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Collisional transport across the magnetic field in drift-fluid models

J. Madsen,1, a) V. Naulin,1 A. H. Nielsen,1 and J. Juul Rasmussen1

Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby,

Denmark

(Dated: Wednesday 23rd December, 2015)

Drift ordered fluid models are widely applied in studies of low-frequency turbulence

in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we

show how collisional transport across the magnetic field is self-consistently incor-

porated into drift-fluid models without altering the drift-fluid energy integral. We

demonstrate that the inclusion of collisional transport in drift-fluid models gives rise

to diffusion of particle density, momentum and pressures in drift-fluid turbulence

models and thereby obviate the customary use of artificial diffusion in turbulence

simulations. We further derive a computationally efficient, two-dimensional model

which can be time integrated for several turbulence de-correlation times using only

limited computational resources. The model describes interchange turbulence in a

two-dimensional plane perpendicular to the magnetic field located at the outboard

midplane of a tokamak. The model domain has two regions modeling open and closed

field lines. The model employs a computational expedient model for collisional trans-

port. Numerical simulations show good agreement between the full and the simplified

model for collisional transport.

a)Electronic mail: jmad@fysik.dtu.dk
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I. INTRODUCTION

There are basically two approaches to modeling the edge and scrape-off layer (SOL) re-

gions in magnetically confined plasmas: mean field transport models and turbulence models.

In the first approach1,2, mean field fluid equations are solved in a realistic geometry typically

including the divertor and x-point regions. These models have very detailed descriptions of

collisions, neutral particles, impurities, and material surfaces, whereas turbulent transport

is not calculated self-consistently but modeled by effective turbulent diffusion terms. Tur-

bulence models3–8 take a different approach. Here, a detailed description of the turbulence

is the main goal, whereas the level of detail of collisions, neutral particles, impurities and

material surfaces, if included in the models at all, is crude compared with the highly detailed

descriptions in mean field transport models. Furthermore, in order to reduce the computa-

tional requirements the magnetic field geometry is often simplified. Both approaches have

provided useful results in their respective regimes of validity. Nevertheless, several open

questions in contemporary fusion plasma research require that these complementary ap-

proaches are merged. Examples are: The formation of a elevated density shoulder9,10 as

the particle density approaches the Greenwald density limit and the associated changes of

filament properties11, the high particle density front12 on the high field side of single null di-

verted plasmas, and eventually the possible influence of turbulent transport on the transition

to the detached13 divertor regime.

Here, we present a step towards more detailed edge and SOL turbulence models by show-

ing how collisional transport across the magnetic field is included in drift-fluid models14,15

based on the Braginskii fluid closure16. In drift-fluid models, the components of the momen-

tum density equations perpendicular to the magnetic field are solved iteratively essentially

under the assumption that the dynamics is evolving much slower than the ion gyration

time scale. In this limit, every force density, including resistivity and collisional viscosity,

gives rise to a perpendicular drift17,18. Most of the collisional drifts are included in transport

models1,2 but not in a way which provides energy conservation. In turbulence models, on the

other hand, the collisional drifts are usually neglected or do only include selected collisional

effects19.

In a model including ion temperature dynamics, we show how these collisional terms in

combination with heat fluxes, heat exchange terms, and viscous heating terms in the electron
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and ion pressure equations are included in drift-fluid turbulence models in a consistent way.

Consistency here mainly refers to energy conservation. In this paper we show that collisional

transport across the magnetic field can be included in drift-fluid models without altering the

energy theorem15,20. For example, we show that the collisional viscous damping of turbulence

and mean flows gives rise to a conservative energy transfer between the kinetic energy and

the ion thermal energy. In other words, collisions can be added to drift-fluid models without

introducing energy sinks or sources. The inclusion of perpendicular collisional transport in

the drift-fluid equation gives rise to diffusion of particle density, momentum, and ion and

electron pressure, and hence potentially renders the common use of artificial diffusion terms

in turbulence models redundant

The collisonal terms are complex functions of the fluid and the electromagnetic field

variables. Thus when included in turbulence models, they place significant demands on

computing powers. Therefore, we also present a partly linearized model for the collisional

transport across the magnetic field which allows significantly faster computing times. The

model is embedded in the hot edge-SOL electrostatic (HESEL) model21,22, the successor of

the ESEL model3,23–25. HESEL is a two-dimanesional (2D) model describing interchange

turbulence in a plane perpendicular to the magnetic field at the outboard midplane of a

tokamak. It evolves the particle density, the vorticity, and the electron and ion pressures.

We show that our partly linearised collision terms, including inter species energy exchange,

do not alter the energy theorem, and we show by means of 1D numerical simulations without

turbulence that the simplified and full models give very similar results.

The article is organized as follows. In section II we describe how collisional effects influ-

ence the dynamics perpendicular to the magnetic field in a low-frequency drift-fluid turbu-

lence model. We derive the global energy theorem and discuss energy exchange mechanisms

due to collisions. In section III a simplified model for collisional effects is derived which is

included in the HESEL model also presented here. Numerical simulations of the full and

simplified models for the perpendicular collisional effects are presented, and finally in Sec. IV

we summarise our findings and draw conclusions.
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II. PERPENDICULAR COLLISIONAL TRANSPORT IN DRIFT-FLUID

MODELS

In this section we show how collisional transport across the magnetic field is consistently

incorporated into drift-fluid models. Our derivation is based on the Braginskii16 fluid equa-

tions describing the time evolution of particle density na, velocity ua and temperature Ta

for a collisional, quasi-neutral ni ≃ ne, electrostatic, simple electron-ion plasma. The index

a ∈ (i, e) is a species label, which refers to ions and electrons, respectively. We start our

derivation from the Braginskii momentum equation

nama[
∂

∂t
+ ua · ∇]ua = −∇pa −∇ · πa + qana(E + ua ×B) +Ra. (1)

Here, ma denotes mass, qa is charge, pa = naTa is the scalar pressure, πa is the stress tensor,

and Ra denotes the resistive force. The resistivity in the electron momentum equation

consists of a frictional force

Re,u = meneνei
[

0.51(u‖i − u‖e)b̂+ u⊥i − u⊥e

]

(2)

and a thermal force

Re,T = −0.71neb̂∇‖Te −
3neνei
2Ωe

b̂×∇Te, (3)

where the electron-ion collision frequency is defined as

νei =

√
2

12π3/2

Z2e4 ln Λ√
meǫ20

ne

T
3/2
e

, (4)

the magnitude of the electron gyrofrequency is Ωe = eB
me

, and lnΛ denotes the Coulomb

logarithm. We also introduced a unit vector parallel to the magnetic field b̂ = B/B and

the magnetic field aligned component of the gradient operator ∇‖ = b̂ · ∇. If v is an

arbitrary vector, then we introduced the notation v‖ = b̂ · v for the projection onto the

magnetic field unit vector b̂, and v⊥ = −b̂× (b̂×v) for the perpendicular part of the vector.

