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Abstract: We revisit the applications of quasi-linear theory as a paradigmatic model for
weak plasma turbulence and the associated bump-on-tail problem. The work, presented
here, is built around the idea that large-amplitude or strongly shaped beams do not relax
through diffusion only and that there exists an intermediate time scale where the relaxations
are convective (ballistic-like). We cast this novel idea in the rigorous form of a self-consistent
nonlinear dynamical model, which generalizes the classic equations of the quasi-linear
theory to “broad” beams with internal structure. We also present numerical simulation results
of the relaxation of a broad beam of energetic particles in cold plasma. These generally
demonstrate the mixed diffusive-convective features of supra-thermal particle transport;
and essentially depend on nonlinear wave-particle interactions and phase-space structures.
Taking into account modes of the stable linear spectrum is crucial for the self-consistent
evolution of distribution function and the fluctuation intensity spectrum.

Keywords: Plasma kinetic equations; Particle beam interactions in plasmas; Nonlinear
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1. Introduction

The relaxation of supra-thermal particle beams in plasmas is a problem of fundamental significance.
The problem of a broad particle beam interacting with a one-dimensional background plasma,
in fact, underlies the classic “bump-on-tail” (BoT) problem addressed in the pioneering work by
Bernstein-Greene-Kruskal (BGK) [1]. It also provides the paradigm for the original quasi-linear
description of weak plasma turbulence [2,3], where the beam was assumed sufficiently tenuous to neglect
wave-wave coupling; and sufficiently energetic that nonlinear wave-particle interactions did not affect
thermal plasma particles. Other examples of the important influence of the classic BoT problem are
Landau damping in a finite amplitude wave [4,5] and nonlinear behavior of the beam-plasma instability
due to wave-particle interactions [6,7] (see also [8–13]).

The relevance of the BoT problem for fusion plasmas research was revived in the 90’s by Berk and
Breizman [14–16], who proposed it as paradigm to investigate and understand nonlinear interaction of
supra-thermal particles with Alfvénic fluctuations, provided the system is sufficiently close to marginal
stability [16–19]. In fact, nonlinear interplay of energetic particles (EPs) with Alfvénic fluctuations, such
as Alfvén eigenmodes (AEs), EP modes and drift Alfvén waves [17,18,20,21], and their consequences
for fluctuation induced cross-field transport constitute basic phenomena for thermonuclear plasmas [19,
21–31].

The fluctuation spectrum of AEs, EP driven modes and drift Alfvén waves in fusion plasmas
covers disparate spatiotemporal scales and can have both “broad” features, such as those of typical
plasma turbulence, as well as an almost “coherent” (“narrow”) nearly periodic component [20,29]. A
line-broadened quasi-linear approach has been proposed in Refs. [32,33] for computing EP transport by
means of a diffusion equation, which could address not only overlapping resonant Alfvénic fluctuations
but also the broadening of the resonant spectrum for isolated instabilities in the case of multiple AEs.
This model has been extended and compared with experimental observations [34] and with numerical
solutions of the BoT paradigm [35]. In general, however, understanding the complex features of EP
transport in fusion plasmas requires going beyond the local description of fluctuation induced fluxes and
extending the diffusive transport paradigm [20,29]. Accounting for modes of the linear stable spectrum is
also crucial [36,37]. Thus, posing these issues for the BoT problem becomes an interesting and relevant
research topic, in the light of its possible implications as paradigm for Alfvénic fluctuation-induced
supra-thermal particle transport in fusion plasmas near marginal stability.

In this work, we revisit the classic BoT problem beyond the Brownian random-walk paradigm (cf.
Sec. 2) and show the crucial role played wave-particle nonlinearity in determining the non-diffusive
feature of supra-thermal particle transport, which self-consistently evolves with the fluctuation intensity
spectrum. Phase-space structures and, thereby, nonlinear wave-particle interactions are known to
be important, e.g., in enhancing velocity space diffusion in longitudinal plasma turbulence [38–40].
In this work, in particular, it is further demonstrated that they are essential processes in the mixed
diffusion-convection relaxation of a broad supra-thermal particle beam in a cold one-dimensional plasma
in the presence of weak Langmuir turbulence.
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We assume the Chirikov parameter to be sufficiently larger than one. That is, that the fluctuation
spectrum be sufficiently dense that Cherenkov resonances overlap. Following Ref. [41], we also
consider a “broad” beam to be composed of a large number of overlapping single beams, each having
a characteristic nonlinear width ∆vNL, and the spacing between the beams represented by ∆vSEP .
For sufficiently large nonlinearity parameter K = ∆vNL/∆vSEP , we show in Sec. 3 that convective
relaxation of limited duration occurs on meso-scales, and is always followed by a long-time, diffusive
relaxation of the quasi-linear type. These processes are described by a self-consistent system of coupled
nonlinear differential equations, which generalize their quasi-linear counterparts by directly taking into
account wave-particle nonlinear interactions.

We demonstrate mixed diffusion-convection relaxation by numerical simulation of the classic BoT
problem with varying Chirikov parameter and wave-number spectrum width (cf. Sec 4). In particular, we
demonstrate the well-known and important role of the spectral width for controlling the time-asymptotic
diffusion of quasi-linear type; and emphasize the necessity of including modes of the linear stable
spectrum for a proper description of supra-thermal particle transport and fluctuation intensity spectrum
evolution. Numerical simulation results, furthermore, show that convective relaxation on meso-scales
also occurs for small nonlinearity parameter, due to the self-consistent evolution of fluctuation intensity
on the same time scale of particle transport. This interpretation is demonstrated by an analytical
toy-model, derived for understanding numerical simulation results.

