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Abstract
The resonant interaction of shear Alfvén waves with energetic particles is investigated nu-

merically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid

approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most

easily destabilized by a fast-particle population in fusion plasmas.

While the background plasma is treated within the framework of ideal-MHD theory, the drive

of the fast particles, as well as Landau damping of the background plasma, is modelled using

the drift-kinetic Vlasov equation without collisions. A fast numerical tool, STAE-K, has been

developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code,

which is suitable for parameter scans, is applied to tokamaks and the stellarator Wendelstein

7-X.

Energetic particle modes (EPMs) are found when the pressure of the energetic particles be-

comes comparable to the pressure of the background plasma. To better understand the physics

of EPMs, the connections between TAEs and the shear Alfvén wave continuum are examined.

It is shown that, when energetic particles are present, the continuum deforms substantially and

the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum

leads to singularities in the eigenfunctions. To further advance the physical model and also to

eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-

order term connected to radiative damping has been included. The radiative damping term is

connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the

model. Thus, it has the potential to substantially change the nature of the solution.

For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative

damping have been modelled together in tokamak- as well as in stellarator geometry.
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I. INTRODUCTION

In a burning fusion plasma, alpha particles are produced with a velocity that exceeds the
typical Alfvén speed. In the process of slowing down, these fast particles may transfer
energy to Alfvén waves, which thus become unstable [1, 2]. Also heating methods
such as ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI) can
supply energetic particles with similar consequences. The resonant interaction of the fast
particles with Alfvén waves, in particular with toroidicity-induced Alfvén eigenmodes
(TAEs), may lead to a degraded confinement of the energetic particles and thereby to
particle loss and high heat loads on the first-wall components [3, 4]. In particular, an
energetic particle mode (EPM), determined by the properties of the energetic particle
distribution function, may form [5].
In this paper, the resonant particle-wave interaction is studied analytically and numer-
ically using a non-perturbative MHD-kinetic hybrid model in which the background
plasma is modelled using ideal-MHD theory, whereas the fast particles are treated ki-
netically.
To assess the stability or instability of a given mode, various damping mechanisms such
as Landau damping, radiative damping and continuum damping are just as important
as the kinetic drive of the energetic particle species [6]. Therefore, a numerical tool,
namely a shooting code for toroidicity-induced Alfvén eigenmodes with kinetic exten-
sions (STAE-K), has been developed, which is able to take into account all these different
stabilizing and destabilizing contributions (but cannot completely describe collisional
damping). The equations are solved in tokamak- (circular flux surfaces) or stellarator
geometry in the large-aspect-ratio and low-beta approximation.
The structure of the paper is as follows. First, the MHD-kinetic hybrid model will
be introduced by discussing the MHD and the kinetic part separately. The numerical
methods employed and the implementation of the model will be described in Sec. III.
After the shooting code is benchmarked in Sec. IV, further results will be presented in
Sec. V. Finally, conclusions are drawn in Sec. VI.
The two appendices elaborate on details of the theory outlined in Sec. II and summa-
rize the various background-plasma and fast-particle parameters used in the numerical
calculations, respectively.

II. THEORY

In this section a simple MHD-kinetic hybrid model will be developed, which is well
suited for fast and efficient numerical calculations. To this end, some simplifying as-
sumptions are made: For both the tokamak or stellarator, large-aspect-ratio devices are
considered. This simplifies the metric tensor, because only first-order corrections due to
toroidicity and helical shaping have to be taken into account. In addition, a low-beta
plasma is assumed, and only shear Alfvén waves are included in this analysis by taking

A(1) = A
(1)
‖ b, where A is the vector potential and b is the unit vector along the magnetic

field B. In the following, the superscripts (0) and (1) will be used to label equilibrium
and perturbed quantities, respectively. The symbols ‖ and ⊥ indicate vector components
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parallel or perpendicular to the direction of the equilibrium magnetic field. The per-
turbations, which are assumed to be much smaller than the equilibrium quantities, are
supposed to vary in time as exp (−iωt) with the mode frequency ω ∈ C.
In order to improve the performance of the numerical implementation, as many calcu-
lations as possible are performed on an analytical level.

The eigenmode equation is derived from the quasi-neutrality condition ∇ · j(1) = 0,
which can be split into an MHD part and the kinetic contribution of the fast particles

∇ · j
(1)
MHD +∇ · j

(1)
fast = 0. (1)

Here, the perturbed energetic-particle current density can be calculated using

j
(1)
fast = Zfaste

∫

d3v f (1)vD +∇× m
(1)
fast (2)

with f (1) being the perturbed distribution function of the kinetically treated fast-particle
species and vD being their drift velocity (Zfaste is the charge of the fast particles). The
second term on the right-hand side of Eq. (2) is the magnetization current of the fast
particles [7], which is unimportant, because it is divergence-free. In the following, the
two terms in Eq. (1) will be discussed separately.

A. MHD part

As the MHD-terms of the model have already been derived by others [8–10], those
calculations need not be repeated in the present paper. Thus, just a brief overview is
given here.

The linearized MHD momentum equation is used to solve for j
(1)
⊥ . Using Maxwell’s

equations gives

∇· j
(1)
MHD =

(

B(0) · ∇
)

(

B(0) · j(1)

B2

)

+
(

B
(1)
⊥ · ∇

)

(

B(0) · j(0)

B2

)

+
iω

µ0
∇·
(

∇⊥Φ(1)

v2
A

)

, (3)

if the perturbed plasma flow is approximated by the E×B-drift. Here, vA = B/
√

µ0nimi

is the Alfvén velocity of the background-plasma ions with mass mi and density ni. µ0 is
the vacuum permeability and the electric potential is denoted by Φ. Following Ref. [9]
the term with the equilibrium current density is dropped for simplicity in the case of
stellarators like Wendelstein 7-X (W7-X).
In the large-aspect-ratio and small-plasma-beta limit several possible simplifications of

Eq. (3) have been discussed extensively in Ref. [8]. They involve expressing B(0) · j(1)

and B
(1)
⊥ in terms of the perturbed vector potential. The ideal-MHD condition E‖ = 0

leads to iωA
(1)
‖ = (b · ∇)Φ(1) and provides the necessary connection to Φ(1). After using
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these simplifications a Fourier transform finally leads to

FT
(

iωµ0
√

g

rR0
∇ · j

(1)
MHD

)

=

=

[

1

r

d

dr
r

(

k2
m,n −

ω2

v2
A

)

d

dr
− 1

r

(

d

dr
k2

m,n

)

− m2

r2

(

k2
m,n −

ω2

v2
A

)]

Φ
(1)
m +

+

[

−2

r

d

dr
r

ω2

v2
A

(

∆′ +
r

R0

)

d

dr
− 2

r2

ω2

v2
A

∆′m (m + 1)