Momentum conservation implies Ri = −Re. The origin of the thermal force Re,T is the

velocity dependence of the particle collision frequency (∝ v−3). The stress tensor πa consists

of three parts: i) A part π
‖
a describing viscosity along the magnetic field due to like-particle

collisons, ii) a gyro-frequency dependent part π⊥
a describing collisional momentum transport

across the magnetic field due to like particle collisions, and iii) a gyro-viscous part π∗
a. Here
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we consider the π⊥
i and π∗

i parts of the ion stress tensor. The electron stress tensor is

neglected because it is smaller than the ion contributions by the electron-ion mass ratio. In

the ion stress tensor we assume that the perpendicular flow is incompressible and assume

a constant magnetic field. The pure perpendicular ion viscous tensor16 written in a local

coordinate system (x, y, z), where ẑ is aligned with b̂, then reads:

π⊥
xx = −π⊥

yy = −ηi1(∂xux − ∂yuy), (5a)

π⊥
xy = π⊥

yx = −ηi1(∂xuy + ∂yux), (5b)

here the ion viscosity coefficient is given as

ηi1 =
3

10

piνii
Ω2

i

, (6)

and the ion-ion collision frequency is

νii =
1

12π3/2

Z4e4 ln Λ

m
1/2
i ǫ20

ni

T
3/2
i

. (7)

The parallel-perpendicular parts, e.g., π⊥
xz, do not contribute to the perpendicular dynamics

to lowest order and are therefore not treated here since we do not consider the dynamics

parallel to the magnetic field. In the parallel direction the parallel-perpendicular part of the

stress tensor give rise to perpendicular viscosity.

In the drift ordering14 the fundamental assumptions are that the characteristic frequencies

are much smaller than the ion gyrofrequency

ω

Ωi

≪ 1 (8)

and that perpendicular gradient length scales L⊥ are larger than the ion gyro-radius

ρ2i
L2
⊥

≪ 1. (9)

We further assume L⊥ ≪ L‖, here L‖ denotes a characteristic parallel gradient length scale.

This ordering permits iterative solutions of the momentum equations for the perpendicular

fluid drifts. The first order drifts are given as

ua⊥,1 =
b̂×∇φ

B
+

b̂×∇pa
qanaB

= uE + uDa (10)

which are the E ×B and diamagnetic drifts, respectively. The second order drifts are

ua⊥,2 = Ω−1
a b̂× d

dt
ua⊥,1 −

b̂×Ra

qanaB
+

b̂×∇ · πa

qanaB
= upa + uR + uπa. (11)
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In all second order drift we take ua⊥ = ua⊥,1. The first term ua,p is the polarization drift.

Due to the mass dependence only the ion polarization drift is retained. The second term

uR is the drift17 associated with resistivity, which is identical for electrons and ions due to

momentum conservation. The resistive drift consists of a friction force drift and a thermal

force drift, respectively:

uRu
= − νei

nemeΩ2
e

∇⊥P, (12)

uRT
=

3

2

νei
meΩ2

e

∇⊥Te. (13)

Here P = pe + pi denotes the total scalar pressure. Note that only the diamagnetic current

appears in the friction force drift uRu
because the electron and ion E×B-drift contributions

cancel. The diamagnetic drift is the fluid representation of the particle grad-B and curva-

ture drifts, and the magnetization current associated with the gyrating charged particles26.

Therefore, the diamagnetic drift does not represent transport of guiding-centers unless the

magnetic field is inhomogeneous. In that sense the friction force drift uRu
is a fluid rep-

resentation of friction between electrons and ions in opposite directed Larmor orbits. The

direction of thermal force drift uRT
is parallel to the electron temperature gradient. As

already mentioned, this drift arises because fast particles experience less collisions than slow

particles, which result in unbalanced fluxes, and hence implies up-gradient transport. The

last first order drift is the viscous drift uπa . As earlier mentioned this term is mass depen-

dent and hence only the ion drift is retained. In the local coordinate system (x, y, z) the

purely perpendicular parts can be written as

uπi =
1

qinB











∂yπxx − ∂yπxy

∂xπxx + ∂yπxy

0











. (14)

Being a second order drift only the first order drifts u⊥,1, see Eq. (10), are retained in the

stress tensor π.

A. Collisional effects in the drift-fluid moment equations

With the algebraic expressions for the perpendicular drifts at hand, we can write down

the resulting drift-fluid equations. We will omit the magnetic field aligned parts of the
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momentum equations since we are here mainly concerned with perpendicular dynamics. By

inserting the perpendicular drifts given in equations (10) and (11) into the Braginskii16

particle density and pressure equations, we get:

∂

∂t
n+∇ · (nuE) +∇ · (nuDe) +∇ · (nuR) +∇ · (b̂u‖e) = 0 (15a)

∇ · (nupi) +∇ ·
(

n(uDi − uDe)
)

+∇ · (b̂J‖/e) +∇ · (nuπi
) = 0

(15b)

3

2

∂

∂t
pe +

3

2
∇ ·

(

pe[uE + uDe + b̂u‖e + uR]
)

+ pe∇ · [uE + uDe + b̂u‖e + uR]

+∇ · qe +∇⊥ · q∗
e = −Q∆ +R · (ui − ue) (15c)

3

2

∂

∂t
pi +

3

2
∇ ·

(

pi[uE + uDi + b̂u‖i + upi + uπi + uR]
)

+pi∇ · [uE + uDi + b̂u‖i + upi + uπi + uR] +∇ · qi +∇⊥ · q∗
⊥i + π⊥

i : ∇ui⊥,1 = Q∆.

(15d)

Equation (15b) is the vorticity equation which results from subtracting the ion and electron

particle density equations assuming quasi-neutrality. In all equations higher order terms

are retained even though some of these terms are formally small. The motivation for not

neglecting these higher order terms is that they, e.g., guarantee energy conservation, provide

diffusion or are responsible for energy exchange between different plasma species. Drift-fluid

equations have been derived by several authors14,15,19 but without self-consistently including

perpendicular collisional transport. In the remainder of this section we describe and discuss

the collisional terms entering the drift-fluid moment equations. Thorough descriptions and

discussions of classical transport outside the drift-fluid context is found in e.g. Refs. 16, 17,

and 27.

We start with the electron particle density equation (15a) where the divergence of the

resistive flux is the only collisional term. Using equations (12) and (13), the divergence of

the resistive flux can be written as

∇ · (nuR) = −∇ ·
(

νeiρ
2
e

[

(1 +
Ti

Te
)∇⊥n+

n

Te
(∇⊥Ti −

1

2
∇⊥Te)

])

, (16)

demonstrating the origin of the resistive drifts, namely a perpendicular random-walk process

with step length ρe =
√

Te/(meΩ2
e) and frequency νei. We see that the perpendicular

friction force Ru⊥ gives rise to particle density diffusion with a diffusion coefficient νeiρ
2
e

in drift-fluid models, similar to the explicit appearance of spatial diffusion in low-frequency
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ordered collision operators28,29. The thermal force drift uRT
is partly canceled by the electron

temperature gradient dependent part of the friction force drift uRu
, leaving only the last

term on the right hand side. In order to highlight the n and Te dependency of the electron-ion

collision frequency νei ∝ n/T
3/2
e we define

νei0 = νei
T

3/2
e

n

n0

T
3/2
e0

, (17)

where n0 and Te0 denote a constant reference particle density and a constant reference

electron temperature, respectively. Equation (16) then reads:

∇ · (nuR) = −∇ ·
(

νei0
meΩ2

e

T
3/2
e0

n0

n√
Te

[

(1 +
Ti

Te
)∇⊥n+

n

Te
(∇⊥Ti −

1

2
∇⊥Te)

])

, (18)

showing that the particle density diffusion coefficient has a (1 + Ti/Te)n/
√
Te dependence.