Finally, Sec. 5 is devoted to conclusions and discussions.

2. The classic “bump-on-tail” problem and the Brownian random-walk paradigm

We will assume that the reader is familiar with the classic “BoT” BGK problem [1] of a distribution
function that excites electrostatic waves. The basic insight is that the velocity space gradient drives
(damps) the instabilities via the Cherenkov resonance v = vres = ωkj/kj with the plasma species
(customarily associated with the energetic electrons). Here v is the particle velocity and ωkj and kj are
respectively the frequency and the wavevector of the resonant mode. Instability occurs when the gradient
is positive (∂f/∂v > 0) and is damped when it is negative (∂f/∂v < 0). The latter phenomenon is
known as the Landau damping and in many ways is the inversion of the BoT problem.

In the quasi-linear theory [2,3,42] of weak plasma turbulence, one assumes that the electron
distribution function contains a small “bump” in the parameter range of large energies (much larger than
the characteristic thermal energy) and that the dispersion of the electron velocities is also large compared
with the thermal velocity. The bump being small implies that the level of the excited electrostatic noises
is so low that the different unstable modes do not interact, hence one neglects any nonlinearities in the
wave-field. Then the only nonlinearity one indeed takes into account is feedback effect of the waves
onto the averaged velocity distribution function (hence the name of this theory: quasi-linear). The linear
instability growth rate, which is frequency and wavevector dependent, is given by

γkj =
πω3

p

2k2
jnp

∂f

∂v
|vres , (1)

where ωp is the unperturbed Langmuir frequency (i.e., ωp ≡
√

4πnpe2/me, with np the thermal plasma
density; and me and e denoting the mass and charge of electrons, respectively) and the gradient in the
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velocity space is taken at the Cherenkov resonance exactly. The large velocity dispersion within the
bump is at the basis of another important assumption of the quasi-linear theory, namely, that the number
of the excited modes is so large that their phases are represented by the random functions. Then the
kicks received by the plasma particles via the resonant interactions with the waves will be also random
in the limit t → ∞ (here t is the time). It is generally believed that this quasi-linear effect of the many
excited waves onto the plasma is contained in a Brownian random walk of the energetic particles toward
the thermal core and the formation of a characteristic “plateau” (∂f/∂v = 0) in the equilibrium velocity
distribution function [2,3].

The conclusion that the transport in the velocity space is diffusive or Brownian random walk-like is
not at all trivial, though, and must be addressed. It occurs as a consequence of the idea that the resonant
particles are not caught by one single resonance on time scales longer than a certain characteristic time
(thought as the typical bouncing time in the potential well of the wave). Instead these particles will hop
in a random fashion between the many overlapping resonances, hence their motion is statistical, rather
than deterministic. This statistical approach to the particle random motion in the velocity space is in
many ways due to the Novosibirsk school of nonlinear science (e.g., books [43,44] and reviews [45,46]).

Consider the exact equations of motion of a charged particle in the potential electric field of a wave
packet

ẍ =
e

m
E(x, t) =

e

m

∑
j

[
Ekje

i(kjx−ωkj t) + c.c.
]
, (2)

where ẋ = v is the particle velocity, and Ekj is the Fourier amplitude of a mode with wavevector kj .
The electric field is assumed to be “small” in the sense of quasi-linear theory; and here it is represented
as the sum of a large number of Fourier harmonics with frequencies ωkj and wavevectors kj . Hence, it
is shown, following Zaslavsky [43], that barely trapped particles − those staying close to separatrices
in phase space (x, ẋ) − may occasionally become detrapped by jumping onto an open trajectory. These
phenomena of occasional trapping-detrapping occur because the integrals of the motion are essentially
destroyed by the perturbation E(x, t) within a small layer surrounding the separatrix (known as the
ergodic layer) [43,44]. For not too small perturbations, the width of the ergodic layer with respect to
frequency is of the order of

∆ωkj =

√
ek|Ekj |
m

. (3)

The diffusion behavior occurs, when the width ∆ωkj exceeds by a large margin the distance between
the resonances δωkj (for a statistically significant number of k’s), implying that the resonances strongly
overlap within a certain interval of wavevectors kj . This is usually quantified by saying that the Chirikov
parameter is large, i.e.,

S = ∆ωkj/δωkj � 1 . (4)

One sees that the Chirikov parameter S ∝
√
|Ekj | being much larger than 1 implies that the level of

the excited electrostatic waves in turn cannot be as small as one likes. It might not be taken for granted
that this level just lies within the assumptions of the quasi-linear theory discussed above, even though
we know by experience that the conflict does not normally occur in the classic BoT setting.

In what follows, we revise the applications of quasi-linear theory as a paradigmatic model for weak
plasma turbulence and the associated BGK problem. The main idea here is that large-amplitude or
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strongly shaped beams do not relax through diffusion only and that there exists an intermediate time
scale where the relaxations are convective (ballistic-like). We cast this novel idea in the rigorous form of
a self-consistent nonlinear dynamical model, i.e., mixed diffusion-convection model, which generalizes
the classic equations of the quasi-linear theory to “broad” beams with internal structure.