]

Φ
(1)
m+1+

+

[

−2

r

d

dr
r

ω2

v2
A

(

∆′ +
r

R0

)

d

dr
− 2

r2

ω2

v2
A

∆′m (m − 1)

]

Φ
(1)
m−1,

(4)

where
√

g is the determinant of the metric tensor used in Ref. [8] and km,n =
(n − m/q) /R0 denotes the parallel wave vector with poloidal and toroidal mode num-
bers m and n, respectively. R0 is the major radius of the toroidal device and q = 1/ι is
the safety factor (ι being the rotational transform). The Shafranov shift is denoted by ∆,
and primes label a derivative with respect to the radial variable r.
An equation very similar to Eq. (4) has been derived in Ref. [9] for stellarators

FT
(

iωµ0r2

α2δ0
∇ · j

(1)
MHD

)

= Qm,nΦ
(1)
m,n +

1

r2

d

dr
r3

{(

k2
m,n −

ω2

v2
A

)

(

1

r

d

dr
− 1

r2

)

Φ
(1)
m,n+

+∑
µ,ν

[

km,nkm+µ,n+νNP

ǫ
(µ,ν)
g

2
− ω2

v2
A

ǫ(µ,ν)

]

(

1

r

d

dr
− 1

r2

)

Φ
(1)
m+µ,n+νNP

+

+∑
µ,ν

[

km,nkm−µ,n−νNP

ǫ
(µ,ν)
g

2
− ω2

v2
A

ǫ(µ,ν)

]

(

1

r

d

dr
− 1

r2

)

Φ
(1)
m−µ,n−νNP

}

.

(5)

Here, ǫ(µ,ν) = ǫ
(µ,ν)
g /2 − 2ǫ

(µ,ν)
B determines the strength of the mode coupling due to

geometry. It is given in the following representations for the rr-component of the metric
tensor

grr = δ0

[

1 + ∑
µ,ν

ǫ
(µ,ν)
g cos (µΘ − νNPϕ)

]

(6)

(δ0 is connected to the elongation of the plasma) and for the magnetic field strength [9]

B = B0

[

1 + ∑
µ,ν

ǫ
(µ,ν)
B cos (µΘ − νNP ϕ)

]

= B0α. (7)

µ and ν characterise the mode coupling in poloidal and toroidal direction, respectively.
The corresponding angles are Θ and ϕ, and NP denotes the number of field periods.
Furthermore,

Qm,n =
1

r2

(

k2
m,n −

ω2

v2
A

)

(

1 − m2
)

− 1

r

d

dr

(

ω2

v2
A

)

. (8)
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Taking into account only the toroidal coupling µ = 1, ν = 0 reduces Eq. (5) to its tokamak
equivalent, Eq. (4) [11].
In any case, a coupled system of ordinary second-order differential equations in r has

to be solved. The system becomes larger the more poloidal (and toroidal) modes of Φ(1)

are taken into account.

B. Fast-particle part

The contribution of the energetic particles to Eq. (1) is given by

∇ · j
(1)
fast = Zfaste

∫

d3v ∇ ·
(

f (1)vD

)

∼= Zfaste
∫

d3v ∇ ·
(

h(1)vD

)

. (9)

Note that the perturbed fast-particle distribution function can be approximated by its

non-adiabatic part h(1) because the particle-wave resonance condition is only contained

in h(1) [12]. The adiabatic part of f (1), on the other hand, would only contribute to the

fluid part. h(1) is given by

h
(1)
m,n =

Zfaste vD,0

2

1

ω − v‖km,n

∂F

∂ε

(

1 − m
ω⋆

ω

)

×

×
[{

d

dr
− m − 1

r

}

Φ
(1)
m−1 −

{

d

dr
+

m + 1

r

}

Φ
(1)
m+1

] (10)

for tokamaks [8]. Here, vD,0 is the magnitude of the toroidal drift at r = 0, and F is the
Maxwellian equilibrium distribution function of the fast particles, whose kinetic energy
is denoted by ε. ω⋆ is their diamagnetic drift frequency defined as

ω⋆ =
∂F/∂r

∂F/∂ε

1

MΩ0r
, (11)

with mass M and on-axis gyration frequency Ω0. Note that for stellarators Eq. (10) is
generalized to

h
(1)
m,n =

R0Zfaste vD,0

2r

1

ω − v‖km,n

∂F

∂ε

[

(

1 − m
ω⋆

ω

)

×

×
{

∑
µ,ν

dǫ
(µ,ν)
B

dr

[

(m − µ) Φ
(1)
m−µ,n−νNP

+ (m + µ) Φ
(1)
m+µ,n+νNP

]

+

− ∑
µ 6=0,ν

ǫ
(µ,ν)
B

d

dr

[

Φ
(1)
m−µ,n−νNP

− Φ
(1)
m+µ,n+νNP

]

}]

.

(12)

After some straightforward algebra, where it must be pointed out that the integration
over velocity space in Eq. (9) has been performed analytically for the Maxwellian F, one
arrives also for the fast particles at a coupled system of second-order differential equa-

tions in r. The resulting equation for ∇ · j
(1)
fast is given in Appendix A for the stellarator

case.
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C. Radiative damping

Up to now the model only contains second-order differential operators. Radiative damp-
ing by the background-plasma is described by a fourth-order operator [13, 14]. Here, a
term derived in Ref. [13] that takes into account finite-Larmor-radius effects as well as
a parallel electric field that arises due to the kinetic modelling of the electron dynamics
will be included. This term enables the coupling of TAEs to kinetic Alfvén waves and
opens up a new energy loss channel, i.e. damps the TAEs. Following Ref. [13], this term
is added to Eq. (1) and reads as

D = ∇ ·
[

∇⊥

{

drad
1

mini
∇ ·

(

mini∇⊥Φ(1)
)

}]

(13)

with

drad = k2
m,n

[

3

4
ρ2

i + ρ2
s

1 + iν̂Z (x)

1 + xZ (x)

]

(14)

and

x =
ω + iν

km,nvth,e
, (15)

where ρi =
√

kBTimi/(ZieB) is the ion gyroradius, ρs =
√

kBTemi/(ZieB) is the sound
gyroradius, and ν̂ = ν/(km,nvth,e) is a normalized collision frequency with ν being the
electron-ion collision frequency. vth,e =

√
2kBTe/me is the electron thermal velocity and

Z is the well-known plasma dispersion function [15].
Subsequently, the radiative damping term is treated under the assumption that the
derivatives do not act on the equilibrium quantities, i.e.

