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A partially mesh-free scheme for representing anisotropic spatial

variations along field lines

Ben F McMillan
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A common numerical task is to represent functions which are highly spatially

anisotropic, and to solve differential equations related to these functions. One way

such anisotropy arises is that information transfer along one spatial direction is much

faster than in others. In this situation, the derivative of the function is small in the

local direction of a vector field B. In order to define a discrete representation, a

set of surfaces Mi indexed by an integer i are chosen such that mapping along the

field B induces a one-to-one relation between the points on surface Mi to those on

Mi+1. For simple cases Mi may be surfaces of constant coordinate value. On each

surface Mi, a function description is constructed using basis functions defined on

a regular structured mesh. The definition of each basis function is extended from

the surface M along the lines of the field B by multiplying it by a smooth compact

support function whose argument increases with distance along B. Function values

are evaluated by summing contributions associated with each surface Mi. This does

not require any special connectivity of the meshes used in the neighbouring surfaces

M , which substantially simplifies the meshing problem compared to attempting to

find an space filling anisotropic mesh. We explore the numerical properties of the

scheme, and show that it can be used to efficiently solve differential equations for

certain anisotropic problems.

I. INTRODUCTION

The technique proposed here is motivated by plasma physics examples where particles

travel much more easily along magnetic field lines than in the perpendicular direction, so

that in quantities like fluid moments elongated structures are formed, aligned with the field

lines. In particular, the technique is designed to solve problems in magnetic confinement

fusion (MCF), where the field lines wind around a central axis and may be closed, trace out
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surfaces, or fill ergodic regions.

A variety of techniques to deal with representing these highly anisotropic functions exist.

The canonical technique is to define a 3D mesh to fill the space of interest, with the mesh

strongly elongated along the field line. Achieving a very good alignment of the mesh along

the field lines is in general quite a difficult meshing problem, and for this reason many

MCF physics codes work only in the region where the field lines trace out a nested set of

topologically toroidal magnetic surfaces: these are KAM tori[12] associated with the field

line Hamiltonian. When such surfaces exist, regular grids can efficiently be generated, or

angular coordinates may be employed in conjunction with a Fourier representation.

To avoid difficult meshing problems for the general case where a the region of interest is

not filled by nested surfaces, it is desirable to relax the requirement of mesh connectivity.

The Flux Coordinate Independent (FCI) approach[1, 2], based on a finite difference method,

defines function values on nodes lying on a set of surfaces Mi which are taken to be surfaces of

constant coordinate ζ. A node r on surface Mi can be mapped along the field direction B to

find image points, r± on surfaces Mi±1 Although these image points will not in general lie on

nodes on the surfaces Mi±1, the function may be evaluated at these points by interpolation.

Given the values of the function at points r±, derivatives along the field direction may then

be determined.

Another way to relax the mesh connectivity constraint is via a finite volume technique,

where the volumes are extrusions of a polygonal grid cell on one surface to the next, and

a polynomial representation is chosen in each volume element; smoothness constraints are

then approximately imposed using a discontinuous Galerkin approach.

A natural method for representing the anisotropic functions of interest is to change co-

ordinates by defining a grid on a surface perpendicular to the mapping, and an additional

coordinate along the direction of the map. Locally, this allows for straightforward and ef-

ficient representation of the problem anisotropy (as in the flux tube method[3]). However,

the coordinate scheme becomes highly distorted for mappings with strong shear or compres-

sion. The mesh connectivity problem also resurfaces if the originating surface is eventually

mapped back onto itself, as at this point the representation on two non-aligned meshes must

be combined in some way.

We propose a partially mesh-free method for representing these anisotropic functions

based on a compact-support set of basis functions which are defined in a local set of coordi-
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nates aligned with the mapping; it can be thought of as a translation of the FCI method into

a Galerkin approach. The definition of the set of basis functions is used to define weak forms

of differential equations, as in a standard Galerkin method. The philosophy is to design a

method which is robust and simple to implement, and requires little manual user interac-

tion, because it avoids complex mesh generation tasks. The representation also provides a

simple way to neatly tackle a series of related problems with slightly different configurations,

generated, for example, when the field generating the mapping varies slowly with time.