3. Revising the classic “bump-on-tail” problem: Diffusion-convection model

We follow Ref. [41] and consider a “broad” beam as composed of a large number of overlapping
single beams, each having a characteristic nonlinear width ∆vNL, and the spacing between the beams
represented by ∆vSEP . The value of ∆vNL is determined by the kinematics of nonlinear resonance
broadening in the coupled system of electrostatic waves and beam-plasma particles (e.g., Ref.[44,47]).
The dynamics crucially depend upon the value of the nonlinearity parameter

K = ∆vNL/∆vSEP . (5)

We note that the nonlinearity parameter above and the Chirikov parameter, introduced in Eq. (4), are
intrinsically connected for the self-consistent beam-plasma problem, as emphasized in Ref. [41]. In fact,
each individual beam, which the “broad” beam is thought to be composed of, can drive, when considered
independent of others, a plasma wave that naturally saturates when ∆vNL ' |∆ωkj/kj|. Thus, K and
S are interlinked for the case we consider in the present work (cf. also Sec. 4.5), while, in general,
the two parameters may be controlled independently of each other; e.g., when the fluctuation spectrum
is externally imposed, rather than being self-consistently determined by the broad beam distribution, as
evolved from the linearly unstable modes.

For K � 1, the comprising beams are well separated in velocity space, and the transport problem for
the beam particles is reduced to a superposition of the respective BGK problems for each beam. We are
not interested in this regime in this section.

The behavior changes drastically, if K � 1. In this parameter range, the beams strongly overlap as
a consequence of the strong nonlinearity, and are not separable in the BGK sense. The main effect the
overlap between the beams has on the instability growth rate is amplification of the number density of
the resonant particles. Summing across all overlapping beams (and dropping the j-index in this whole
Section for the sake of simplicity), we have, instead of Eq.(1),

Γk '
πω3

p

2k2np

(
∂f

∂v
|vres +

∆f

∆vNL

)
, (6)

where ∆f is calculated in vicinity of the resonant velocity vres = ωk/k within the velocity spread ∆vNL.
Eq.(6) suggests that the instability growth rate in the broad-beam problem is incremented by

∆γk = Γk − γk '
πω3

p

2k2np

∆f

∆vNL
, (7)

as compared to the classic BoT problem, with the growth rate γk. A priori, one may expect that
the amplification ∆f is proportional to the local number density, hence to the velocity distribution
itself; that is, ∆f ' χf , where the coefficient χ quantifies the coupling properties among the beams.
Following Refs.[48,49], we write this coefficient as the Boltzmann factor χ = exp[−∆vSEP/∆vNL].
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The implication is that ∆f is limited to the transition probabilities of resonance particles on a grid,
with the spacing ∆vSEP , and the effective “temperature” of nonlinear interaction ∆vNL. Using the K
parameter, we may also write χ = exp[−1/K], which interpolates between the classic BoT problem
(K � 1; χ ' 0) and the regime of strong nonlinearity of interest here (K � 1; χ ' 1). We note in
passing that the functional dependence in the χ value is non-perturbative in that it goes as exponential of
−1/K and not as 1/K, this being a small parameter of the model. Given that the Chirikov parameter is
large, i.e., that the condition in Eq.(4) holds, the relaxation current in velocity space Jk (i.e., flux of the
energetic particles in the direction of the thermal core) will be proportional to the instability growth rate
Γk. We have Jk = −ζΓk, where ζ is a numerical normalization parameter and will be obtained below.
The minus sign indicates that the flux goes against the v axis. With the aid of Eq.(6) one obtains

Jk = −ζ
πω3

p

2k2np

(
∂f

∂v
|vres + χ

f

∆vNL

)
. (8)

Note that the resonance part of Jk, i.e., first term on the right-hand-side of Eq.(8), has the sense of Fick’s
second law in velocity space.1 The continuity of the flux-function implies

∂f

∂t
+∇v · Jk = 0, ∇v ≡ ∂/∂v . (9)

Combining with Eq.(8), one is led to a Fokker-Planck equation

∂f

∂t
=

∂

∂v
Λvδ(v − ωk/k)

∂f

∂v
+

∂

∂v
χΛv

f

∆vNL
, (10)

where we have denoted for simplicity Λv = ζ(πω3
p/2k

2np). Clearly, the first term on the right-hand-side
of Eq.(10) represents the well-known quasi-linear diffusion in the limit t→ +∞. Following the analysis
of the previous Section, in a basic theory of weak plasma turbulence one writes the quasi-linear diffusion
coefficient as [42]

DQL =
πe2

m2
e

∑
k

|Ek|2δ(ωk − kv) =
πe2

km2
e

∑
k

|Ek|2δ(v − ωk/k) . (11)

Comparing with Eq.(10), and remembering the expression of Λv, one arrives at

ζ
πω3

p

2k2np
δ(v − ωk/k) ' πe2

km2
e

∑
k

|Ek|2δ(v − ωk/k), (12)

from which the ζ value can be inferred via an asymptotic matching procedure. At this point, no free
parameters have remained in the Fokker-Planck model in Eq.(10).

In the discussion above, we have implicitly assumed that the distribution function f does not involve
any coordinate dependence in real space. Relaxing this, we should obtain, instead of Eq.(10),

∂f

∂t
+ v

∂f

∂x
=

∂

∂v
Λvδ(v − ωk/k)

∂f

∂v
+

∂

∂v
χΛv

f

∆vNL
, (13)

1 The Fick paradigm states that internal fluxes are driven by point-wise gradients with local coefficients: diffusivities and
conductivities. Models based on these assumptions are referred to as local transport models.
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where x is the position variable in real space. The implication is that the time derivative ∂/∂t is replaced
by the Stokes operator ∂/∂t + v∂/∂x as soon as eventual x-dependencies come into play. Eq.(13)
is a partial case of the Klein-Kramers equation away from external force fields. The closure of the
Klein-Kramers equation is obtained through

∂|Ek|2

∂t
+ vg

∂|Ek|2

∂x
= 2Γk|Ek|2 , (14)

which generalizes the well-known quasi-linear equation [42] for spectral energy density in that it uses
the amplified increment Γk in place of γk. In the above, vg = ∂ωk/∂k is group velocity. Note that the
instability growth rate on the right-hand-side of Eq.(14) steps in with the front factor 2; this is because the
square of the wave amplitude decays twice faster than the amplitude itself. Eqs.(13) and (14) represent
the basic system of dynamical equations for our model. These equations describe the beam relaxation
and the evolution of the wave spectrum as coupled processes and extend via the Γk value the known
equations of weak plasma turbulence to the broad-beam problem.