D ∼= drad (∇ ·∇⊥)
2

Φ(1), (16)

implying that the equilibrium does not change much over the radial extent of the mode.
It then only remains to perform a Fourier transform of the simplified term, taking into
account the poloidal dependence (given by the metric tensor components) of (∇ · ∇⊥)2

in either tokamak or stellarator geometry. This yields a coupled system of differential
equations in r, but now every single equation is of fourth order.

III. NUMERICAL IMPLEMENTATION

A. General scheme

Depending on whether radiative damping is taken into account, a system of second-
order or fourth-order ordinary differential equations in the radial variable r has to be
solved. Considering, for simplicity, a tokamak with the fourth-order radiative damping

term being present, results in the following system of equations (with the superscript (1)

omitted from this point on)

M4Φ
(iv) + M3Φ

′′′ + M2Φ
′′ + M1Φ

′ + M0Φ = 0, (17)
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which is obtained by combining Eq. (4) with the Fourier transformed versions of Eq. (9)
(see Appendix A) and Eq. (16). The Mi, (i = 0, . . . , 4) are complex ∆m × ∆m-matrices,

and the vector Φ = (φm,n, . . . , φm+∆m,n)
T contains the ∆m poloidal modes of the per-

turbed electric potential that are taken into account. For a stellarator there would be an
additional variation in the toroidal mode number n, leading to a larger system.
One aim of the STAE-K code is to survey the importance of EPMs by conducting pa-
rameter scans (e.g. varying the fast-particle temperature or the fast-particle density).
Therefore, a shooting code making use of the method of invariant imbedding (often
called the Riccati method, see Refs. [16, 17]) has been used for this purpose, as it is
especially suited for parameter scans [11].
Since this method can be used to solve any system of ordinary differential equations,
consider for the moment a general linear system

χ
′
1 = Aχ1 + Bχ2 χ

′
2 = Cχ1 + Dχ2, (18)

where it is shown below how the matrices A, B, C and D and the vectors χ1 and χ2 are
related to the Mi and Φ of the original system given by Eq. (17).
In the Riccati method the vectors χ1 and χ2 are linked by the so-called Riccati matrix R
via

χ1 = Rχ2. (19)

From Eqs. (18) and (19) it is possible to infer a matrix differential equation (Riccati
equation)

R′ = AR + B − RCR − D (20)

for R [16], which is to be solved instead of the original system. The Riccati equation
is integrated from both end points of the interval [0, a] (a is the minor radius of the
toroidal device.) simultaneously towards an arbitrarily chosen fit point ξ at which R
equals Rleft and Rright, respectively [11, 16]. The eigenvalue is found by iterating ω until

det
(

Rleft − Rright

)

= 0 holds at the fit point. The code uses a complex secant method to
find the roots of the determinant and an accurate integration scheme with adaptive step
size for the integration of Eq. (20).
The eigenfunctions are computed using Eq. (19) once ω and therefore also R (ω, r) have
been found. The initial value for χ2 at ξ comes from a singular value decomposition of
Rleft − Rright [11].

B. Boundary conditions

By employing the Riccati scheme, the boundary conditions of the physical problem are
transformed into initial conditions for R [16]. The initial conditions are always chosen
as R (0) = R (a) = 0, which can via Eq. (19) be translated to χ1 (0) = χ1 (a) = 0. Which
physical boundary conditions are realized therefore depends on the definition of χ1 and
χ2.
For the fourth-order system, the physically correct boundary conditions are given as

Φ (0) = 0, Φ (a) = 0

Φ
′′ (0) = 0, E‖ (a) = 0,

(21)
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if an ideally conducting wall surrounds the plasma. But since it is difficult to access
the parallel electric field directly in the code the condition Φ

′′ (a) = 0 is chosen instead
of E‖(a) = 0 (making the boundary conditions symmetric). According to Ref. [18] the
parallel electric field can be approximated by

E‖ ∼= −iρ2
s (1 − iδ) km,n (∇ · ∇⊥)Φ, (22)

where δ ≪ 1 is related to the imaginary part of drad given in Eq. (14). Taking into
account that

∇ · ∇⊥ = δ0

[

1 + ∑
µ,ν

ǫ
(µ,ν)
g cos (µΘ − νNPϕ)

]

∂2

∂r2
+

δ0

r2

∂2

∂Θ2
(23)

for the stellarator it can easily be verified that choosing Φ(a) = Φ′′(a) = 0 indeed
ensures E‖(a) = 0 and that there is no conflict of boundary conditions. Generally,
the conditions at r = a are ‘real’ boundary conditions determined by the nature of the
plasma boundary, whereas the conditions at r = 0 are regularity conditions. They ensure
a finite amplitude of the solution at the origin and are valid for |m| > 0.
Thus, it is feasible to define

χ1 =
(

Φ, Φ
′′)T

and χ2 =
(

Φ
′, Φ

′′′)T
(24)

making it staightforward to find expressions for the matrices A, B, C and D in terms of
the Mi. These calculations yield

A =

(

0 0
0 0

)

B =

(

1 0
0 1

)

C =

(

0 1

−M−1
4 M0 −M−1

4 M2

)

D =

(

0 0

−M−1
4 M1 −M−1

4 M3

)

,

(25)

where 0 und 1 denote the zero and unity matrix of size ∆m × ∆m respectively.

IV. BENCHMARKS

STAE-K with its simplified physical model is primarily intended to be a reliable tool
to quickly scan a certain region in parameter space for interesting fast-particle physics.
The same region can then be investigated with more advanced gyrokinetic codes (such
as GYGLES [19–21] or EUTERPE) to check whether the prediction from the simplified
model holds. Note that these more advanced codes require much more time for their
simulations than STAE-K. However, it must be checked that STAE-K calculates the cor-
rect results within its range of validity. To this end, several benchmarks have been
performed.

A. ITPA benchmark

The ITPA benchmark [22] is one of the most rigorous benchmarks that have been per-
formed of codes calculating fast-ion-driven instabilities. It consists of a rather idealized
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scenario, which involves only two modes with poloidal and toroidal mode numbers
m1 = 10, n1 = 6 and m2 = 11, n2 = 6. They form a gap in the Alfvén continuum at
exactly r/a = 0.5 as can be seen in Fig. 1. In this scenario, a large-aspect-ratio toka-
mak with circular flux surfaces is used. The background-plasma parameters are listed
in Tab. I (see Appendix B). Note that the bulk plasma is treated within an ideal and
reduced MHD framework with negligible plasma beta. This means that pressure terms
and consequently any term including a finite bulk-plasma temperature have been left
out. For simplicity, the background-plasma density as well as the fast-particle tem-
perature profile are chosen to be flat. Hence, the only free energy source to drive the
TAE unstable is the fast-particle density gradient. The fast-particle parameters can be
found in Tab. II. The energetic particles possess a Maxwellian equilibrium distribution
function.
Starting with the real eigenfrequency of an ideal-MHD calculation, fast particles with
increasing temperature are added. As the energetic-particle density profile has its max-
imum gradient in the region where the mode is localized, energy transfer from the fast
particles to the mode by means of inverse Landau damping is possible, driving the mode
unstable. The results of this benchmark can be seen in Fig. 2, where STAE-K is com-
pared with various other codes. CAS3D-K [23] is an eigenvalue code which relies on
a model of ideal MHD for the background plasma and, similarly to STAE-K, treats the
fast particles kinetically. However, CAS3D-K is a perturbative code, whereas STAE-K is
non-perturbative. Although differing in details, the two codes possess enough analogies
that it is possible to expect a good agreement between them, at least for low enough tem-
peratures, where the perturbative approach of CAS3D-K is valid. CKA-EUTERPE [24]
and GYGLES are both particle-in-cell (PIC) codes, but while GYGLES is fully kinetic,
CKA-EUTERPE employs an MHD-kinetic hybrid model.
In Fig. 2 one can see that all codes predict a strong increase in the growth rate γ for
temperatures up to Tfast