Next, consider the electron pressure equation (15c). Here, collisional effects enter through

classical heat fluxes, heat transfer terms, and resistive drift terms. The collisional electron

heat flux16 consists of two parts:

qe,u = −0.71pe(ui‖ − ue‖)b̂−
3

2

peνei
Ωe

b̂× (u1,i⊥ − u1,e⊥), (19)

qe,T = −κe,‖b̂∇‖Te − κe,⊥∇⊥Te (20)

where the heat conductivities16 are

κe,‖ = 3.16
pe

meνei
, κe,⊥ = 4.66n

νeiTe

meΩ2
e

, (21)

and where only the first order perpendicular drifts given in Eq.(10) were used in qe,u. The

origin of the heat flux qe,u is the same as the thermal force Rei,T given in Eq. (3), which are

both associated with the velocity dependence of the electron-ion collision frequency. Note

the exact Onsager27 symmetric coefficients in Rei,T and qe,u. It is convenient to express the

perpendicular parts of the electron heat flux in terms of the perpendicular resistive drifts

given in equations (12) and (13)

qe,u⊥ = −3

2
peuRu

, qe,T⊥ = −28

9
peuRT

. (22)

When written in this form it is evident that the divergence of the frictional electron pressure

flux cancels the perpendicular part of qe,u:

3

2
∇ · (peuRu

) +∇⊥ · qe,u⊥ = 0. (23)
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On the right hand side of the electron pressure equation (15c), the R · (u1,i⊥ − u1,e⊥) term

transfers energy between the electron and ion fluid kinetic energies an the electron thermal

energy. In the drift-fluid electron pressure equation the energy transfer term can be combined

with the remaining perpendicular heat flux terms and terms which depend on the resistive

drift

3

2
∇ · (peuRT

) + pe∇ · uR +∇ · qe,T⊥ −R · (ui⊥,1 − ue⊥,1)

= ∇ · (peuRu
)− 11

18
∇ · (peuRT

) + uR · ∇⊥pi. (24)

The two first terms on the right hand side,

∇ · (peuRu
)− 11

18
∇ · (peuRT

) = −∇ ·
(

νeiρ
2
e

[

∇⊥P +
11

12
n∇⊥Te

])

, (25)

among others, yield diffusion of electron pressure and in general relax gradients, and hence

the up-gradient flux contained in uRT,⊥
is canceled by perpendicular heat conduction in qe,T .

The last term in Eq. (24) transfers energy between the electron and ion thermal energy due

to resistivity. Hence, no explicit energy transfer channel between kinetic and thermal energy

due to resistivity remains in the drift-fluid equations. Energy exchange between comoving

electron and ion fluids is described by the heat exchange term

Q∆ = 3
me

mi
nνei(Te − Ti) (26)

entering the electron and ion pressure equations (15c) and (15d), respectively. The equili-

bration occurs on the slower ν−1
ei mi/me collision time scale because the energy transfer in

each scattering event is proportional to the mass ratio of the scattering particles me/mi. We

elaborate further on inter-species energy exchange in section IIB.

We now turn to the ion pressure equation (15d) where the heat conduction is given as

qi = −κi,‖∇‖Ti − κi,⊥∇⊥Ti (27)

and the thermal conductivities16 are

κi,‖ = 3.9
pi

miνii
, κi,⊥ = 2nνiiρ

2
i . (28)

The ion heat flux is solely driven by ion temperature gradients and is independent of ion-

electron collisions. The ratio between the perpendicular electron and ion heat conductivities

9



is of the order κe,⊥/κi,⊥ ∼
√

me/mi for Te ∼ Ti, whereas κe,‖/κi,‖ ∼
√

mi/me. Perpendicular

collisional heat transport is therefore dominated by the ions, and parallel heat transport is

electron dominated. The terms involving the resistive drift in the ion pressure equation can

be written as

3

2
∇ · (piuR) + pi∇ · uR =

5

2
∇ · (piuR)− uR · ∇⊥pi

=
5

2
∇ ·

(

Ti

Te
νeiρ

2
e

[3

2
n∇⊥Te −∇⊥P

]

)

− uR · ∇⊥pi, (29)

which shows that electron-ion collisions through the resistive drift give rise to ion pressure

diffusion, but also that the thermal force drift uRT
potentially drives the ion pressure up

the electron temperature gradient. Note that the corresponding effect in the electron pres-

sure equation was canceled by the electron heat conduction. The diffusion coefficient is

proportional to the electron diffusion coefficient times the ratio of the ion to the electron

temperature. The ratio of the resistive diffusion and the perpendicular ion heat conduction

can be estimated as

|∇ · qi⊥|
|∇ · (piuR)|

∼
√

mi

me

√

Te

Ti

L2
Te

L2
Ti

, (30)

where LTe
and LTi

are characteristic electron and ion temperature gradient length scales.

Perpendicular heat conduction therefore dominates resistive diffusion except for plasmas

where the ion temperature is significantly higher than the electron temperature or where

the electron temperature has much steeper gradients than the ion temperature.

In both pressure equations the diamagnetic heat flux is defined as

q∗
a =

5

2

pa
qaB

b̂×∇Ta. (31)

Lastly, we consider viscous effects in the vorticity and ion pressure equations (15b) and

(15d), respectively. In both equations viscous effects enter through the viscous drift uπ de-

fined in Eq. (11), but the viscous tensor only explicitly appears in the ion pressure equation.

Notice that only the divergence of the viscous particle density flux remains in the vortic-

ity equation. The resistive electron and ion fluxes cancel as a consequence of momentum

conservation. The divergence of the perpendicular viscous flux results in diffusion of the

magnetic field aligned E × B and ion diamagnetic vorticities due to ion-ion collisions, as

we will show in section III. In the ion pressure equation the corresponding ion pressure flux
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gives rise to hyperviscosity ”∝ −∇4pi” of the ion pressure. However, compared with the

perpendicular ion heat conduction the viscous ion pressure flux term is in most cases small

|∇ · (piuπi)|
|∇ · qi,⊥|

∼ ρ2i
L2
⊥

. (32)

The viscous drift and the viscous tensor provide an energy transfer channel between ion

thermal energy and kinetic energy through the pi∇ · uπi and the π⊥
i : ∇ui⊥ terms. The

underlying energy transfer mechanism is the randomization of ordered perpendicular fluid

motion due to ion-ion collision. As we will show in the next section, both terms are important

for the conservation of energy. The gyro-viscous part vanishes30 exactly π∗
i : ∇ui⊥,1 = 0,

when the gyro-viscous tensor π∗
i is evaluated with the first order drift velocities ui⊥,1.

1. The polarization drift and the gyro-viscous cancellation

In this section explicit expressions for the polarization and gyro-viscous drifts are given.

These drifts enter the gyro-viscous cancellation which eliminates the advection of vorticity

by the diamagnetic drift in the polarization equation (15b), but also the advection of ion

parallel momentum and ion heat fluxes by the diamagnetic drift in their corresponding

moment equations30. These equations are significantly altered by the gyro-viscous tensor.

The gyro-viscous cancellation is not complete in the sense that numerous small correction

terms remains in the vorticity equation, in the parallel momentum equation, and in the

heat flux equation. The actual derivation is cumbersome and the level of complication rises

with the level of detail included in the polarization drift terms, e.g., the inclusion of the

polarization heat flux and anisotropic pressure30,31.