3.1. Towards multi-scale dynamics: Comparing the relaxation times

An essentially new element of our model is the case of convective relaxation − contained in the last
term on the right-hand-side of Eq.(13). Indeed the convection term enters on an equal footing with the
classic diffusion term via the generalization of the instability growth rate in Eq.(6). The characteristic
relaxation time in the convection domain is easily seen to be given by

τconv ' (∆vNL)2/χΛv . (15)

This should be compared with the characteristic relaxation time via the quasi-linear diffusion, which we
assess as τdiff ' ∆v2

b/Λv, where ∆vb is the broad beam width in velocity space. In general, we can
assume ∆vb � ∆vNL, suggesting that the convective relaxation is a meso-scale process. We interpret
this result as follows.

3.2. Mixed diffusive-convective behavior and the asymptotic character of the diffusion

For K � 1 (i.e., χ ' 1, strong-overlap limit), the relaxation dynamics are completely dominated
by the nonlinear amplification of the instabilities via the share in the resonance particle population.
The coupling processes among the beams are such as to increase the density of the resonant particles
where the second derivative of the distribution function is positive, i.e., ∂2f/∂v2 > 0, and, via the
conservation of the total number of the particles, act to decrease, at the same time, the resonant density
where the second derivative is negative (∂2f/∂v2 < 0). This generates an unstable propagating front in
velocity space directed to the thermal core of the distribution function comprising the beams. Moreover
the front is self-reinforcing: its strength, i.e., the density pedestal, initially grows with time as more
resonance particles are trapped in it. The process is analogous to a snow avalanche or self-amplifying
chain reaction.2

2 The idea that the avalanching dynamics occur via an amplification of instabilities in the parameter range of large
nonlinearity is indeed very general and have been discussed for “strong” electrostatic turbulence in Refs.[50,51].
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As the instability amplifies itself, the velocity gradient on its edge becomes persistently steeper.
This feeds back the diffusive relaxation via the increasing ∂f/∂v term. Above some level of the front
steepening and amplification, the convective and the diffusive relaxations start to operate on essentially
an equal footing. The process ends with sharp (shock-wavelike) instability front and the relaxations
rapidly switching to diffusion. It is in this sense that we have termed the convective relaxation to be
meso-, respectively, beam size scale on which the amplifications occur. The asymptotic (t → +∞)
relaxation process will be always diffusive quasi-linear.

One sees that the relaxation process acquires multi-scale features in the broad-beam problem: It
begins as initially a convective process, with time scale in Eq.(15), followed by an asymptotic diffusion
process on very long time scales. Note that the convective relaxation occurs despite the condition that
the Chirikov parameter is large, i.e., S � 1, and is attributed to the fact that the nonlinearity of the
interaction, contained in the ordering K � 1, is also large in its turn, giving rise to a Fokker-Planck
generalization of the velocity-space diffusion equation. We should stress that by “generalizing” the
quasi-linear theory we mean in fact the inclusion of the meso-scale relaxation of the convective type
(via the coupling term in the respective Klein-Kramers equation), without touching on the asymptotic,
diffusive behavior and the formation of the plateau.

3.3. Boltzmann’s H-theorem and the entropy growth rates

Although obvious, it should be emphasized that the Chirikov parameter being much larger than 1
implies that the dynamics are random (chaotic-like) on micro-, respectively, wave-particle interactions,
scales. It is convenient to characterize this implication of the chaotic dynamics in terms of Boltzmann’s
H-theorem and assess the corresponding entropy growth rates through respectively the diffusion and the
convective relaxation processes.

For weakly interacting classical systems, the entropy S = S(t) is related to the probability density
function through

S(t) = −
∫ +∞

−∞
f(t, v) log f(t, v)dv . (16)

We shall assume for simplicity, without lacking generality, that the distribution function f represents
solely the beam particles, so it is identically zero outside the bump region. So we differentiate the
functional dependence in S(t) over the time, then substitute the time derivative ∂f(t, v)/∂t with the sum
of the diffusion and the convection terms using the Fokker-Planck equation (10), and integrate by parts
over the velocity variable under the assumption that the velocity gradients vanish on both sides of the
integration domain. Making use of the resonance condition, after a simple algebra one obtains

d

dt
S(t) = Λvf

−1

(
∂f

∂v

)2

|vres ≥ 0 . (17)

One sees that the time derivative of the entropy is always non-negative, i.e., dS/dt ≥ 0, and is moreover
restricted to the relaxation process of the diffusive type, as it should. Indeed the convective relaxation
does not as a matter of fact contribute to the entropy growth rate and in this case can be considered
adiabatic.
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4. Numerical simulations of broad beam relaxation in cold plasma

In this Section, in support of the theoretical framework introduced above, we discuss numerical
simulation results of the mixed diffusive-convective relaxation of a tenuous broad beam of energetic
particles, whose density nB is much smaller than that of the 1D background plasma (np), which is
considered as a cold linear dielectric medium. In particular, we adopt the Hamiltonian formulation
of the problem described in Ref.[41], where the broad supra-thermal particle beam is discretized as
superposition of n � 1 cold beams self-consistently evolving in the presence of m ≥ n modes nearly
degenerate with Langmuir waves, i.e., with frequency ωkj ' ωp for j = 1, ...,m. This ensures that the
dielectric function of the cold background plasma is nearly vanishing and to cast the Poisson equation
for each plasma oscillation into the form of a simple evolution equation, while particles trajectories are
solved from the equations of motion (2) [6].