∼= 200 keV. For higher temperatures, finite-orbit-width (FOW)
effects lead to a saturation of γ for CKA-EUTERPE and GYGLES. If finite-Larmor-radius
(FLR) effects are excluded in the GYGLES calculation, it agrees up to larger Tfast with
the result obtained by STAE-K. The reason is that FOW- and FLR effects introduce an
averaging effect over the perturbed potential [24, 25]. This means that the effective
particle-wave energy transfer is smaller, leading to a reduced growth rate. As expected,
the quantitative agreement between CAS3D-K and STAE-K (both codes neglect FOW-
and FLR effects) is good in the zero to 200 keV interval, and they qualitatively agree in
predicting a strong growth rate for higher fast-ion temperatures.
In this benchmark not only the growth rate, but also the change in the real frequency
due to the presence of energetic particles has been calculated. The results are shown in
Fig. 3 where the same codes (with the same colours) have been compared as in Fig. 2. As
before, STAE-K and CAS3D-K show the best agreement for low enough temperatures,
which is to be expected due to the similarities in their mathematical models. The result
from GYGLES shows a different behaviour because of its higher level of complexity.
Please note that an initial-value approach like the PIC method converges to the fastest
growing mode, which is not necessarily identical to the initial MHD eigenmode. STAE-K
on the other hand is able to track the development of the same mode during a parameter
scan.
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On the left-hand side of Fig. 3 it is shown how the mode frequency decreases rapidly
with increasing Tfast and thus quickly escapes from the MHD continuum gap. As soon
as the mode frequency intersects the continuum, continuum damping sets in and the
eigenfunctions develop singularities. Since these singularities in position space can be
treated in formal analogy to the singularities in velocity space present in conventional
Landau damping, the path of integration was extended into the complex plane [11]. The
diagram on the left-hand side of Fig. 3 is inspired by the figures in Ref. [21], from where
the results of GYGLES have been taken. As the mode frequency always stays inside
the continuum gap for this curve, such a representation next to the MHD continuum is
valid. The right-hand side of Fig. 3 shows the same results from the codes, but this time
together with the kinetic continuum. (The reader is refered to Sec. V A and Fig. 8 for
more details on the calculation of the continuum.) In contrast to the MHD continuum,
the kinetic continuum changes with Tfast. For low Tfast it moves together with the mode
frequency. At larger temperatures however, the gap gets narrower and the mode again
leaves the continuum gap and becomes singular.
From both diagrams of Fig. 3 and also from Fig. 2, the validity range of STAE-K can
be estimated. For the conditions of the ITPA benchmark, the code is able to calculate
the correct results for fast-particle temperatures Tfast

<∼ 200 keV. Progress, in terms
of improving the physical model, could be made, if FOW (and as a second step FLR)
effects were included. They should bring the γ calculated by STAE-K down to the same
range as the results from the PIC codes for higher temperatures. Also, with this first
benchmark the numerical feasibility of the Riccati shooting method used to solve the
equations has been confirmed. STAE-K is able to calculate the curves in all the figures
above in less than half an hour on a single 2.3 GHz core, making STAE-K one to two
orders of magnitude faster than the other codes.

B. Benchmark with KIN-2DEM and others

Just like in the ITPA benchmark, this benchmark (refered to as benchmark-1 in Ref. [24]
and introduced originally as a benchmark for KIN-2DEM [26]) investigates the change
of the real frequency of the mode and the development of the growth rate γ for different
fast-particle temperatures. In this case however, the fast-particle beta (using the usual
symbols)

βfast,0 =
2µ0kBNfast,0Tfast,0

B2
0

(26)

on the magnetic axis will be held fixed by keeping Nfast,0Tfast,0 = 7.578 · 1020 keV · m−3

constant. The two modes (m1 = 2, n1 = 2 and m2 = 3, n2 = 2) considered in this tokamak
scenario form an MHD continuum that can be seen in Fig. 4. The background-plasma
density profile and the fast-particle temperature profile are again chosen to be flat, so
that the drive of the mode only arises from the density gradient of the fast particles. All
other bulk-plasma parameters are listed in Tab. III, and the remaining parameters of the
energetic particles, having a Maxwellian equilibrium distribution function, can be found
in Tab. IV.
The growth rate calculated by all the different codes is depicted in Fig. 5. As the fast-
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particle beta is kept constant here, the growth rate increases much more slowly with
increasing Tfast than for the ITPA benchmark. One can see that all MHD-kinetic hybrid
codes (STAE-K, CAS3D-K, and NOVA-K) predict nearly the same result. In its general
behaviour STAE-K is closest to NOVA-K. Note that for this comparison an older version
of NOVA-K [25, 27], which does not include FOW- and FLR effects, was used, which
makes the underlying physical model very similar to that of STAE-K. Just like STAE-
K, LIGKA [28] is a non-perturbative eigenvalue code but with a much more complex
model, and it is not surprising that these two codes show differences.
It can also be noted that for fast-ion velocities less than approximately vA,0/2, the mode
is still damped. All the codes agree very well in determining the location of the marginal
point where the growth rate becomes zero. The existence of such a marginal point can
be understood from Eq. (10). At the marginal point, the condition mω⋆ = ω is fulfilled,

making h
(1)
m exactly zero. Thus, there is no contribution of the energetic particles to the

perturbed electric current density j(1) in the plasma, and γ thus vanishes. In order to
allow for a non-vanishing growth rate, the diamagnetic drift frequency of the energetic
particles (multiplied by m) must exceed the mode frequency. As ω⋆ is given by

ω⋆ = −kBTfast

(

ln Nfast − 3
2 ln Tfast

)′
+ ε (ln Tfast)

′

MΩ0r
(27)

for a Maxwellian distribution function of the energetic particles, it is possible to increase
ω⋆ by having steeper gradients in both the density and temperature profile, or by having
a higher fast-particle energy ε if the temperature profile is not flat.
For the purpose of this benchmark, radiative damping and electron Landau damping
have not been taken into account as they would modify the position of the marginal
point and the total growth rate. The change of the real frequency, δω = Re(ω) −
ωMHD, is shown in Fig. 6. All codes show good qualitative agreement. As for the ITPA
benchmark, the mode frequency decreases rapidly in the beginning and it increases
again with rising fast-particle temperature.