II. DEFINITION OF THE FINITE DIMENSIONAL REPRESENTATION AND

BASIC THEORY

For the sake of simplicity, the surfacesM of interest will be taken to be surfaces of constant

coordinate ζ. Given a set of coordinates (R,Z, ζ) a point r may be denoted componentwise

as (rR, rZ , rζ). A pair of mapping functions are defined as R(r, ζk) and Z(r, ζk), where for

Q = (R,Z, ζ‖) we have the properties Q(r, rζ) = r (so that the mapping is the identity

where the ζ values coincide) , and

∂

∂ε
Q(r + εB, ζk) ∼ 0 (1)

so that they approximately represent the action of mapping along the field B from the point

r to the point (R,Z, ζk). The geometry of this mapping is show in figure 1. The mapping

is considered to be exact if it fulfils the property Q(Q(r, ζ),−ζ) = r: it then exactly maps

along some field vectors B′ ∼ B. For consistency properties to hold, the mapping will

be required to be one-to-one and at least of the same order of smoothness as the element

functions defined in the next paragraph.

In the interior region the grid is defined via

φ(R,Z, ζ) =
∑
i,j,k

φi,j,k (2)

×Ωi [R(R,Z, ζ, ζk)−Ri] (3)

×Ωj [Z(R,Z, ζ, ζk)− Zj] (4)

×Ωk [ζ − ζk] (5)

with compact support basis functions Ω. We will choose the functions Ω to be B-Spline

basis functions for the remainder as their properties are sufficient to ensure smoothness and
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FIG. 1: The geometry of the approximate flow line mapping. Here, the mapping from the point

r = (R,Z, ζ) to the point (R′, Z ′, ζ0) on surface M0 is depicted, with (R′, Z ′) = r, ζ′, as well as the

analogous mapping to surface M1. The dashed line shows the field line from the point r, for which

eq. 1 holds exactly.

lowest order consistency (and this is similar to a finite element approach used earlier in

MCF codes[4, 5]). An example of the shape of a 3D basis function (the coefficient of φi,j,k

for some chosen i, j and k) is given via a 2D example in figure 2. To evaluate the function

value at point r, each term of the sum in eq. 5 is evaluated by calculating the mapping

Q(r, ζk), and the product of the basis functions can then be directly calculated. For a smooth

mapping, the overall representation is smooth up to the order of the spline. The arguments

about convergence are most simply made in the case with uniform nodes where Ri = i δR,

Zj = j δZ and ζk = k δζ. The space spanned by these functions will be denoted S.

Although it is less obvious than in a standard Finite Element formalism, these elements

have a partition of unity property, and can represent the unity function exactly: setting all

the coefficients equal to 1 results in an everywhere unity value. We do not, however have the

δ function property that the basis function nodal values are non-zero only for the element

associated with the node.

The resulting representation is smooth, and will be shown to effectively approximate
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FIG. 2: A density plot of the basis function value for a 2D restriction of the method to the plane

(ζ, Z). The field B is such that field lines are of the form Z = sin(ζ/π)+Z0, and an exact mapping

is used. First order B-Spline basis functions are used for Ω.

smooth functions in the large mesh resolution limit. In this paper’s representation, the

domains of support of basis functions associated with two nodes on different surfaces M

overlap only partially, and in a potentially messy way. However, given a polynomial mapping

function, the representation is piecewise polynomial within a finite set of spatial cells, where

the cell faces are described by polynomial functions.