In the following, we first briefly summarize the Hamiltonian formulation of the broad beam relaxation
in cold plasma derived in Ref.[41] (Sec.4.1). Then, we introduce the dimensionless parameters that are
used to characterize the different nonlinear dynamic regimes (Sec.4.2), which will be studied numerically
with four different set-ups of initial conditions (Sec.4.3). Numerical simulation results are then presented
and discussed, adopting also a test particle transport analysis to illustrate the mixed diffusive-convective
nature of beam relaxation (Sec.4.4). Finally, we discuss a simple toy-model of diffusion-convection
relaxation to illustrate the important role played by the self-consistent evolution of fluctuation intensity
on the same time scale of beam transport (Sec.4.5).

4.1. The multi beam approach: BoT Hamiltonian formulation

This model is described in Ref. [41], which we refer to for details and discussion of its relationship to
the vast literature on Hamiltonian formulation of the BoT problem. The model consists in the description
of n cold beams self-consistently evolving in the presence ofm ≥ nmodes with ωkj ' ωp. Among these
waves, we select n modes which are resonantly driven by the beams (linearly unstable), i.e., kα = ωp/vα

(where vα are the initial beam velocities and α = 1, ..., n) and m− n linearly stable ones. The nonlinear
evolution of this system, as shown in Ref.[41], is equivalent to a broad beam and m Langmuir waves
for properly chosen initial conditions [52]. More specifically, the n cold beams can be considered as an
initial discretization of the broad beam, when particles are conveniently distributed.

The dynamics of beam electrons is determined by the Newton’s law, while Poisson’s equation give
the the self-consistent mode evolution. The 1D cold plasma equilibrium is taken as a periodic slab of
length L, and the position along the x direction for each beam is labeled by xα. Following Ref.[6], we
assume that single beams consist of Nα particles located at xαi (i.e., x1i, x2i, ..., xni; i = 1, ..., Nα),
so that σαnB is the particle density of the “α”-beam, with σα = Nα/N and N = N1 + .. + Nn the
total particle number. For the sake of convenience, beam particle positions are represented as xαi =

v̄t + ξαi(t), with v̄ = (v1 + .. + vn)/n the initial average beam speed. Meanwhile, the Langmuir wave
scalar potential ϕ(x, t) is expressed in terms of the Fourier components ϕj(kj, t) (with j = 1, ...,m),
yielding the corresponding electric fields Ekj(kj, t) = −ikjϕj(kj, t), consistent with Eq.(2). Finally,
consistent with Ref.[6], the following scaled variables are introduced: `j = (2π/L)−1kj , ξ̄αi = 2πξαi/L,
η̄ = (nB/2np)

1/3, τ = tωpη̄, φj = (ϕj ek
2
j )/(mη̄

2ω2
p), βj =

(
kj v̄/ωp − 1

)
/η̄. Noting that the plasma
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dielectric constant, εp(ωk), is nearly vanishing, and adopting time scale separation between τ evolution
and ω−1

p [6],

εp(ωkj) = 1−
ω2
p

ω2
kj

' 2iη̄
∂

∂τ
. (18)

Noting Eqs.(2) and (18), the system of equation governing the interaction between m Langmuir modes
and n beams finally reads as [41]

ξ̄′′αi =
m∑
j=1

(
i `−1
j φj e

i`j ξ̄αi+iβjτ + c.c.
)
, (19a)

φ′j = ie−iβjτ
n∑

α=1

σα
Nα

Nα∑
i=1

e−i`j ξ̄αi , (19b)

where the prime denotes the derivative with respect to τ . Momentum and energy conservation properties
of Eqs.(19) are discussed in Ref.[41].

In the simulations, each beam has an initial velocity expressed as vα = Θαv1; and we get v̄ = Θv1/n,
with Θ = Θ1 + ... + Θn. As we assume that the first n modes are resonantly driven by the beams
(kα = ωp/vα), one obtains Θα = `1/`α. The initial conditions for the beam nonlinear shifts ξ̄αi are given
random for each beam between 0 and 2π, while the initial velocities are ξ̄′αi(0) = (Θα − Θ/n)/(`1η̄).
Furthermore, the resonance mismatch terms read βj=1,...,m = (Θ`j/n`1 −1)/η̄. Finally, we note that the
broad beam distribution function can be described by a suitable choice of the n beam partial densities
σα. In the following, we solve Eqs.(19) via a Runge-Kutta (fourth order) algorithm and N = 105

total particles. For the considered time scales and for an integration step h = 0.01, both the total
momentum and energy (for the explicit expressions, see [41]) are conserved with relative fluctuations of
about 1.4× 10−5.

4.2. Characterization of the nonlinear dynamic regime

Numerical simulations, discussed here, illustrate different nonlinear dynamic behaviors, which can be
characterized introducing proper dimensionless parameters. In particular, we can introduce the Chirikov
parameter [53] that characterizes the resonance overlap of the fluctuation spectrum as in Eq. (4). For each
of the n cold beams, we can evaluate the corresponding Chirikov parameter Sα for the initial conditions
discussed in the previous subsection and consistent with Eq. (4). Assuming `α+1 = `α + 1� 1, we get
the following scaled expression of the Chirikov parameters

Sα =' `αη̄
√
|φsatα | . (20)

As already stated in the previous Section, for Sα < 1, the beams can be treated as independent, while
resonance overlap occurs for Sα > 1. These two different situations correspond to different transport
processes in the velocity space. The case with Sα . 1 was studied in Ref.[41] with the multi beam
approach adopted here. In the present work, we focus on the Sα > 1 case, when many resonances
are overlapping in the sense that the nonlinear velocity broadening in comparable or greater that the
resonance separation. Our aim, in fact, is to assess the different role of diffusion and convection in
the relaxation of a broad beam, interacting with multiple Langmuir fluctuations in a cold background
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plasma. In particular, one of the main goals of our numerical simulations, presented below, is to clarify
how linear stable modes affect particle transport in the BoT problem and how it depends on the Chirikov
parameter.