Here, we aim at formulating a workable model for the use in numerical turbulence sim-

ulations. Therefore, we do not include the polarization heat flux and we do not account

for anisotropic pressures. Furthermore, we bring the magnetic unit vector under the ma-

terial derivative in the polarization drift Ω−1b̂ × d
dt
ui1,⊥ ≃ Ω−1 d

dt
b̂ × ui1,⊥ and neglect the

corresponding correction terms in the gyro-viscous drift. This approximation yields sim-

pler expressions compared to the full expressions in e.g. Refs. 15, 30, and 31. As already

discussed, we leave out parallel momentum for the purpose of exposition. After carrying

out the gyro-viscous cancellation30,31, the combined divergences of the ion polarization and
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gyro-viscous fluxes are:

∇ · (nupi + nuπ∗i) ≃ −∇ ·
(

n

Ωi

d#t ∇⊥Φ
∗

)

+∇ · (nuχi), (33)

where we introduced the short-hand notation

∇⊥Φ
∗ .
=

∇⊥φ

B
+

∇⊥pi
qnB

(34)

and where the material derivative is defined as d#t = ∂t + u# · ∇. The advecting velocities

are

u# = ui,1⊥ + upi + uχi + uR + uπ⊥

i
. (35)

Here the drift

uχi = −Ti

B
∇× b̂

qiB
· ∇∇⊥Φ

∗ (36)

represents the remainder of the gyro-viscous cancellation. uχi is derived from the scalar

function χ̃ given in Eq. 37 in Ref.31. The scalar function χ̃ enters the momentum equation

as a correction to the scalar pressure and hence only contributes when the magnetic field is

inhomogeneous. The contributions originating from χ are therefore small. Here, we choose

to keep only the terms in χ̃ necessary for energy conservation. Furthermore, terms in ξ̃ orig-

inating from the purely perpendicular heat flux are neglected because energy conservation

requires that these contributions are retained together with the polarization heat flux which

is not kept here.

As a rule of thumb20 all ion drifts retained in the ion continuity equation, except the

ion diamagnetic drift, must be kept in the advection part of the polarization drift in order

to conserve energy. Unfortunately, this leads to a recursive definition of the polarization

drift since the polarization drift includes a polarization drift advection term. If exact energy

conservation is a crucial demand, this feature makes the model unsuitable for numerical

calculations, but the model is convenient when discussing energy conservation in drift-fluid

models in general.

B. Energy conservation and energy exchange

In this section we present the energy theorem for the drift-fluid model Eqs. (15a)-(15d).

Without taking collisional effects into account it has previously been shown, e.g., Refs. 15
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and 20, that drift-fluid models conserve energy. Here, the drift-fluid energy theorem is

presented including the perpendicular collisional transport terms and the collisional energy

exchange terms described in section IIA.

The global energy is obtained by multiplying the vorticity equation (15b) by qiφ and

integrate over all space neglecting surface terms

∫

dV − qin(upi + uχi) · ∇φ−∇⊥φ · [qin(uDi − uDe) + qinuπ⊥i]

=

∫

dV nmi
∇⊥φ

B
· d#t ∇⊥Φ

∗ + pi∇× b̂

qiB
· ∇∇⊥Φ

∗ · ∇⊥φ

B
− uE · ∇P + (∇ · π⊥

i ) · uE .

(37)

Terms involving parallel dynamics are everywhere left out. Detailed descriptions of energy

conservation and energy transfer channels in the parallel direction in the absence of per-

pendicular collisional effects is thoroughly described in Refs. 15 and 20. Next, the ion and

electron pressure equations are integrated over space using Eqs. (23), (24), and (29), again

neglecting surface terms

∫

dV
3

2

∂

∂t
pe −∇pe · uE + uR · ∇⊥pi +Q∆ = 0, (38)

∫

dV
3

2

∂

∂t
pi + nmi

∇⊥pi
qinB

· d#t ∇⊥Φ
∗ + pi∇× b̂

qiB
· ∇∇⊥Φ

∗ · ∇⊥pi
qinB

−∇pi · uE + (∇ · π⊥
i ) · uDi − uR · ∇⊥pi + π⊥

i : ∇ui⊥,1 −Q∆ = 0, (39)

where upi and uχi were inserted into the pi∇ · (upi +uχi) term, resulting in the second and

third terms on the right hand side of Eq. (39), respectively. The energy theorem

d

dt

∫

dV
3

2
pe +

3

2
pi +

1

2
minu

2
i⊥,1 = 0 (40)

is obtained by adding Eqs. (37)-(39) and by bringing the ion particle density under the time

derivative in terms involving the ion polarization drift using the particle density equation

(15a) and the vorticity equation (15b). As expected, the energy theorem is not altered by

the inclusion of perpendicular collisional effects. In other words, the collisional effects do

not give rise to sinks no sources in the energy theorem, but solely provide energy transfer

channels.

The perpendicular kinetic energy 1
2
minu

2
i⊥,1 is a peculiar quantity. The E × B-drift

1
2
minu

2
E part is easy to interpret, because the fluid moments in Eqs. (15a)-(15d) are all

13



advected by the E × B-drift, and hence this part describes the kinetic energy associated

with the E ×B-drift. On the contrary, the terms in the kinetic energy 1
2
minu

2
i⊥,1 involving

the diamagnetic drift are more difficult to interpret because the diamagnetic drift to lowest

order does not advect fluid elements. The diamagnetic part of the kinetic energy is more

appropriately described as a finite Larmor radius (FLR) correction to the ion pressure and

to the ion E ×B-kinetic energy32–34. To emphasize this property of the kinetic energy, it is

denoted the modified kinetic energy.

To elucidate how energy is transferred between the constituents of the energy theorem

Eq. (40) it is instructive to consider the time evolution of each term separately

d

dt

∫

dV
1

2
nmiu

2
i⊥,1 =

∫

dV − P∇ · uE + pi∇ · (upi + uχi)− (∇ · π⊥
i ) · uE, (41)

d

dt

∫

dV
3

2
pi =

∫

dV pi∇ · uE − pi∇ · (upi + uχi) + (∇ · π⊥
i ) · uE + uR · ∇pi +Q∆,

(42)

d

dt

∫

dV
3

2
pe =

∫

dV pe∇ · uE − uR · ∇pi −Q∆. (43)

Terms which enter with opposite signs represent conservative energy transfer channels. The

interchange transfer terms, first terms on the right hand sides of Eqs. (41)-(43), transfer

energy between ion and electron thermal energies and the modified kinetic energy. The

compression of the polarization drift, second term on the right hand sides of Eqs. (41) and

(42), provides an energy transfer between ion thermal energy and the modified kinetic energy

through the pi∇· (up+uχ) terms. This energy transfer channel may play an important role

in generating and sustaining E ×B mean flows35.

The heat exchange term Q∆, entering Eqs. (43) and (42) with opposite signs, describes

energy exchange between electrons and ions due to elastic electron-ion collisions. Resistivity

provides an additional energy transfer channel through the resistive drift transfer terms

uR · ∇⊥pi entering Eqs. (43) and (42) with opposite signs. The parallel resistivity, on the

contrary, gives rise to an energy exchange between the ion and electron parallel kinetic

energies 1
2
manu

2
a‖ and the electron thermal energy. Here, resistivity opposes the motion

of the charge carrying particles along the magnetic field. In the perpendicular direction,

resistivity opposes the diamagnetic current, which to lowest order describes particle gyration

around magnetic field lines. Since the kinetic energy of the gyrating motion is included in

the thermal energies, perpendicular resistivity in the drift-fluid model accordingly give rise
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to a conservative energy energy between the ion and electron thermal energies. Note that a

finite resistive energy transfer requires a finite ion pressure gradient. When ∇⊥pi = 0, ions

are homogeneously distributed and therefore the probability of an electron colliding with a

gyrating ion is the same in all directions. Only when ∇⊥pi 6= 0, electrons do on average

experience an average effect of the gyrating ions. The direction of the energy transfer can

be deduced by writing out the transfer term in the electron pressure equation explicitly

3

2

∂

∂t
pe + · · · = −uR · ∇⊥pi = −νeiρ

2
e

[

1

2

∇⊥Te

Te
−

(

1 +
Ti

Te

)∇⊥n

n
− ∇⊥Ti

Te

]

· ∇⊥pi, (44)

where the thermal force and the electron temperature gradient dependent part of the friction

force were combined. The second and third terms on the right hand side heat the electrons

whenever ∇⊥n·∇⊥Ti > 0. The heating of electrons due to friction is known as Joule heating.