In the limit that the grid is refined isotropically in each direction, we have a parameter

h = δR = δZ = δζ representing the grid spacing. We wish to show that there exists φ ∈ S

that is a good approximant to a smooth function φ̄ with derivatives of order 1 so that

∣∣φ− φ̄∣∣ < Ch2. (6)

We will need to assume a certain smoothness of the mapping function so that locally

(R,Z) = (Rζ [ζ − ζk] + R,Zζ [ζ − ζk] + Z) + o(h2) for constants Rζ and Zζ . We will also

assume that we have at least first order basis functions so that derivatives exist. A construc-

tive proof that good approximants may be found is performed by setting the basis function
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coefficients to their nodal values, so φi,j,k = φ̄(Ri, Zj, ζk). In this case we have

φ =
∑
i,j,k

φ̄(Ri, Zj, ζk)

×Ω [R(R,Z, ζ, ζk)−Ri]

×Ω [Z(R,Z, ζ, ζk)− Zj]

×Ω [ζ, ζk]

and we expand near (R0, Z0, ζ0) to find

φ =
∑
i,j,k

(φ̄(R0, Z0, ζ0) + h(i, j, k).∇φ̄(R0, Z0, ζ0)

×Ωi [Rζ(ζ − ζk) +R]

×Ωj [Zζ(ζ − ζk) + Z]

×Ωk [ζ] +O(h2).

The algebra proceeds by evaluating the j and k sums, for which ζk is a constant. From the

definition of the derivative of B-Spline, we can show
∑

i iΩi(x) = x/h in the interior region.

The splines also have the partition of unity property
∑

i Ωi(x) = 1 in the interior region, so

the coefficient of φ̄ is 1, so

φ = φ̄+
∂φ̄

∂R

∑
k

[Rζ(ζ − hk)−R]Ωk +
∂φ̄

∂Z

∑
k

[Zζ(ζ − hk)− Z]Ωk +
∂φ̄

∂ζ

∑
k

kΩk +O(h2)

= φ̄+ (R,Z, ζ).∇φ̄+O(h2)

and from the smoothness of φ we have φ = φ̄ + O(h2) in the vicinity of any grid point.

Similarly, we can show that the error in derivatives is O(h).

However, better bounds are expected in practice due to an equivalence with more standard

discretisations. For an exact mapping, it is useful to view the discretisation in a ‘flux

tube’ type coordinate scheme (R′, Z ′, ζ) = (R[r, ζ0],Z[r, ζ0], rζ). The representation on each

surface Mi in these coordinates with i 6= 0 is smoothly distorted by the mapping function,

which varies on system scale lengths, so the representational power for smooth functions is

equivalent to the undistorted mapping: we expect it to be consistent to the same order as

the original mapping. The overall representation is then a tensor product of spline functions
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along the ζ direction with these nth order consistent representations based on surface Mi.

At lowest order, the distortion is just a translation in Q in which case polynomials of order

n are exactly represented on each plane Mi. For somewhat inexact mappings, we may lose

some accuracy of approximation, but this effect has not been investigated in detail.

Various functional equations for spatial unknowns (typically differential and integro-

differential equations) may be represented in this method via their weak form. For an

equation A(φ) = 0, we require that the discrete representation φ, for all weight functions ψ

in the reduced function space, satisfies∫
ψA(φ) = 0. (7)

Where A is a local function of φ (usually a differential operator) the integration involves

evaluations of φ and ψ at the same spatial locations, and in the standard finite element

formalism, the spatial mesh of elements forms a natural basis for a quadrature (integra-

tion) mesh; for polynomial basis elements, appropriate quadratures (such as Gauss points)

are well-known, which allow machine-precision evaluation of these integrals at reasonable

cost. In general mesh-free methods, the lack of alignment between the basis function sup-

port domains means that the favourable convergence properties of Gauss quadrature cannot

generally be expected[6].

In the set of coordinates (R,Z, ζ), with an invertible mapping, the piecewise polynomial

domains of integration are given the tensor product of areas I in the (R,Z) plane multiplied

by intervals in ζ. The areas are bounded by curves which lie on the union of the images of

the meshes of nearby mother planes. For practical examples the boundaries of these areas

are approximately polygonal, with low curvature edges. Calculation of these intersections

can be performed with standard packages at least where edges can be taken to be straight.

Boundary conditions will complicate the meshing process substantially. We will avoid finding

such meshings in this paper, as the motivation of the method is precisely to avoid complex

mesh generation.