As already discussed in Secs. 2 and 3, we remind that large Sα > 1, intuitively, corresponds
to diffusive beam relaxation in velocity space [38,39] and to the typical condition of applicability of
quasi-linear theory [2,3]. However, such a case also requires the fluctuation spectrum be sufficiently
broad; i.e., characterized by a sufficiently large ∆k/k and a correspondingly large ∆v/v, with ∆k =

|km − k1| and ∆v = |vm − v1|. This is because the characteristic scattering time of beam particles with
fluctuations (in the present (η̄ωp)

−1 units)

(η̄ωp)
−1τs '

2π

v∆k
' 2π

k∆v
, (21)

must be sufficiently short compared to the characteristic time, τNL, for fluctuation induced changes of
the beam distribution function to occur. Using quasi-linear theory [2,3], we can estimate τNL with the
quasi-linear diffusion time that, by means of Eq. (11), can be cast as

η̄ωpτ
NL−1
diff ' DQL

(∆v)2
' η̄ωp

4π2

∑
α

ω4
Bατ

3
sα '

η̄ωp
4π2

∑
α

(
ek2

αϕ
sat
α /m

)2
τ 3
sα

' 2πη̄ωp
∑
α

|φsatα |2η̄3`3
α

(
∆`)−3 . (22)

Here, we have denoted the normalized wave-particle trapping frequency, estimated from Eq. (3) for an
isolated resonant mode at saturation, as ωB = (η̄ωp)

−1
(
ek2ϕsat/m

)1/2. Thus, noting that for n resonant
modes (

τs/τ
NL
diff

)
' 4π2n(τs/τB)4 � 1 , (23)

it follows that τs � τB = 2πω−1
B is a necessary but not sufficient condition in order for quasi-linear

theory to be valid and beam relaxation to be diffusive. Meanwhile, adopting the theoretical framework
of Secs. 2 and 3, τNLconv in the convection domain can be estimated from Eqs. (11) and (15) as

η̄ωpτ
NL−1
conv ' DQL

(∆vNL)2
' η̄ωp

∑
α

ω2
Bατsα ' 2πη̄ωp

∑
α

|φsatα |η̄`α
(
∆`)−1 . (24)

Introducing a typical mode number `α and the parameter Q

Q ≡ τB/τs ' `−1
α η̄−1|φsatα |−1/2∆` ' (∆`/Sα)� 1 , (25)

whose reciprocal physically represents the fraction of a trapping time over which a particle is accelerated
by any of the fluctuating fields, we see that larger Sα > 1 corresponds to smaller Q for fixed ∆`. Note
that (

τs/τ
NL
diff

)
' 4π2n/Q4 � 1 , (26)

for quasi-linear theory to be valid. Furthermore,(
τs/τ

NL
conv

)
' 4π2n/Q2 � 1 , (27)
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and τNLdiff /τ
NL
conv ∼ Q2. Clearly, Eq.(26) implies Eqs. (25) and (27), but not vice-versa. In particular,

we note that if Q is not sufficiently large, the nonlinear behavior may be significantly coherent as
consequence of phase space structures. Meanwhile, characteristic time scales of convective and diffusive
relaxation of the particle beam become comparable. In the following, we will discuss four different
cases with varying combinations of Q and S (with S a representative value of Sα), illustrating the mixed
diffusive-convective relaxation of a broad beam.

4.3. Numerical simulation results

We report, here, numerical simulation results with n = 50 beams for 4 distinct cases, which differ
for the number of modes m and for the magnitude of the relevant Chirikov parameters: (i) S ' 2 and
m = n = 50 (only resonant modes); (ii) S ' 2 and m = 120 (50 resonant modes and 70 linearly
stable modes); (iii) S ' 15 and m = n = 50; (iv) S ' 15 and m = 120. The initial values of the
modes are set with random phases ψj and with random amplitude of O(10−2) for the resonant (linearly
unstable) n modes, while the random amplitude of non-resonant (linearly stable) modes is of O(10−3).
The initial densities of the beams, i.e., the σα values (α = 1, ..., n), are assumed Gaussian distributed in
the velocity space as depicted in FIG.1 (left-hand panel), where we also plot the initial phase space for
the cases (i), (ii) (central panel) and (iii), (vi) (right-hand panel). Cases (i), (ii) are chosen to illustrate the
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Figure 1. Left-hand panel: densities of the beams (σα) as a function of the beam index
α = 1, ..., n. Initial (τ = 0) phase space (ξ̄, ξ̄′) for the cases (i), (ii) (central panel) and (iii),
(vi) (right-hand panel): each point corresponds to a single charge sheet and different colors
denote different beams.

mixed diffusive-convective character of a broad beam under the effect of a broad fluctuation spectrum.
In fact, case (i) has Q ' 30; thus, we expect that the addition of non-resonant modes in case (i) may
change the beam relaxation quantitatively but not qualitatively. Meanwhile, cases (iii), (iv) are selected to
show the possible crucial qualitative effect of including the stable part of the fluctuation spectrum. More
precisely, Q ' 3.6 in case (iii) and, thus, significant coherent behavior can be expected; while in case
(iv), the inclusion of stable modes more than doubles the spectrum width, restoring the time asymptotic
diffusive behavior. Let us now analyze separately these 4 distinct cases, discussing their features and the
different underlying physics processes.