However, it can be shown that the second and third terms are also capable of cooling the

electrons. Necessary conditions are ∇⊥n · ∇⊥Ti < 0 and that the ion temperature gradient

length scale exceeds the particle density gradient length scale. The electron temperature

gradient dependent term transfers thermal energy from the electron to the ions when ∇⊥Te ·
∇⊥pi > 0, an effect known as the Ettingshausen effect18.

It is important to keep in mind that both the heat exchange term Q∆ and the resistive

transfer terms occur on the slow time scale ν−1
ei mi/me. Comparing the magnitudes of these

energy exchange terms

|Q∆|
|uR · ∇⊥pi|

∼ Te − Ti

Te

L2
⊥

ρ2i
(45)

shows that unless the temperatures are very different, the resistive energy transfer is smaller

than the heat exchange when considering profiles, but also that the resistive can be important

when pressure gradients are steep, e.g., in the edge region and in general when turbulent

transport is strong.

Viscosity on the perpendicular flows due to ion-ion collisions gives rise to the energy

transfer term (∇·π⊥) ·uE, between the modified kinetic energy and the ion thermal energy.

We should expect that the energy transfer goes from kinetic energy to thermal energy because

collisions increase entropy. If the perpendicular electric field vanishes the energy transfer

term vanishes accordingly. It can be shown that the uE dependent part of π⊥ entering the

transfer term gives rise to an unidirectional energy transfer from modified kinetic energy to

the ion thermal energy. The direction of the energy transfer by the remaining part, which
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depends on the ion diamagnetic drift, is not unidirectional. However, recall that the modified

kinetic energy does not solely describe kinetic energy. Therefore, in order to investigate the

direction of the energy transfer one must instead consider the energy transfer from the (FLR)

corrected ion E×B kinetic energy. Disentangling the true kinetic energy from the modified

kinetic energy is beyond the scope of this work.

III. THE HESEL MODEL

Turbulent transport in the SOL region is intermittent and is carried by coherent

structures36. These coherent structures of elevated pressure, often referred to as filaments

or blobs, are elongated along the magnetic field. They are mainly born in the vicinity of

the last closed flux surface (LCFS) at the outboard midplane due to ballooning37. Once

these plasma outbreaks are expelled into the the open field line region, they expand38 into

the rare SOL plasma in the parallel direction with velocities comparable to the ion sound

speed cs =
√

(Te + Ti)/mi, while traversing the SOL region radially at velocities reaching a

fraction of cs. Typically, the blobs imply fluctuation levels which exceed unity.

In this section we derive a reduced model for investigations of blob formation and trans-

port across the SOL region of magnetically confined toroidal plasmas. The model is named

HESEL21,22 and is the successor of the ESEL model3,23–25. Like the ESEL model, the HESEL

model considers the dynamics in a plane perpendicular to the magnetic field located at the

outboard midplane. Perpendicular collisional transport is described by partly linearized ex-

pressions derived from the more general results presented in the preceding section. Parallel

transport in the SOL region is represented by damping terms. Parallel drift-wave dynamics

and magnetic perturbations are ignored. Turbulent fluctuations are hence driven by the

interchange instability due to an inhomogenious toroidal magnetic field. These reductions

facilitate long but also computationally inexpensive computer simulations which can provide

sufficient data for statistical analysis and comparison with experiment. Compared to the

ESEL model the HESEL model has the following enhancements: 1) A dynamical description

of ion pressure dynamics, 2) the inertial response to changes in the ion pressure is included,

3) sheath dissipation, and 4) an improved description of collisional processes, including

inter-species energy exchange, based on the results presented in the previous section.

The model domain is a plane perpendicular to the magnetic field at the outboard mid-

16



plane. The magnetic field geometry is approximated by local slab coordinates (x, y, z). x

and y coordinates denote the radial and the poloidal azimuthal positions in the domain and

z denotes the position along the magnetic field. The toroidal magnetic field magnitude is

approximated as B = B0(1 + ǫ + x/R), where ǫ = r/R denotes the inverse aspect ratio,

and r and R are the minor and major radii, respectively. The HESEL model consists of

two regions joined at the LCFS (x = 0) modeling the edge and SOL regions. Besides radial

boundary conditions, these regions are only set apart by damping terms due to losses along

open field lines which are only active in the SOL region. In this section we present and

discuss the simplifications of the drift-fluid model equations (15a)-(15d) that lead to the

HESEL model.

A. Thin-layer approximation

First we turn our attention to the vorticity equation (15b). Here we invoke an approxi-

mation commonly known as the thin-layer approximation. This approximation shares many

features with the Boussinesq approximation often used in the description of incompressible,

buoyancy-driven flows in neutral fluid dynamics, but is fundamentally different since the

mechanism driving the dynamics in plasma drift-fluid equations is finite compressibility of

the plasma fluid drifts. This rather crude approximation neglects particle density variations

in the polarization flux entering the vorticity equation (15b), and hence assumes a constant

inertia of all fluid parcels irrespective of the local particle density. The motivation for this

approximation, which in particular is debatable when applied to edge plasma models, is

the desire for computational efficiency and that energy conservation requires polarization

drift advection in the polarization drift itself as discused in section IIA 1. This recursive

definition is very inconvenient in numerical computations. We note that gyrofluid models39

do not suffer from these difficulties.

Specifically, we approximate the ion polarization flux defined in Eq. (33) as

∇ · (n[upi + uχi]) = −∇ ·
(

n

Ωi
d#t ∇⊥Φ

∗

)

+∇ · (nuχ) ≃ − n0

Ωi0
∇ · (d0t∇⊥φ

∗
)

, (46)

where we have introduced

φ∗ =
φ

B0

+
pi

qin0B0

(47)
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and where subscripts ”0” on quantities on the right hand side refer to constant characteristic

reference values. The material derivative

d0

dt
=

∂

∂t
+ uE0 · ∇ (48)

only includes the E × B-drift at constant magnetic field uE0 = B−1
0 b̂ × ∇φ. Dictated by

energy conservation, all other advection terms in the original polarization flux are neglected.

Energy conservation requires that the divergence of the polarization drift in the ion

pressure equation (15d) is approximated in the same way

pi∇ · (upi + uχi) ≃ − pi
Ωi0

∇ · (d0t∇⊥φ
∗
)

. (49)

In the final equations the divergence of the polarization drift does not enter the ion pressure

equation, because the vorticity equation is substituted into the ion pressure equation. The

divergence of the polarization flux 3
2
∇ · (pi[upi + uχi]) is formally small and does not affect

energy conservation. It is therefore neglected.

B. Approximations for the perpendicular collisional dynamics

We start by considering the particle density equation (15a) where the only perpendicular

collisional term is the divergence of the resistive flux written out in Eq. (18). As previously

noted, the divergence of the resistive flux gives rise to particle density diffusion with a

diffusion coefficient De ∝ n/
√
Te. Naturally, the particle density and electron temperature

fields in the edge and SOL regions of a tokamak plasma will not be completely correlated.

