Â1‖

)]
(A30)

Next, with using the Leibnitz rule:

∇2
⊥

(
B∗‖F0

µ

B
A‖

)
= ∇2

⊥

(
B∗‖F0

µ

B

)
A‖ +

(
B∗‖F0

µ

B

)
∇2
⊥A‖ (A31)

The dynamical contributions can be rewritten as:

−
ε2δ
2

∫
dV dµ dp‖

[
∇2
⊥

(
B∗‖F0

µ

B

)
A1‖ + 2

(
B∗‖F0

µ

B

)
∇2
⊥A1‖

]
Â1‖ (A32)

As we can remark, the second dynamical term of the AE(Vl)
polmag (2) partially cancel dynamical contri-

bution from AE(Vl)
polmag (1) so that no terms proportional to ∇2

⊥A1‖ will appear into the final Ampere’s
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law. Finally, contribution from the magnetic part of polarization can be written as:

δAE,(Vl)
polmag

Â1‖
◦ Â1‖ = −ε2δ

e2

mc2

∫
dV dW F0 A1‖Â1‖ + ε2δ

∫
dV dµ dp‖ ∇⊥

(
B∗‖F0

µ

B

)
∇⊥A1‖Â1‖

−
ε2δ
2

∫
dV dµ dp‖ ∇2

⊥

(
B∗‖F0

µ

B

)
A1‖ Â1‖ (A33)

+ ε2δ

∫
dV dµ dp‖ ∇⊥

[
∇⊥

(
B∗‖F0

µ

B
A1‖

)
Â1‖ −

(
B∗‖F0

µ

B

)
∇⊥A1‖Â1‖

]
−

ε2δ
2

∫
dV dµ dp‖ ∇2

⊥

[
B∗‖F0

µ

B
A1‖Â1‖

]
The Gyrokinetic Poisson equation is obtained by collecting dynamical contributions from dif-

ferent parts of functional derivative of Eulerian action with respect to the electrostatic potential

φ1:

0 =
δAE

δφ1
◦ φ̂1 =

δAE,(field)
el

δφ1
◦ φ̂1 +

δAE,(Vl)
polmix

δφ1
◦ φ̂1 +

δAE,(Vl)
lin

δφ1
◦ φ̂1, (A34)

Comparing to the Poisson equation, the gyrokinetic Ampere equation has an additional contribu-

tion from the pure magnetic polarization term:

δAE

δA1‖
◦ Â1‖ =

δAE,(field)
el

δA1‖
◦ Â1‖ +

δAE,(Vl)
polmix

δA1‖
◦ Â1‖ +

δAE,(Vl)
polmag

δA1‖
◦ Â1‖ +

δAE,(Vl)
lin

δA1‖
◦ Â1‖ (A35)

Appendix B: Hamiltonian first order characteristics and ORB5 code diagnostics

In that section we give a detailed derivation of the first order gyrocenter characteristics in

Hamiltonian representation. That will allow us to explicit the diagnostics implemented into the

ORB5 code for control of the quality of the simulations.

Ẋ(1)
gy =

{
X,H(1)

gy

}
ext

=
B∗

B∗‖

∂H(1)
gy

∂pz
+

cb̂

eB∗‖
×∇H(1)

gy (B1)

ṗ(1)z gy =
{
pz,H(1)

gy

}
ext

= −B∗

B∗‖
· ∇H(1)

gy . (B2)

The symplectic magnetic field B∗ writes:

B∗ = B +
e

c
pz ∇× b̂ (B3)

The geometric contribution to this symplectic field ∇× b̂ is expressed with using the projection

on the parallel and perpendicular to the magnetic field directions:

∇× b̂ = b̂
(
b̂ ·∇× b̂

)
− b̂×

[
b̂×∇× b̂

]
≡ b̂ τ −G, (B4)
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where the scalar τ represents the magnetic twist and the vector G is referred as magnetic curvature.

Since B × (∇×B) = −∇p in single fluid MHD equilibrium, we rewrite in the following way the

curvature vector G in order to make explicitly appear the pressure-like contributions into the

characteristics.