Case (i) : S ' 2 and 376 ≤ `res ≤ 425. In this case, the mode evolution and the corresponding
particle velocity distribution function, for sufficiently large time, are consistent with the quasi-linear
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model prediction. In the left panel of FIG.2, we can observe the saturation of each spectral component,
while the other two panels show the intensity spectrum at different times; with a peak structure shifting
towards large `, consistent with total energy conservation. This suggests, at least in the initial phase
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Figure 2. Case (i). Left-hand panel: temporal evolution of the mode amplitude |φj|;
colors are fixed from blue (largest `) to red (smallest `), and time-asymptotic dominant
wave-numbers are indicated. Central and right-hand panels: intensity spectrum at different
times.

of the evolution, the presence of a convection (drag) in velocity space, reflecting the effect of coherent
structures. Time asymptotically, FIG.3 shows how the velocity distribution function evolves towards
a plateau, consistent with quasi-linear diffusion. In other words, the dominant diffusion process is
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Figure 3. Case (i). Evolution of the velocity distribution function f(ξ̄′) (in arbitrary units),
shown at different times.

due to particles interacting with multiple modes with random phases. It is also worth observing how
the coarse-grained features of this distribution function are consistent with the results obtained in [52].
Moreover, in that work, the energy spectrum is shown to have irregularities associated with significant
jumps in the particle velocities, characterized by Gaussian distribution. Similar irregularities can also
be observed in our energy spectrum and, therefore, we can conclude that they do not depend on the
morphology of the initial fields phase (in [52], the initial phases are not taken as random).

In this case, we get the following estimations: τs = 0.5, τNLdiff ' 113 and Q ' 30 (τB ' 16). This is
consistent with the broad character of the considered spectrum and condition (26) is properly satisfied.
Thus, we can conclude that case (i), time asymptotically, can be described by the well known quasi-linear
approximation.

Case (ii) : S ' 2 and 366 < ` < 376 ≤ `res ≤ 425 < ` < 485. In this case, which is the
same as case (i) but with linear stable modes included, we see in FIG.4 how the fluctuation spectrum
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is effectively broadened and the behavior of the saturated modes is significantly different from that of
isolated resonant modes. A significant convection (drag) in velocity space is associated with the energy
transfer from fast particles to the initially linear stable modes. The presence of well-marked peaks in
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Figure 4. Case (ii). Left-hand panel: temporal evolution of |φj|. Central and right-hand
panels: intensity spectrum at different times.
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Figure 5. Case (ii). Evolution of the velocity distribution function.

the intensity spectrum is limited to a maximum `-value, beyond which energy transfer to new modes
is almost suppressed and the saturation level of the excited modes is decreasing. The reason for such
behavior must is due to a progressive decrease of resonant particle population. The velocity distribution
function (see FIG.5) behaves similarly to the previous case, with density flattening followed by a uniform
plateau formation. However, with respect to case (i), the velocity broadening of the distribution function
is more extended as a consequence of stable modes.

Case (iii) : S ' 15 and 476 ≤ `res ≤ 525. This case, when the Chirikov parameter is significantly
greater then one and without the inclusion of linear stable modes, is characterized by Q ' 3.6 (τs =

4.5, τB ' 16). The spectrum, thus, is not broad and it is expected that the quasi-linear paradigm
is not appropriate in this case. In fact, in FIG.6 we can observe a morphology of mode saturation
typical of isolated resonances and the intensity spectrum is characterized by a single dominant peak,
which is progressively shifted up to the largest `-value in the simulation domain. Such behavior of
the fluctuation spectrum is clearly reflected by the velocity distribution function in FIG.7: after initial
density flattening, the particle distribution function shows coherent behavior related to structures due to
wave-particle trapping. In this scenario, a uniform plateau is never formed and the asymptotic evolution
resembles that of an isolated resonance more than the typical morphology of the quasi-linear paradigm.
The explanation for such behavior, again, is due to the fact that we are not dealing, in the present case,

with a broad spectrum morphology. In fact, the ratio between the Chirikov parameter and the number
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Figure 6. Case (iii). Left-hand panel: temporal evolution of |φj|. Central and right-hand
panels: intensity spectrum at different times.
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Figure 7. Case (iii). Evolution of the velocity distribution function.

of overlapping resonances is of order unity. Thus, a given particle feels the effect of many modes
acting as a nearly periodic spectrum. Furthermore, considering the contribution of all particles near
a given resonance condition, modes instantaneously transferring their energy to particles are damped,
while those receiving energy are amplified. Thus, there exists a mechanism able to create and enforce
wave-particle phase synchronization. This is the reason why, in this case, the formation of a plateau in
the velocity distribution function is suppressed.

Case (iv) : S ' 15 and 466 < ` < 476 ≤ `res ≤ 525 < ` < 585. The conjecture described for
case (iii) is clearly confirmed in this case, in which the ratio between the Chirikov parameter and the
resonant beams is still of order unity, but now the presence of linearly stable modes is included in the
evolution. As main effect, see FIG.8, a broadening of the intensity spectrum is clearly observable and,
overall, the plateau in the particle distribution function is restored at sufficiently large times (see FIG.9).
Indeed, the linearly stable modes, once excited by the nonlinear velocity spread (due to both convective
and diffusive transport), reproduce a broad spectrum, significantly enhancing the effective Q value in
the system. This analysis illuminates the relevance that linear stable modes have in determining the
evolution of intensity spectrum and particle distribution function.