However, we expect that the profiles of both fields share features such as being flat in the

SOL region and having steep gradients near the separatrix. Furthermore, measurements in

the SOL region at the outboard midplane show that n and Te are approximately proportional

in blobs40 in which case De ∝ √
n. Therefore, we choose to fix the diffusion coefficient in

Eq. (18) evaluating it using characteristic constant reference values n0 and Te0 for the particle

density and the electron temperature, respectively. Recall that the thermal force was partly

canceled leaving only the last term in Eq. (18). This residual thermal force is expected

to be partly canceled by the ion temperature gradient part whenever the ion and electron

temperatures are correlated. Therefore, we neglect the temperature gradient terms in the

resistive flux Eq. (18). The divergence of the perpendicular resistive flux in the particle
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density equation (15a) then reads

∇ · (nuR0) ≃ −De(1 + τ)∇2
⊥n, (50)

where De = νei0ρ
2
e0 is the constant diffusion coefficient calculated using n0 and Te0, and

τ = Ti0/Te0 is the reference ion to electron temperature ratio. Usage of the same approximate

resistive drift

uR0 = −De(1 + τ)∇⊥ lnn (51)

in both the electron and ion pressure equations (15c)-(15d) avoids undesired temperature

dynamics such as temperature anti-diffusion.

Next we consider the electron pressure equation (15c). As was shown in Eq. (24), the

resistive fluxes and the heat fluxes partially cancel. Apart from the energy exchange terms,

the remaining terms were given in Eq. (25). These terms are approximated as

∇ · (peuRu,⊥
)− 11

18
∇ · (peuRT,⊥

) = −∇ ·
(

νeiρ
2
e

[

∇⊥P +
11

12
n∇⊥Te

])

≃ ∇ · (peuR0)−∇ ·
(

De
11

12
n∇⊥Te

])

. (52)

The resistive energy transfer terms entering the electron and ion pressure equations are

approximated as

uR · ∇⊥pi ≃ uR0 · ∇⊥pi. (53)

In the ion pressure equation (15d) the collisional transport has a different character.

Here, the perpendicular ion heat conduction dominate the divergence of the resistive flux.

However, the resitive flux is retained in order to handle situations with flat ion temperature

gradients properly, see Eq. (30). As in the electron pressure equation the divergence of the

ion pressure resistive flux is approximated as

5

2
∇ · (piuR) ≃

5

2
∇ · (piuR0). (54)

The perpendicular ion heat conduction Eq. (27)

qi⊥ ≃ 2nDi∇⊥Ti (55)

is approximated by taking the ion diffusion coefficient

Di =
νii,0Ti0

miΩ
2
i0

(56)
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to be constant.

In the electron and ion pressure equations (15c)-(15d) the heat exchange term defined in

Eq. (26) is evaluated with a constant electron-ion collision frequency

Q∆ ≃ 3
me

mi
nνei0(Te − Ti). (57)

Finally, we consider approximations of terms related to the perpendicular collisional

ion viscosity tensor π⊥
i , given in equation (5), which enters the vorticity and ion pressure

equations. In the vorticity equation (15b), π⊥
i gives rise to diffusion of vorticity via the

divergence of the flux associated with the viscous drift uπ⊥

i
. Recall that in order to reduce

the computational costs, the thin-layer approximation to the polarization flux was invoked

as described in section IIIA. The thin-layer approximation implied that the first order

perpendicular ion drifts entering the polarization drift itself were approximated as

ui⊥,1 ≃ u0
i⊥,1 = b̂×∇⊥φ

∗. (58)

Accordingly, only u0
i⊥,1 enters π⊥

i . Expressed in local coordinates (x, y, z) we get

π⊥
xx,0 = −π⊥

yy,0 = 2ηi1∂
2
xyφ

∗, (59)

π⊥
xy,0 = π⊥

yx,0 = −η1(∂
2
xx − ∂2

yy)φ
∗. (60)

Furthermore, the thin-layer approximation takes the particle density in the ion polarization

flux to be constant. Making the same approximation to the viscous drift flux, we get

∇ · (nuπ⊥

i
) ≃ ∇ · (n0u

0
π⊥

i
) =

3

10

n0Di

Ωi0

∇2
⊥∇2

⊥φ
∗, (61)

which demonstrates that the perpendicular viscous drift gives rise to diffusion of the modified

vorticity ω∗ = ∇2
⊥φ

∗. Vorticity diffuses due to ion-ion collisions which randomize the ions

and hence transfer energy from the modified kinetic energy, see Eq. (41), to the ion thermal

energy through the terms pi∇ · uπ⊥

i
and π⊥

i : ∇ui⊥,1 entering the ion pressure equation

(15d). Energy conservation requires that the perpendicular drifts entering π⊥
i and uπ⊥

i
are

approximated according to equation (58):

π⊥
i : ∇ui⊥,1 ≃ π⊥0

i : ∇u0
i⊥,1 = − 3

10
min0Di

[

(∂xxφ
∗ − ∂yyφ

∗)2 + 4(∂xyφ
∗)2

]

, (62)

pi∇ · uπ⊥ ≃ pi∇ · u0
π⊥

i
= pi

3

10

Di

Ωi0

∇2
⊥∇2

⊥φ
∗. (63)

The ∇ · (piuπ⊥) term in the ion pressure equation is formally small, see Eq. (32). This term

does not change the energy theorem and is therefore neglected.
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1. Neoclassical corrections

In a toroidal plasma perpendicular collisional diffusion is enhanced by neoclassical trans-

port. Specifically, in a collisional plasma, λ/L‖ ≪ 1, the transport along the magnetic field

is diffusive; here λ denotes the mean free path and L‖ is the parallel length scale. Despite

being interrupted by collisions, guiding-centers drifts, such as the grad-B drift, give rise to

transport across magnetic flux surfaces. In a tokamak, the direction, inwards or outwards,

depends on whether particles are above or below the outboard midplane. When the diffusive

transport along the magnetic field and the perpendicular guiding center drifts are superim-

posed they give rise to an enhanced Pfirsch-Schlüter17,27,41 perpendicular diffusion Dnc ∝ q
2,

where q is the safety factor.

Neoclassical transport theory assumes that the plasma evolves on a time-scale much

slower than the typical time-scale of turbulent transport. Therefore, neoclassical estimates

of perpendicular transport do not immediately apply to intermittent transport in the SOL

region. Furthermore, existing literature is only concerned with neoclassical transport on

closed field lines. Here, we are interested in local transport on closed and open field-lines.

However, it is evident that the physical mechanism driving Pfirsch-Schlüter transport is also

present on open field lines and that it will influence profiles as well as transients, but since a

rigorous derivation of these effects is beyond the scope of this work, we resort to the existing

estimates keeping in mind that these will only hold approximately. Specifically, diffusion

coefficients are multiplied by a common factor

De,i → (1 +
R

a
q
2)De,i (64)

which then include variations of the inverse aspect ratio ǫ = a/R and the safety factor q. A

more detailed discussion is given in Fundamenskii et al Ref. 23. It is important to note that

since the perpendicular diffusive particle flux is enhanced by neoclassical effects, so is the

resistive energy transfer, second last term in Eq. (43), between the electron and ion thermal

energies17.

C. Parallel losses in the SOL region

The HESEL model is 2D and therefore parallel losses on open field lines are parametrized.

The parametrization is in line with the parametrization in ESEL model given in Ref. 23, but
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it is augmented by parametrization of parallel ion pressure dynamics and the addition of a

damping term representing sheath currents at material surfaces such as divertors and lim-

iters. As already mentioned, the primary aim of the HESEL model is to describe interchange

driven turbulence transport at the outboard midplane. As a consequence of ballooning the

turbulent plasma source mainly resides on the high field side at the outboard midplane.

For this reason, we assume that all parametrized parallel terms in the HESEL model act as

sinks.