C. Landau damping in the ITPA benchmark

In this benchmark, only the contributions of Landau damping [29] on the modes will be
investigated. All gradients are therefore set to zero (corresponding to ω⋆ ≡ 0) and thus
only kinetic terms that act stabilizing are retained.
In Ref. [30] an analytic formula, capable of making a theoretical prediction about the
Landau damping rate of gap modes, has been derived. A very similar equation

δω = − β⋆

fast

8k⋆2
m,nr⋆2

ω
r⋆2

R2
0

∑
j=±1

G
(

xj

)

(28)

with
G
(

xj

)

= 3x2
j + 2x4

j + xjRe
(

Z
(

xj

))

[

1 + 2x2
j + 2x4

j

]

(29)
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and

xj =

∣

∣

∣
q⋆R0k⋆‖,m

∣

∣

∣
v⋆A

∣

∣

∣
q⋆R0k⋆‖,m

+ j
∣

∣

∣
v⋆fast

(30)

can also be found for the change of the real frequency. The superscript ⋆ indicates that
the quantity in question should be evaluated in the centre of the TAE gap, i.e. where
the continua would cross in the cylindrical limit. Hence, Eq. (28) is valid in the limit of
very small inverse aspect ratio. Here, this is achieved by choosing a large major radius.
The comparison of STAE-K with the analytic theory of Ref. [30] as well as with Eq. (28)
is shown in Fig. 7 for the parameters of the ITPA benchmark. While the top diagram
shows the normalized damping rate, the normalized deviation from the MHD frequency
is depicted in the diagram on the bottom.
It can be observed that, even for small major radii, the qualitative behaviour of the
damping rate calculated by STAE-K matches that from analytic theory. If R0 is increased
further, the curves converge to the theoretical result.
In the top diagram of Fig. 7 it can be seen that the damping rate possesses two dis-
tinct minima. These correspond to resonances of the fast-particle thermal velocity with
respect to the Alfvén velocity [23, 30].

V. RESULTS

A. Changes in the MHD continuum due to energetic-particle influences

STAE-K is not only able to calculate the growth rate, frequency and the structure of
the eigenfunction of the mode, but also the shear Alfvén wave continuum. This is
done by computing the frequencies for which det M2 = 0, with M2 from Eq. (17) in
the absence of radiative damping, is satisfied. The continuum of M2, together with the
MHD continuum, is resolved if the fourth-order term is taken into account, which leads
to a discretization of the continuum as has been reported in Ref. [6].
Here, the influence of the fast particles on the MHD continuum without radiative damp-
ing is studied. The same magnetic geometry as in the ITPA benchmark has been used.
Fig. 8 shows that the continuum can be deformed substantially, if the pressure of the
energetic particles becomes comparable to the bulk-plasma pressure. Since both the
continuum as well as the discrete TAE frequency within the gap are shifted to lower
frequencies, the mode can stay longer inside the gap and is not subject to continuum
damping. This maximizes the kinetic drive of the mode. Note that eventually, for
Tfast

>∼ 300 keV, the TAE intersects the continuum, so that the TAE transfers energy to
singular continuum modes.

B. Contribution of radiative- and background-plasma Landau damping

The singular eigenfunctions resulting from the continuum interaction indicate that the
MHD-kinetic hybrid model is not well suited to explain the physics on very short spatial
scales. The model can be improved by including kinetic effects of finite Larmor radii of
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the background-plasma ions, as well as a kinetically arising parallel electric field. They
cause the so-called radiative damping, governed by the fourth-order operator given in
Eq. (13) [13].
Since the addition of this term discretizes the MHD continuum (including also the fast-
particle influences), it resolves any continuum interaction as can be seen in Fig. 9 for
the parameters of the ITPA benchmark. A constant bulk-plasma temperature of 1 keV
was chosen. The eigenfunctions show no singularities indicative of continuum damping.
Instead, the figure shows the smooth transition of a TAE into a a kinetically modified
TAE (KTAE) and later into a kinetic Alfvén wave (KAW). Short-scale oscillations start to
appear on the mode structure precisely when the fast-particle temperature is such that
the mode would intersect the Alfvén continuum, if radiative damping were not present.
The oscillations are only present in the real and imaginary part (not shown in the figure)
of the eigenfunction. They are absent in the absolute value of the potential perturbation,
which thus resembles the results of Ref. [21] very closely. Note that no short-scale
oscillations in the eigenfunction are observed in Ref. [21]. We conjecture that they are an
effect of the much larger growth rate of this model due to the absence of FOW- and FLR
effects. Additionally, the mode frequency in Ref. [21] never intersects the continuum,
which is found to be an essential condition for the appearance of oscillations.
The final mode structure is broader, shifted towards the position of the maximal gradient
in Nfast, and one poloidal harmonic dominates over the others. All these are signs for
EPMs [21].
The model includes the kinetic drive of the energetic particles as well as damping
mechanisms such as Landau damping (of both the bulk ions and electrons), radiative
damping, and, if the continuum gap is closed, continuum damping. In order to as-
sess the overall stability of a mode, damping is just as important as the drive. For the
ITPA case introduced above, calculations have also been performed without fast parti-
cles. The combined damping rate of radiative damping and Landau damping of the
background-plasma electrons was γ = −2.33 · 103 s−1, which is very close to results
from more advanced codes like LIGKA and GYGLES giving γ = −2.34 · 103 s−1 and
γ = −3.9 · 103 s−1, respectively [22].

C. Stability diagrams

The properties of the damping terms are mainly determined by the background plasma,
making it feasible to vary fast-particle parameters and background-plasma parameters
independently. In doing so, it is possible to scan a whole region in parameter space and
to answer the question whether the mode is stable or unstable in this region.
Such stability scans have been performed for the ITPA benchmark case and for a W7-X
scenario (introduced below). The bulk and the energetic-particle temperature have been
varied independently (Nfast and Nbulk were kept constant.) to obtain the two stability
diagrams shown in Fig. 10 (ITPA benchmark on the left and W7-X on the right). Both
calculations include the kinetic drive coming from the fast-particle species as well as
Landau damping of the bulk electrons and radiative damping. For both cases radiative
damping is able to extend the region of stability, but for high energetic-particle temper-
atures the drive still dominates. Note that, as a first step, only the toroidal coupling has
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been taken into account for W7-X.
The stability scans are performed by repeatedly solving the eigenvalue problem in the
plane spanned by Tfast and Tbulk. As such, computation of the scans parallelizes per-
fectly. Depending on whether radiative damping was included, these calculations typ-
ically take three to ten hours on 128 processors for a resolution of about 256 points in
each direction.