Increasing the number of Gauss points over that required for a standard mesh problem

has been found to be sufficient in tests of certain mesh-free methods[7]. Depending on

the problem of interest, a brute-force equidistant equal-weighted integration scheme may

be of sufficient accuracy. We are frequently interested in cases where the operator A is

non-local, so that evaluation points of φ and ψ are different[8, 9] and the usual quadrature



8

approaches are not well-justified. The quadrature is specified on a mesh which conforms to

the boundaries[7], this is only straightforward if the geometry of the boundaries is relatively

simple.

Boundary conditions may be handled in a FEM by generating a mesh that conforms to

the boundary surface, and ensuring the finite element basis functions are consistent with

the boundary conditions. The mesh volumes are strongly curved along the ζ direction,

so even if the boundary is flat in Cartesian coordinates, it is curved in the natural mesh

coordinates. This leads to a somewhat messy meshing problem, as in general volumes need

to be broken into smaller pieces to approximate the curves with flat faces. An additional

coordinate transform can be used to map the curved surfaces to flat faces via an isoparametric

transform but this will still require some mesh realignment.

There are a number of approaches to handling boundaries in mesh-free methods[10, 11].

In the methods close in spirit to that proposed here, essential boundary conditions can

be imposed by transforming shape functions so that they conform, by introducing penalty

functions to the minimisation problem resulting from the weak form, or by introducing an

additional boundary mesh that conforms exactly. We will use the latter method, where a

standard finite element method mesh is defined near the boundary: this may be a sizeable

number of additional nodes for very anisotropic methods.

III. AN EXAMPLE PROBLEM

The motivating problem is magnetic confinement fusion, where a plasma is confined by

a magnetic field, generated by external and internal currents. Plasma is free to stream

rapidly along field lines, but well confined regions of plasma can still exist because in a

substantial volume of vacuum vessel the field lines lie on a nested set of flux surfaces which

are topologically toroidal (nested KAM tori[12]). Consider the field lines shown in fig. 3: if

the bounding rectangle is taken to be a physical wall, the volume can be separated into an

‘open field line’ region, whose magnetic field lines intersect the wall, and a closed field line

region. Fig. 3 is typical of a ‘diverted’ tokamak configuration, where the nested set of flux

surfaces end at a separatrix, and points outside the last closed flux surface are connected by

the magnetic field lines to the wall.

A common computational task is to trace the trajectories of particles in a turbulent
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FIG. 3: Countours of the function A specified in equation 9. These contours are the projections of

B field lines onto the (R,Z) plane.

field generated by some set of charges and currents, which may be part of a particle-in-

cell simulation[5, 13]. Accuracy of particle tracing requires a smooth representation of the

fields, and a partial differential equation (in general integro-differential) must be solved to

determine the fields based on currents and charge sources; we will explain how to use the

partially mesh free method to solve an example problem of this type.

We define a magnetic field

B = B0ζ + ζ ×∇A(R,Z) (8)

with

A(R,Z) = (R− 1)2 + Z(Z2 − 1) (9)

which represents a diverted configuration in the large aspect ratio limit. The contours of

A (figure 3) are the field lines projected onto the (R,Z) plane, and a separatrix is seen at

(R,Z) = (0,−1/
√

3).

The differential equation we choose here (typical for the problems of electromagnetic

coupling which arise in tokamak turbulence) is the Laplacian inverse over a rectangular

domain in R,Z and a periodic ζ direction:

∇2φ = ρ (10)

with φ = 0 on the boundaries of the domain. We take R ∈ [R0, R1] and Z ∈ [Z0, Z1] and

ζ ∈ [0, ζ1]. In order to ensure that the representation satisfies the boundary conditions



10

exactly, we use a single cell-width first order standard FEM formalism near the boundary,

blended with the FCIFEM method using a ramp function.

Second-order B-Splines basis functions are chosen to represent the field, with uniform

grid spacing δR, δZ, δζ.