Blobs expand38 in the parallel direction with a velocity comparable to the ion sound

speed cs =
√

(Te + Ti)/mi. The expansion depletes the particle density in the model-domain

located at the outboard midplane. Under the assumption that both ends of the blob expand

with the same velocity, we get the characteristic parallel particle density damping rate

1

τn
=

2Mcs
Lb

, (65)

where M = u‖i/cs denotes the Mach number and Lb is the parallel blob size. We assume

that blobs are predominantly born on the high field side in a region centred around the

outboard midplane with a 60 ◦ poloidal extend37, and hence approximate the filament blob

size as

Lb =
2πqR

6
≃ qR. (66)

In the SOL region vorticity losses are due to two mechanisms: First, parallel advection

of vorticity enters through the divergence of the ion polarization drift particle density flux

∇ · (nupi) = −ui‖ẑ · ∇∇2
⊥φ

∗ + · · · . Since vorticity is mainly transported and generated by

blobs in the SOL region, we assume that the parallel gradient length scales of vorticity and

particle density are approximately the same. In that case, the damping rate parametrising

parallel advection of vorticity is then taken to be identical to the particle density damping

rate:

1

τw
=

1

τn
. (67)

Secondly, we assume that on open field lines the divergence of the parallel current term in

the vorticity equation solely gives rise to vorticity losses. Following a magnetic field line from

the outboard mid-plane to a material surface, we assume that the parallel current at the

outboard mid-plane is connected to the sheath in front of the material surface. An average
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in the parallel direction42 of the parallel current leaves us with the value of the current at the

sheath entrance given by the Bohm criterion13. However, our goal is to describe turbulent

transport carried by filaments propagating across the magnetic field. The characteristic

filament perpendicular velocity36 is on the order of 0.01 − 0.1cs. The time it takes for the

current at the outboard mid-plane to be transported by the Alfvén or electron thermal speed

to the sheath and back to the filament at the outboard midplane is comparable to the time

it takes a filament to move a distance in the radial direction comparable to it own size.

Therefore, the interaction with the sheath cannot be considered an instantaneous process.

For this reason we apply sheath damping only to the averaged fields

∇ · (b̂J‖/e) ≃ S =
en0〈cs〉
Lc

[

1− exp
(

Λ− e〈φ〉
〈Te〉

)

]

, (68)

where the connection length Lc is the distance from the outboard midplane to the outer

divertor following a magnetic field line. Λ = log(
√

mi

2πme
) is the Bohm potential and the

azimuthal average is defined as

〈f〉 = 1

Ly

∫ Ly

0

dy f. (69)

Here, Ly is the domain size in the y-direction and f is an arbitrary function.

We now turn to the electron pressure equation (15c). Here, the parallel heat fluxes given

in Eqs. (19)-(20) and the parallel advection term are parametrized. Quasi-neutrality only

allows small deviations between the ion and electron parallel velocities. Consequently, the

thermal heat flux qe,u‖ given in Eq. (19) is therefore small in comparison with the divergence

of the parallel pressure flux and is therefore neglected in the model. The Spitzer-Härm43

parallel electron heat conduction qe,T‖ given Eq. (20), on the other hand, is not negligible.

It has a strong electron temperature dependence κe,‖ ∝ T
5/2
e , which attenuates parallel

electron temperature gradients. Keep in mind that the Braginskii closure is only valid in the

collisional regime. In particular qe,T‖ is not well behaved as we approach the ”collisionless”

regime. This is readily seen when writing the heat conductivity in terms of the mean free

path λe

∇‖ · qe,T‖ ≃ −3.16nT 3/2
e

λe

L2
‖

. (70)

As a rule of thumb the Braginskii heat conduction is therefore only valid as long as the

electron collisionallity is sufficiently high (ν∗
e > 10). At lower collisionalities the Spitzer-

Härm heat conduction exceeds the free-streaming heat flux44. A remedy for this shortcoming
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is to introduce heat-flux-limiters, which in an ad-hoc manner limit the parallel heat flux to a

fraction of the free-streaming value. Here we restrict ourselves to collisional SOL conditions

where the Spitzer-Härm heat conductivity is valid. Conduction is then parametrized as

∇‖ · qe,T‖ ≃ −T
7/2
e

τSH
, (71)

where we introduced the Spitzer-Härm damping rate

τ−1
SH = 3.16

n0

meνei0T
3/2
e0 L2

c

. (72)

In the parametrization of the electron heat conduction we take the connection length Lc as

the parallel gradient scale length and not the parallel filament size Lb to avoid an unphysical

damping of the electron temperature background. Parallel advection of electron and ion

pressure are approximated as a one-dimensional adiabatic expansion (T ∝ n2)

1

τpe
=

1

τpi
=

9

2

1

τn
. (73)

In the ion pressure equation parallel heat conduction is neglected. For the parameters

used here (ion collisionality ν∗
i > 10 and M > 0.1, see Fig.14 in Ref.45), parallel ion heat

transport is dominated by parallel advection.

D. Resulting model equations

We are now ready to write down the full set of equations which constitute the HESEL

model. In order to highlight characteristic quantities and for convenience, the model equa-

tions are gyro-Bohm normalized

Ωi0t → t,
x

ρs
→ x,

Te,i

Te0

→ Te,i,
eφ

Te0

→ φ,
n

n0

→ n, (74)

where Ωi0 = eB0/mi is the characteristic ion gyro frequency, ρs =
√

Te0

miΩ2

i0

is the cold-ion

hybrid thermal gyro-radius, n0, Te0, and Ti0 are characteristic reference values for the particle

density and the temperatures. The full system of equations is:

d

dt
n+ nK(φ)−K(pe) = Λn, (75a)

∇ ·
(d0

dt
∇⊥φ

∗
)

−K(pe + pi) = Λw, (75b)

3

2

d

dt
pe +

5

2
peK(φ)− 5

2
K
(p2e
n

)

= Λpe, (75c)

3

2

d

dt
pi +

5

2
piK(φ) +

5

2
K
(p2i
n

)

− piK(pe + pi) = Λpi, (75d)
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where the advective derivatives are defined as

d

dt
=

∂

∂t
+B−1{φ, ·}, d0

dt
=

∂

∂t
+ {φ, ·}. (76)

E ×B-advection is written in terms of the anti-symmetric bracket

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (77)

The curvature operator is defined as

K(f) = −ρs
R

∂

∂y
f, (78)

and the normalized modified potential reads

φ∗ = φ+ pi. (79)

In the ion pressure equation, the divergences of the polarization and viscous drifts were elim-

inated by substitution of the vorticity equation. Diamagnetic advection in the electron and

ion pressure equations is no longer present as a consequence of the diamagnetic cancellation

3

2
∇ · (pauDa) + pa∇ · (uDa) +∇ · q∗

a =
5

2
∇×

(

b̂

qaB

)

· ∇(paTa). (80)

All terms related to diffusion and parallel damping are grouped on the right hand sides of

Eqs. (75a)-(75d) and are given as

Λn =De(1 + τ)∇2
⊥n− σ(x)

n

τn
(81)

Λw =
3

10
Di∇2

⊥∇2
⊥φ

∗ − σ(x)
w

τn
+ σ(x)S (82)

Λpe =De(1 + τ)∇ · (Te∇⊥n) +De
11

12
∇ · (n∇⊥Te) +De(1 + τ)∇⊥ lnn · ∇⊥pi

− 3me

mi
νei0(pe − pi)− σ(x)

[

9

2

pe
τn

+
T

7/2
e

τSH

]

(83)

Λpi =
5

2
De(1 + τ)∇ · (Ti∇⊥n)−De(1 + τ)∇⊥ lnn · ∇⊥pi + 2Di∇ · (n∇⊥Ti)

3

10
Di

[

(∂2
xxφ

∗ − ∂2
yyφ

∗)2 + 4(∂2
xyφ

∗)2
]

+
3me

mi
νei0(pe − pi) + σ(x)

(

piS − 9

2

pi
τn

)

, (84)

where τ = Ti0/Te0 and

σ(x) =
σs

2

[

1 + tanh(
x− xs

δs
)

]

(85)
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is a “smooth step function” which defines the transition from closed to open field line regions

in the model. The normalized diffusion coefficients are

De = (1 +
R

a
q
2)
ρ2e0νei0
ρ2sΩi0

, Di = (1 +
R

a
q
2)
ρ2i0νii0
ρ2sΩi0

(86)

and the damping rates due to parallel advection and parallel Spitzer-Härm heat conduction

are

τ−1
n =

2M
√

Te+Ti

mi

qR
, τ−1

SH = 3.16
n0

meνei0T
3/2
e0 L2

c

, (87)

where M is the Mach number.