D. Application to W7-X

The code will be be applied to the stellarator W7-X in more detail. The background-
plasma and fast-particle parameters for the W7-X case are summarized in Tabs. V and
VI, respectively, and they lead to an MHD continuum shown in Fig. 11.
As a first step, the influence of a rising energetic-particle temperature on the structure of
the eigenfunction is studied. Note that the radiative damping term, with a background
temperature of Tbulk = 1 keV, has been present in all the calculations in this section. The
results can be seen in Fig. 12, where the kinetic continuum and the eigenfunction for
a high fast-particle temperature of 750 keV are shown. The kinetic continuum exhibits
only minor differences compared with the ideal-MHD continuum. Furthermore, these
changes are located at radial positions where the mode amplitude is almost vanishing.
Consequently, the influence of the fast particles on the structure of the eigenfunction
is negligible. It must also be pointed out that Tfast = 750 keV will most likely not be
reached in W7-X. The specific case that has been chosen for this investigation is very
insensitive to an increasing Tfast.
The fast-particle pressure can also be raised by increasing the fast-particle density. The
eigenfunction depicted in Fig. 13 again shows no significant deviation from its ideal-
MHD counterpart. As previously, this is due to the fact that the continuum only changes
in the center and at the edge and that therefore the nature of the coupling between the
poloidal harmonics remains unaffected.
Generally, the transition of the TAE into a KTAE happens because the mode frequency
gets close to the continuum and because the radiative damping term is present. For
the two previous cases with increasing Tfast and Nfast the mode frequency was nearly
unaffected by the fast-particle population. Furthermore, the continuum only changed
in regions where the mode was not localized. Thus, no transition into a KTAE could be
observed. However, the influence of radiative damping on the structure of the eigen-
function can also be studied in the absence of fast particles by simply modifying the
density profile of the background plasma in such a way that the TAE gap closes. Then
a combined damping rate of continuum damping and radiative damping is calculated.
The density profile was chosen as

n
profile
bulk =

1

2

[

1 − tanh

(

sh − r

0.1a

)]

(31)

with a shift parameter sh. It represents the extreme case of a hollow density profile,
where at r = sh the density has increased to half the value at the edge. Here, it is shown
as a proof of principle how radiative damping influences the case of extreme continuum
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damping. The results of this investigation, together with the different continua for
various values of sh are depicted in Fig. 14. Even though the continuum closes in a
region where the mode has a finite amplitude, no singular eigenfunctions are observed.
They are instead completely regularized by the presence of the fourth-order damping
operator. Now, short-scale oscillations (less prominent than in Fig. 9) develop in the
eigenfunctions, and the amplitude of one poloidal harmonic becomes much larger than
that of the other one. This investigation without fast particles shows that such behaviour
must not necessarily be interpreted as sign of an EPM. It is merely a consequence of
the TAE frequency leaving the continuum gap towards a region where mode coupling
becomes less important. However, as can be concluded from the ITPA-case, energetic
particles can have a similar influence on the mode frequency and the continuum. These
results are in qualitative agreement with Ref. [31]. For the extreme case of sh = 0.3 m
a damping rate of (γcontinuum + γradiative)/ωMHD = −2.32% is measured, where the
majority comes from continuum damping as can be observed in Fig. 15. Radiative
damping alone accounts for approximately −0.12%.
The figure shows a strong increase of the damping rate γcontinuum for sh

>∼ 0.225 m
when just the MHD terms are present. The path of integration has been extended into
the complex plane to retain the contribution of the pole. Note that in this logarithmic
plot the initial level of γcontinuum for small values of sh is not exactly zero only because
of the numerically specified tolerance for convergence. In this initial phase radiative
damping outweighs continuum damping by many orders of magnitude. At some point,
however, continuum damping also sets in when the fourth-order term is taken into
account. In this case it was not necessary to leave the real axis when integrating Eq. (20).
As expected, there still are some slight differences in both curves of Fig. 15 for sh =
0.3 m, but they seem to converge to the same damping rate in the limit of very strong
damping.