Discretisation proceeds by taking the weak form and finding φ ∈ S such that∫
dV (∇ψ.∇φ+ ψρ) = 0 (11)

for all ψ ∈ S. The integration is performed using a set of quadrature points evenly spaced

in R,Z and ζ, 10 times finer than δR, δZ, δζ respectively.

In order to examine the basic convergence of the method, a simple test problem is con-

sidered with ρ(R) = sin(0.5πR) sin(π[Z + 1.0]/2.5). the domain R0 = 0, R1 = 2, Z0 = −1,

Z1 = 1.5 and ζ1 = π/20 is chosen. The solution φ to this test-problem is not aligned

along the field, but constant along ζ, so the use of the FCIFEM is not advantageous in this

case. Along the field line, the perturbation varies with typical scale length |Bζ |/|BR,Z | times

longer than typical wavelengths in R and Z. We have therefore chosen δZ comparable to

δR|Bζ |/|BR,Z | so that the effective resolution is sufficiently high along the field line.

The field-aligned mesh leads to projected domains of the basis functions in the (R,Z)

plane of extent ∼ |Q[R,Z, δζ]−Q[R,Z, 0]|+ |δR|+ |δZ|, so the effective reso

The number of grid points at lowest resolution (NR, NZ , Nζ) = (20, 20, 1), and this is

uniformly increased by a factor H in each direction to perform a convergence scan (the

convergence in Nζ is not trivial because the element connectivity changes with Nζ). Figure

4 shows the L2 error ε in the solution versus H, which drops as H3.2, in line with the value 3

expected for a standard second order FEM, and as good as could be expected for the degree

of representation smoothness chosen.

In order to illustrate the treatment of anisotropic structures in this method, we consider

a second test problem in the same spatial domain as the previous problem. Here, we take

ρ(R) =
∫
dζ[δ(Rr(ζ))− δ(R− r(ζ)− ζ̂ζ1/2)] with r(ζ) the curve traced out by a field line

parameterised by ζ, starting from the point r(0) = (0.6, 0.2, 0), so that it passes near the

separatrix. This results in a highly anisotropic charge perturbation along the magnetic field

lines with neighbouring charge filaments of opposite sign, typical of a localised unstable drift

mode. The number of grid points in each direction is (NR, NZ , Nζ) = (100, 100, 1); because

the perturbation is highly field aligned, the solution is expected to be also well-aligned, so
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FIG. 4: Convergence of the L2 error for a simple analytical test problem in a rectangular domain

with the FCIFEM method and a mapping function based on a divertor-type field.

that the anisotropic solution is well captured, despite using only 1 point in the ζ direction.

The resulting matrix problem, coupling the coefficients of the φ representation to those

of the weight function, is a sparse matrix of rank equal to the number of degrees of freedom

of the system, which we treat as being unstructured. Index reordering is quite effective in

reducing the bandwidth of the resulting matrix, so that direct solution using banded matrix

calculation is straightforward for the test problem under consideration.

To show the projection of the charge ρ into the space S, the weak form∫
dV (ψ.ρ̄− ψρ) = 0 (12)

is solved for ρ̄ ∈ S by finding and inverting the mass matrix. We show 2D plots and 3D

plots of ρ̄ and φ in figure 5. Due to the structure of the charge (alternating charge lines of

opposite sign), the potential φ decays rapidly away from the field lines where ρ is nonzero.

The strong anisotropy of the charge and of φ are clear in the 3D plots: a conventional

Cartesian grid would need of order 20 grid points in the ζ direction Near the separatix (X-

point) the spacing between charge lines become too fine for the grid to resolve. Behaviour

near the boundaries is acceptable from visual inspection in the reproduced field and the

solution to the Laplacian problem.
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(a) (b)

(c) (d)

FIG. 5: 2D plots versus R and Z at ζ = 0 (a,c), and 3d voxel renderings (b,d), of ρ̄ (a,b) and φ

(c,d). 2D plots evaluate the functions at doubled grid resolution in R,Z. 3D plots use 20 samples

in ζ for rendering purposes, and show regions of positive charge/potential as red, and negative as

blue. The ζ direction extends periodically with period π/20, but repeats are not shown.
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