G = b̂×
[
b̂× ∇×B

B

]
+

∇B × b̂

B
(B5)

Therefore, we can also decompose the symplectic magnetic field into the parallel and the perpen-

dicular components in a following way:

B∗ =
(
B +

c

e
pz τ

)
︸ ︷︷ ︸

≡B∗‖

b̂− c

e
pzG (B6)

The final expressions for characteristics are implemented into the code in a following form:

Ẋ(1)
gy =

pz
m

b̂−
(pz
m

)2 m

eB∗‖
b̂×

(
b̂× ∇×B

B

)
+

(
µ

m
+
(pz
m

)2) m

eB∗‖
b̂× ∇B

B
(B7)

− e

c

〈
A1‖gc

〉
b̂ +

pz
m

1

B∗‖

〈
A1‖gc

〉
G− 1

B∗‖
∇ 〈ψ1gc〉 × b̂ (B8)

≡ vpar + vpressure + vgradb + vapar1 + vexb (B9)

The first three terms represent non-perturbed (guiding-center) characteristics with vpar the

parallel velocity, vpressure the pressure-like term and vgradb containing the gradient of magnetic

field amplitude ∇B. Two next terms contains the perturbed gyrocenter electromagnetic potential〈
A1‖gc

〉
and are referred as vapar1; the last term vexb is electromagnetic E ×B- velocity.

The characteristic for pz coordinate:

ṗ(1)z gy = µB ∇ · b̂ +
µc

eB∗‖
pzb̂×

(
b̂× ∇×B

B

)
·∇B (B10)

− e∇ 〈ψ1gc〉 ·

(
b̂− c

eB∗‖
pzG

)
(B11)

≡ dvapdt0 + dvapdt1 (B12)

where we have used the divergence free property of magnetic field: b̂ ·∇B = −B ∇ · b̂. We have

also organized the terms in two groups: the unperturbed guiding-center contributions dvapdt0 and

those containing linear gyro averaged electromagnetic potential dvapdt1:

〈ψ1gc〉 = 〈φ1gc〉 −
1

c

pz
m

〈
A1‖gc

〉
. (B13)
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Appendix C: Noether’s method

In this section we sketch the main steps of the Noether’s method for systematic conservation

laws derivation.

Our main goal is to write the Noether equation:

∂S

∂t
+ ∇ · J = δLE (C1)

First of all we need to collect all the exact derivatives terms (Noether’s terms)

0 = −
∫
d8Z {SH1,F}ext

−
∫
d4x

4π
∇ · (E1 δφ1)−

∫
d4x

4π

1

c
∂t (E1 · δA1) (C2)

+

∫
d4x

4π
∇ · ((B0 + εB1)× δA1)

The main idea is to identify the partial time derivatives (density terms) and partial space

derivatives (flux terms). As we can see, three last terms obtained from the Maxwell part of the

action functional can be already identified as flux and density terms.

Terms, obtained from the Vlasov part of the Eulerian action functional require some manipu-

lations. First of all we explicitly write the expression for the Poisson bracket:

−
∫
d8Z {SH,F}ext =

∫
d8Z {F ,SH}ext ≡

∫
d8Z

(
∂

∂za
F
)
Jab

∂

∂zb
(SH)

=

∫
d8Z Jab

∂

∂za

(
F ∂

∂zb
(SH)

)
−
∫
d8Z Jab F ∂2

∂za∂zb
(SH) (C3)

where Jab denotes the Poisson matrix, which is antisymmetric, therefore the last term is equal to

zero: the second derivative is symmetric.

At the next step we are using the Liouville theorem of the phase space volume conservation:

∇ · ża = 0, with J = det
∣∣Jab∣∣ is the determinant of the Poisson matrix; and ża = Jab ∂H

∂zb
is the

Hamiltonian flow:

0 =
1

J

∂

∂za
(Jża) =

1

J

∂

∂za

(
JJab

∂H

∂zb

)
= Jab

∂2H

∂za∂zb︸ ︷︷ ︸
∗

+
1

J

∂

∂za

(
J Jab

) ∂H
∂zb︸ ︷︷ ︸

∗∗

, (C4)

the term ∗ is equal to zero because it results multiplication of antisymmetric Poisson matrix and

symmetric second partial derivative. Therefore, the remaining ∗∗ term represents the Liouville

identity of the phase space volume conservation.