VI. SUMMARY AND CONCLUSIONS

In this paper, the resonant interaction of fast particles with shear Alfvén waves, espe-
cially TAEs, leading to EPMs has been investigated in tokamaks and stellarators. The
non-perturbative model used for this purpose treats the background plasma within ideal
MHD-theory and the fast particles kinetically. Furthermore, a higher-order differential
operator, which describes radiative damping, has been added to the model. (To the best
knowledge of the authors, this is the first time that radiative damping has been adressed
in stellarators.) Throughout this work, the large-aspect-ratio and low-plasma-beta ap-
proximations have been used.
The eigenvalue problem is solved by the novel code STAE-K, using a numerically robust
and efficient shooting algorithm. Thanks to its high speed, the code is particularly well
suited to perform parameter scans in the EPM regime. After a scan has been conducted,
specific regions in parameter space can be investigated by more advanced codes with
physically more complex models. It can then be checked if the predictions from the
simplified model utilized by STAE-K hold.
The behaviour of the shear Alfvén wave continuum in the presence of energetic particles
was studied. It was found that the structure of the continuum may be influenced sub-
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stantially. In particular, continuum resonances in regions where the mode has a finite
amplitude become possible. In this case, continuum damping occurs and the TAE may
smoothly be converted into a KAW, if radiative damping is accounted for.
Especially in the W7-X case, it could be observed that the structure of the MHD-
eigenfunction is insensitive to changes of Tfast and Nfast. Thus, perturbative hybrid
models like CAS3D-K and CKA-EUTERPE might be applicable for a wide range of fast-
particle parameters.
All the W7-X results were obtained taking into account the toroidal coupling only. How-
ever, the structure of the magnetic field in W7-X is such that the helical coupling could be
of equal importance. More couplings, leading to more realistic results, will be included
in the future.
The ITPA benchmark showed that FOW effects play a critical role in determining the
growth rate of the mode. A next step will be to properly include those effects into
STAE-K. At the same time it must be emphasized again that all results were obtained
for a Maxwellian equilibrium distribution function of the energetic particles. Since most
circulating fast particles are produced by neutral beam injection, it would be more ap-
propriate to work with a pitch-angle dependent slowing-down distribution function.
This topic is left for future work.
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Figure 1: The Alfvén continuum without fast particles for the ITPA benchmark as cal-
culated by STAE-K. The TAE frequency (dashed line) lies in the continuum gap. The
locations of the maxima of both eigenmode components Φm and Φm+1 have been indi-
cated by a square and a diamond respectively.
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Figure 2: Calculated growth rates of the TAE as a function of the fast-particle temper-
ature within the ITPA framework. All the codes that exclude FOW- (and FLR-) effects
show qualitatively the same strong increase in the growth rate. If those effects are taken
into account they substantially decrease the growth rate. Curves other than STAE-K
taken from [22, 24].
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Figure 3:
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Figure 3: Real part of the TAE frequency as a function of the fast-particle tempera-
ture within the ITPA framework. (The colours are the same as in Fig. 2.) Left: Since
the frequency is initially decreasing rapidly with increasing fast-ion temperature, the
mode quickly leaves the MHD continuum gap. Right: Even though the frequency varies
rapidly, the kinetic continuum mimics this behaviour so that the mode frequency re-
mains longer inside the gap. For higher fast-particle temperatures the mode sinks deeply
into the continuum. GYGLES curve taken from [21].
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Figure 4: The Alfvén continuum without fast particles for the benchmark with KIN-
2DEM and others as calculated by STAE-K. The TAE frequency (dashed line) lies in the
continuum gap. The locations of the maxima of both eigenmode components Φm and
Φm+1 have been indicated by a square and a diamond respectively.
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Figure 5:
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Figure 5: Calculated growth rate of the TAE as a function of the fast-particle thermal
velocity normalized to the on-axis Alfvén velocity. All the codes agree in their qualitative
behaviour, and STAE-K especially matches the results of other hybrid codes (such as
NOVA-K). The marginal point γ = 0 is the same for all codes. Curves other than STAE-
K taken from [26, 28].
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Figure 6:
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Figure 6: Calculated real part of the TAE frequency as a function of the fast-particle
thermal velocity normalized to the on-axis Alfvén velocity. Again STAE-K is close to
other hybrid codes (especially CAS3D-K) in this case. The fully kinetic codes predict
a much stronger frequency change for high temperatures. Curves other than STAE-K
taken from [26, 28].
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Figure 7:
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Figure 7: Comparison of STAE-K to analytic theory in the limit of very small inverse
aspect ratio for various fast-particle temperatures. Normalized Landau damping rate
(top) and normalized change of the real frequency (bottom) as functions of the energetic-
particle thermal velocity. STAE-K converges to the theoretical result (black curve) for
increasing major radii.
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Figure 8:
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Figure 8: Evolution of the shear Alfvén continuum with increasing temperature of the
energetic particles for the parameters of the ITPA benchmark (see Tabs. I and II). The
TAE gap as well as the discrete eigenfrequency (dashed lines) are shifted to lower values.
For Tfast

>∼ 300 keV the mode frequency intersects the continuum, leading to continuum
damping.
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Figure 9:
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Figure 9: Development of the eigenfunctions in the ITPA case including radiative damp-
ing. The mode transforms from a TAE into a KTAE and later into a KAW. Black and
red curves show the real parts of both eigenmode components, whereas green and blue
have been used for the absolute values.
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Figure 10:
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Figure 10: Stability diagrams taking into account the kinetic drive of a fast-particle
species, Landau damping by the background-plasma electrons, and radiative damping.
Black lines connect points of equal growth/damping rate. Left: ITPA benchmark. Right:
W7-X case.
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Figure 11:
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Figure 11: The Alfvén continuum without fast particles for the W7-X case as calculated
by STAE-K. The TAE frequency (dashed line) lies in the continuum gap. The locations
of the maxima of both eigenmode components Φm,n and Φm+1,n have been indicated by
a square and a diamond respectively.
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Figure 12:
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Figure 12: Kinetic continuum (left) and eigenfunction (right) for the W7-X case in the
presence of energetic particles with high Tfast of 750 keV. The fast-particle density is
Nfast = 4.0 · 1017 m−3. The eigenfunction is nearly unchanged compared with the ideal-
MHD case.
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Figure 13:
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Figure 13: Kinetic continuum (left) and eigenfunction (right) for the W7-X case in the
presence of energetic particles with a high ratio of Nfast/Nbulk = 11.25%. The fast-
particle temperature is Tfast = 100 keV. The eigenfunction is nearly unchanged com-
pared with the ideal-MHD case.
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Figure 14:
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Figure 14: Influence of the radiative damping term on the eigenfunctions for a closing
TAE gap (see top left). The eigenfunctions for values of sh = 0.0 (top right), sh = 0.275
(bottom left), and sh = 0.3 (bottom right) are shown. The fourth-order term prevents the
development of singularities. No fast particles are present in this calculation.
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Figure 15: Normalized continuum damping rate only taking into account the MHD
terms (full curve) and a combination of radiative damping and continuum damping
(dashed line). The shift parameter sh used to control the density profile determines the
strength of the damping.
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Appendix A: Fast-particle contribution in detail

Using Eqs. (9) and (12), the Fourier transformed fast-particle contribution to Eq. (1) is
obtained as

FT
(

iωµ0r2

α2δ0
∇ · j

(1)
fast

)

∼= ωµ0ZfasteR2
0δ0

4
×

×
(

Am,nΦ
(1)
m,n + Bm+2σ,n+2τNP

Φ
(1)
m+2σ,n+2τNP

+ Cm−2σ,n−2τNP
Φ

(1)
m−2σ,n−2τNP

)

(A1)

with

Am,n =

{

ησ,0σ
(

ǫ
(σ,τ)
B

)2
[−C (z+)− C (z−)]

}

d2

dr2
+

+

{

ησ,0ǫ
(σ,τ)
B ǫ

(σ,τ)′

B [−A (z+) +A (z−)] +

+ ησ,0σ
(

ǫ
(σ,τ)
B

)2
[−B (z+)− B (z−)] +

+ σǫ
(σ,τ)
B ǫ

(σ,τ)′

B [(m − ησ,0) C (z+)− (m + ησ,0) C (z−)]
}

d

dr
+

+ m
(

ǫ
(σ,τ)′

B

)2
[A (z+) +A (z−)] +

+ mσǫ
(σ,τ)
B ǫ

(σ,τ)′

B [B (z+)− B (z−)] +

+ mσǫ
(σ,τ)
B ǫ

(σ,τ)′′

B [C (z+)− C (z−)]

(A2)

and

Bm+2σ,n+2τNP
=

[

ησ,0σ
(

ǫ
(σ,τ)
B

)2
C (z+)

]

d2

dr2
+

+

[

ησ,0ǫ
(σ,τ)
B ǫ

(σ,τ)′

B A (z+) + ησ,0

(

ǫ
(σ,τ)
B

)2
B (z+) +

+ σǫ
(σ,τ)
B ǫ

(σ,τ)′

B (m + 2σ + ησ,0) C (z+)