1. Energy conservation

The thin-layer approximation alters the conserved energy compared to conserved energy

of the full drift-fluid model described in Sec. II B. The derivation paths are very similar.

First, the pressure equations (75c) and (75d) are integrated neglecting surface terms. Next,

the vorticity equation (75b) is multiplied by ”−φ” (75b) and integrated, again neglecting

surface terms. Adding the results we obtain the energy theorem

d

dt

∫

dx
|∇⊥φ

∗|2
2

+
3

2
[pi + pe]. =

∫

dxS‖. (88)

The energy sinks due to parallel losses are contained in

S‖ = −σ(x)

(

φ∇2
⊥φ

∗

τw
+

pi
τpi

+
pe
τpe

+ φ∗S
)

. (89)

As discussed in Sec. II B the electron and ion energy equilibration terms Q∆, the frictional

heat exchange terms uR · ∇⊥pi, and the viscous terms exactly cancel and therefore do not

enter the energy theorem. Just as in the energy theorem for the full model given in Eq. (40),

collisions do not give rise to energy sinks and sources but merely give rise to conservative

energy transfer terms in the model. A thorough discussion of energy transfer mechanisms

and the impact on mean flows can be found in Refs. 35 and 46.

E. Testing the model for perpendicular collisional diffusion

In order to test the simplified model for perpendicular collisional tranport applied in the

HESEL model, we have solved a subset of the governing equations (75a)-(75d) numerically
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using the BOUT++ framework47. Specifically, we assume that: 1) The system is homoge-

neous in the y-direction, 2) only terms describing collisional transport are retained, and 3)

parallel sinks are not active i.e. σ(x) = 0. In this particular limit, the HESEL equations

reduce to the 1D coupled set of non-linear equations

∂

∂t
n = Λn,

3

2

∂

∂t
pe = Λpe,

3

2

∂

∂t
pi = Λpi

}

HESEL. (90)

In order to validate the simplified model, we have solved the full collisional model in the

same limit. The full model is described in details in section IIA. In the absence of turbulence

the model equations reduce to:

∂

∂t
n+∇ · (nuR) = 0,

3

2

∂

∂t
pe −∇ ·

(

νeiρ
2
e

[

∇⊥P +
11

12
n∇⊥Te

])

+ uR · ∇⊥pi = −Q∆,

3

2

∂

∂t
pi +∇ · qi⊥ +

5

2
∇ · (piuR)− uR · ∇⊥pi = Q∆































Full Model (FM) (91)

The resistive drift uR is given in Eqs. (12)-(13), the heat exchange term Q∆ is given in

Eq. (26), and the perpendicular ion heat flux qi⊥ is given in Eq. (27). We stress that no

terms are linearised and that collision frequencies are evaluated as dynamical functions of

temperatures and particle density.

For comparison we have also solved simple diffusion equations with constant diffusion

coefficients De and Di as in the HESEL model

∂

∂t
n = De(1 + τ)∇2

⊥n,

3

2

∂

∂t
pe = De(1 + τ)∇2

⊥pe,

3

2

∂

∂t
pi = 2Di∇2

⊥pi.



























Simple Diffusion (SD) (92)

The fields are initialized as

n(x, t = 0) = n0(1 + e−
x2

2l2 ), Te(x, t = 0) = Te0(1 + e−
x2

2l2 ), Ti(x, t = 0) = Ti0 (93)

and the constant reference values used in the HESEL and simple diffusion model equations

were

n0 = 1.5× 1019m−3, Te0 = Ti0 = 10 eV, B0 = 2T, mi = 2mp (94)

where mp denotes the proton mass. In figure 1 we show solutions of all three set of equations
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Figure 1. 1D simulations of perpendicular collisional diffusion (no turbulence). Radial structure

of particle density, electron and ion pressures and temperatures at t = 1.0 td solving the full non-

linear model (FM) Eqs. (91) (green), the HESEL model given in Eqs. (90) (blue), and a simple

diffusion model given in Eqs. (92) (purple). Solid black lines shows the initial condition t = 0 given

in Eq. (93). Only one third of the simulation domain is shown.
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at t = td. td = 3 l2

(1+τ)De
is the time at which the particle density amplitude is half the initial

value according to the analytical solution of the 1D diffusion equation. We have investigated

various initial conditions but have chosen this specific case where the initial temperatures

are not identical in order to demonstrate the energy exchange mechanisms within the model.

The size L of the simulation domain is L = 30l. In the simulations the time evolution of

the particle density n does not vary significantly between the three models. The SD and

HESEL models give almost identical results whereas the FM model shows a slightly flatter

profile. For the electron and ion temperatures and pressures the FM model and the HESEL

models agree quite well. The SD model profiles, on the other hand, significantly differs from

the profiles of the HESEL and FM models. The presence of energy exchange terms in the

HESEL and FM models is evident. Here, the electron and ion temperatures are equilibrated

whereas the absence of an energy coupling in the SD model is evident, particularly in the

ion temperature. In conclusion, the HESEL model matches the full model quite well. The

simulations also demonstrate that a simple diffusion model should be used with care. The

implications of the choice of perpendicular collisional model in turbulence simulations is not

investigated here but is left for future work. Lastly, in the 1D simulations we have observed

that solving the full model takes significantly longer time than solving the HESEL model.

A comparison between the computational requirements of the full model FM and HESEL is

likewise left for future work.

IV. CONCLUSIONS

In this paper we have demonstrated how perpendicular collisional effects can be incorpo-

rated in low-frequency drift-fluid turbulence models. Based on the electrostatic limit of the

Braginskii fluid equations16, it was shown how resistivity and viscosity give rise to perpen-

dicular fluid drifts which when inserted into the fluid moment equations provide an energy

conserving closed model governing the time-evolution of the particle density, vorticity, and

electron and ion pressure. We demonstrated that resistivity gives rise to energy exchange

between the electron and ion thermal energies and that viscous effects due to ion-ion colli-

sions transfer energy between the modified kinetic and the ion thermal energies. It was also

shown that collisions do not imply energy sinks and sources in the global energy theorem,

but merely provide conservative energy transfer terms. In conclusion, it was shown that
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the inclusion of perpendicular collisional transport in drift-fluid models gives rise to per-

pendicular diffusion in all moment equations, which obviates the need for explicit artificial

diffusion. Based on the general results, we also derived a simplified 2D model aiming at

describing interchange driven turbulent transport in the vicinity of the outboard midplane.

The model is named HESEL and, as the predecessor ESEL, it is aimed at being computa-

tional efficient allowing the model equations to be time integrated for multiple turbulence

de-correlation times. The validity of the simplified collisional dynamics in HESEL was in-

vestigated by means of numerical simulations without turbulence. The simulations showed

good agreement between HESEL and the full model.
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37J.P. Gunn, C. Boucher, M. Dionne, I. Ďuran, V. Fuchs, T. Loarer, I. Nanobashvili,
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