We need that identity for further Noether’s terms manipulation, let us rewrite the non-zero

term of (C3):
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∫
d8Z Jab

∂

∂za

(
F ∂

∂zb
(SH)

)
=

∫
d8Z

1

J

∂

∂za

J F Jab
∂

∂zb
SH︸ ︷︷ ︸

≡{za,(SH)}ext

 (C5)

−
∫
d8Z F 1

J

∂

∂za

(
J Jab

) ∂

∂zb
(SH)︸ ︷︷ ︸

=0

,

here the last term is equal to zero due to the Liouville identity, with substituting SH into the term

**.

Therefore, we have rewritten Vlasov contribution to Noether’s method as follows:

−
∫
d8Z {SH,F}ext =

∫
d8Z

1

J

∂

∂za
(JF {za,SH}ext) (C6)

We are now writing the explicit expression for the phase-space volume element d8Z ≡

J d4x d4p ≡ J d3Xdt d3p dw and with introducing the quadric vectors for the energy-momentum

pν ≡ (w, pi) and space-time xµ ≡ (ct,Xj):∫
d8Z

1

J

∂

∂za
(JF {za,SH}ext) =

∫
d4x

∫
d4p

∂

∂pν
(JF {pν ,SH}ext)︸ ︷︷ ︸
=0

+

∫
d4x

∫
d4p

∂

∂xµ
(JF {xµ,SH}ext) =

∫
d4x

∂

∂xµ

∫
d4p (JF {xµ,SH}ext) ,

here the term with energy-momentum derivatives cancels as it integrates the exact derivative;

the term which contains the space-time derivatives can be rewritten with taking derivative out of

integral, it allows to exchange the energy-momentum integral and the space-time derivative.

We are now ready to proceed with separation of the density and flux contributions from the

Vlasov terms to the Noether’s equation. We take into account that:

{xµ,SH} = {xµ,S}H+ {xµ,H}S, (C7)

therefore with using definition of the extended Vlasov field F ≡ F δ(w − H) and those of the

Hamiltonian over the extended phase space H ≡ H − w, we have by definition of the δ-function:∫
dw F {xµ,S}H ≡

∫
dw δ(w −H)F {xµ,S} (H − w) = 0. (C8)

Finally, only contributions of the remaining term count:

∂

∂xµ

∫
d4p F {xµ,H}S =

1

c

∂

∂t

∫
d4p F S {c t,H}︸ ︷︷ ︸

≡c

+∇ ·
∫
d4p F S

{
Xi,H

}︸ ︷︷ ︸
≡Ẋi

(C9)
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Collecting now expressions for density contributions to the Noether’s equation from Maxwell’s

part and both Vlasov parts of the Eulerian action, we get:

S ≡ − ε2

4πc
(E1 · δA1) +

∫
d4p F S. (C10)

In the same time for the flux part we have:

J = − ε
2

4π
δφ1 E1 −

ε

4π
[δA1 × (B0 + εB1)] +

∫
d4p F S{X, H1} (C11)

As we have mentioned in section III C, we are concentrating on the energy conservation deriva-

tion for the second order Gyrokinetic Maxwell-Vlasov system.

d. First order gyrocenter displacement

From the general reduction procedure at the first order in εδ we know the expression for the

lowest order gyrocenter displacement:

ρ1 = −{S1, (X + ρ0)}gc , (C12)

where S1 is the lowest order gyrocenter transformation generating function.

From the general reduction procedure, we have:

H1gy ≡ e ψ1(X + ρ0)− {S1, Hgc}gc , (C13)

The expression for S1 can be also obtained from the condition that the gyrophase dependent

part of the linear electromagnetic perturbation ψ̃1 is removed from the lowest order gyrocenter

Hamiltonian:

H1gy = e ψ1(X + ρ0)− e ψ̃1(X + ρ0) (C14)

then with considering only the lowest order contribution to the guiding-center Poisson bracket

and taking into account that Hgc is gyrophase independent, we have the equation, which defines

the gyrocenter generating function at the first order.

Ω

B

∂S1
∂θ

∂Hgc

∂µ
= e ψ̃1gc, (C15)

and therefore at the lowest order:

dS1
dθ

=
e

Ω
ψ̃1gc, (C16)
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and the lowest order generating function is given by:

S1 =
e

Ω

∫ θ

dθ ψ̃1gc. (C17)

This demonstrates a tight link between definition of the reduced particle position (new po-

larization displacement ρ1) and the elimination of the gyrophase dependency from the reduced

Hamiltonian dynamics. Now, we can explicitly calculate the expression for the gyrocenter dis-

placement. We substitute the expression for the first order gyrocenter generating function S1,

given by (C17) into the equation (C12).
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