]

d

dr
+

+ (m + 2σ)

[

+
(

ǫ
(σ,τ)′

B

)2
A (z+) + σǫ

(σ,τ)
B ǫ

(σ,τ)′

B B (z+) +

+ σǫ
(σ,τ)
B ǫ

(σ,τ)′′

B C (z+)

]

(A3)
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and

Cm−2σ,n−2τNP
=

[

ησ,0σ
(

ǫ
(σ,τ)
B

)2
C (z−)

]

d2

dr2
+

+

[

− ησ,0ǫ
(σ,τ)
B ǫ

(σ,τ)′

B A (z−) + ησ,0

(

ǫ
(σ,τ)
B

)2
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− σǫ
(σ,τ)
B ǫ

(σ,τ)′

B (m − 2σ − ησ,0) C (z−)
]

d

dr
+

+ (m − 2σ)

[

(

ǫ
(σ,τ)′

B

)2
A (z−)− σǫ

(σ,τ)
B ǫ

(σ,τ)′

B B (z−) +

− σǫ
(σ,τ)
B ǫ
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B C (z−)
]

.

(A4)

Here, σ and τ represent the particular mode coupling, z± =
(

m ± σ, n ± τNp

)

and ησ,0

is a ‘reversed’ Kronecker-delta: ησ,0 = 1 − δσ,0.
The operators A,B and C are defined as

A (m, n) = m

(

1 +
m

ω
a

)

I1 (m, n) +
m2

ω
bI2 (m, n) (A5)

and
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ω
a

)

+ c
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ω
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(

1 +
m
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ω

(
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m
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(
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m

ω
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I3 (m, n) +
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q2

m

ω
bI4 (m, n) +

m

ω
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(A6)

and

C (m, n) =
A (m, n)

m
. (A7)

While the quantities a, . . . , f contain the density and temperature gradients of the ener-
getic particles

a =
δ2

0kB

MΩ0r

[

T (ln N)′ − 3

2
T′
]

(A8)

b =
δ2

0

MΩ0r
(ln T)′ (A9)

c = (ln N)′ − 5

2
(ln T)′ (A10)

d =
δ2

0kB

MΩ0r

[

T′ (ln N)′ + T (ln N)′′ − 3

2
T′′
]

(A11)

e =
1

kBT
(ln T)′ (A12)

f =
δ2

0

MΩ0r
(ln T)′′ , (A13)
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the different integrals over velocity space are denoted by

I1 (m, n) =
∫

d3v
v2

D,0

ω − v‖km,n

∂F

∂ε
(A14)

I2 (m, n) =
∫

d3v
v2

D,0

ω − v‖km,n

∂F

∂ε
ε (A15)

I3 (m, n) =
∫

d3v
v2

D,0
(

ω − v‖km,n

)2
v‖

∂F

∂ε
(A16)

I4 (m, n) =
∫

d3v
v2

D,0
(

ω − v‖km,n

)2
v‖

∂F

∂ε
ε (A17)

I5 (m, n) =
∫

d3v
v2

D,0

ω − v‖km,n

∂F

∂ε
ε2. (A18)

Note that the equations presented in this appendix are valid for the stellarator. Their
tokamak equivalents may be recovered by setting σ = 1, τ = 0 (toroidal coupling), δ0 = 1

(circular flux surfaces), and ǫ
(1,0)
B = −r/R0.
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Appendix B: Parameters of the numerical calculations

Below, the parameters which have been used in the various benchmarks and in the W7-X
calculation are listed.

Table I: Background-plasma parameters for the ITPA benchmark

Major radius R0/m 10.0

Minor radius a/m 1.0

Mode numbers (m1, n1) and (m2, n2) (10, 6) and (11, 6)

Magnetic field B0/T on axis 3.0

Type of ions hydrogen

Density ni,0/m−3 on axis 2.0 · 1019

Density profile flat

q-profile q (r) = 1.71 + 0.16r2

Table II: Fast-particle parameters for the ITPA benchmark

Type of ions deuterium

Density Nfast,0/m−3 on axis 0.75 · 1017

Density profile Nfast (r) = c3 exp [−c2/c1 · tanh {(r − c0) /c2}]
Coefficients c0 = 0.491, c1 = 0.298, c2 = 0.199, c3 = 0.521

Temperature Tfast,0/keV on axis 1 . . . 800

Temperature profile flat

Table III: Background-plasma parameters for the benchmark with KIN-2DEM and others

Major radius R0/m 4.0

Minor radius a/m 0.9

Mode numbers (m1, n1) and (m2, n2) (2, 2) and (3, 2)

Magnetic field B0/T on axis 5.0

Type of ions deuterium

Density ni,0/m−3 on axis 5.0 · 1019

Density profile flat

q-profile q (r) = ∑
6
i=0 cir

i

Coefficients

c0 = 1.048, c1 = 0.101, c2 = 0.077

c3 = 3.334, c4 = −6.748, c5 = 5.965

c6 = −2.024
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Table IV: Fast-particle parameters for the benchmark with KIN-2DEM and others

Type of ions hydrogen

Density Nfast,0 on axis
chosen to keep Tfast,0Nfast,0

∼= 7.6 · 1020 keV · m−3

constant

Density profile Nfast (r) = exp
[

−
(

c0 +
√

c1 + c2r2
)

/c3

]

Coefficients c0 = −1.75, c1 = 3.063, c2 = 5.556, c3 = 0.09

Temperature Tfast,0 on axis
chosen to keep Tfast,0Nfast,0

∼= 7.6 · 1020 keV · m−3

constant

Temperature profile flat

Table V: Background-plasma parameters for the W7-X case

Major radius R0/m 5.5

Minor radius a/m 0.53

Mode numbers (m1, n1) and (m2, n2) (11, 10) and (12, 10) toroidal coupl.

Magnetic field B0/T on axis 2.31

Type of ions hydrogen

Density nbulk,0/m−3 on axis 2.0 · 1019

Density profile flat

q-profile q (r) = ∑
6
i=0 cir

2i

Coefficients

c0 = 1.175, c1 = 0.521, c2 = −13.150

c3 = 101.17, c4 = −435.05, c5 = 947.01

c6 = −831.19

Table VI: Fast-particle parameters for the W7-X case

Type of ions hydrogen

Density Nfast,0/m−3 on axis 4.0 · 1017 . . . 3.0 · 1018

Density profile Nfast (r) = ∑
9
i=0 cir

2i

Coefficients

c0 = 0.99988, c1 = −4.5984

c2 = 42.474, c3 = −473.91

c4 = 606.59, c5 = 66734

c6 = −855490, c7 = 4647400

c8 = −11936000, c9 = 11835000

Temperature Tfast,0/keV on axis 10 . . . 1000

Temperature profile flat
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