4.4. Test particle transport

To illustrate the mixed diffusive-convective character of the broad beam relaxation process, we have
carried out test particle transport analyses of the simulation results discussed in the previous section. In
particular, we analyze the time behavior of velocity fluctuations. For a given simulation, we extract the
self-consistent potential fields and we monitor the evolution of a set of test particles (1000) evolving
under the influence of those fields. The tracers are initialized to represent one single cold beam, among
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Figure 8. Case (iv). Left-hand panel: temporal evolution of |φj|. Central and right-hand
panels: intensity spectrum at different times.
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Figure 9. Case (iv). Evolution of the velocity distribution function.

those of which the broad beam initially consists. For a single initial condition (i.e., by setting all the
test-particle initial velocities equal to ξ̄′αi(0)), we plot the mean square path as function of time:

〈δξ̄′2
α 〉 ≡ 〈[ξ̄′(τ)− 〈ξ̄′(τ)〉]2〉 , (28)

where the average 〈...〉 is taken over the tracers. When 〈δξ̄′2
α 〉 shows a linear behavior in τ , we can

speak of diffusive transport. This analysis is, in general, non trivial, because 〈δξ̄′2〉 is characterized by
complicated nonlinear time evolution when tracers are significantly displaced in velocity space (for an
in-depth analysis of this problem, see Ref. [52]).

Nonetheless, limiting our attention to specific class of tracers and appropriate time intervals, in cases
(i) and (ii) we can clearly identify a diffusion phase of the evolution, see FIG.10. There, we show
the behavior of 〈δξ̄′2

α 〉 for tracers of the beam α = 33 (left panel refers to case (i), while right panel
to case (ii)). The existence of a well traced linear behavior of 〈δξ̄′2

α 〉, i.e., a net diffusion feature, is
clearly recognizable at least for intermediate times. It is worth noting that the presence of linear stable
modes (case (ii)) does not significantly affect the diffusion process since the corresponding coefficients
are very close in the two cases. In this respect, it is interesting to compare the present study with the
analysis in Ref.[40], where it is shown that the self-consistency of the model is broken when the plateau
is sufficiently broad. Such a study demonstrates that the ratio between the obtained diffusion coefficient
to the quasi-linear one can take a wide range of values, depending on the spectral morphology and initial
beam profile. However, this ratio tends to unity when the random phase approximation is assumed. This
is consistent with our findings in FIG.10, showing a slight decreases diffusion coefficient for the broader
fluctuation spectrum case, including non-resonant modes.

In order to demonstrate convection in the velocity space in addition to diffusion, in FIG.11 we plot the
quantities

√
〈δξ̄′233〉 (blue line) and 〈ξ̄′33 − ξ̄′33(0)〉 (red line) for the same set of tracers considered above

(left panel refers to case (i), while right panel to case (ii)). The two processes are of the same order of
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Figure 10. Temporal evolution of 〈δξ̄′233〉(τ) for test particles initialized at ξ̄′33i(0) (near the
central beam): in the left-hand panel for the case (i) and in the right-hand panel for case (ii).
The linear (diffusive) time behavior is evident.

magnitude; and we stress how convection is enhanced in the presence of linear stable modes. This can
be interpreted as a more efficient drag in the velocity space, due to the positive power exchange between
linear stable modes and particles. In other words, particles can decrease their energy by exciting new
modes and, thus, explore (on average) a wider velocity range.
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Figure 11. Overlap of the temporal evolution of
√
〈δξ̄′233〉 (blue line) and 〈ξ̄′33− ξ̄′33(0)〉 (red

line), for test particles initialized at ξ̄′33i(0). Case (i) in the left-hand panel and case (ii) in the
right-hand panel.

Let us now repeat this analysis for cases (iii) and (iv), corresponding to a “nearly periodic” spectrum
in the presence or absence of linear stable modes, respectively. For these cases, we consider tracers
representing beam α = 50, because it is the directly influenced by the stable spectrum. We see in FIG.12
how the case (iii) (left-hand panel) does not suggest a diffusive process. This is clearly due to the coherent
structures even in the late time evolution of the system, which introduce a strong dependence of transport
on velocity and time. As soon as linear stable modes are accounted for (case (iv), right-hand panel), an
almost linear behavior of 〈δξ̄′250〉 is recovered in the early evolution of the system (10 . τ . 20).
The physics underling these two cases is better elucidated when analyzing the behaviors in FIG.13. In
case (iii) (left-hand panel), the existence of a significant number of trapped tracers strongly reduces the
convection phenomenon in the velocity space. The latter is instead restored to the order of magnitude of√
〈δξ̄′250〉when stable mode are accounted for. Consistent with the analysis of the previous subsection, all

these considerations suggest that the stable part of the spectrum is crucial for diffusion and convection
phenomena, in contrast to the coherent structure morphology of case (iii).

4.5. A toy-model of diffusion-convection relaxation
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Figure 12. Time evolution of of 〈δξ̄′250〉(τ) for tracers initialized at ξ̄′50i(0): in the left-hand
panel for the case (iii) and in the right-hand panel for case (iv).
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Figure 13. Overlap of the evolution of
√
〈δξ̄′250〉 (blue line) and 〈ξ̄′ − ξ̄′50(0)〉 (red line),

for test particles initialized at ξ̄′50i(0). Case (iii) in the left-hand panel and case (iv) in the
right-hand panel.

Theoretical analyses of Secs. 2 and 3, and numerical simulation results of Sec.4 show that, when S >
1, the relaxation of a broad beam in cold plasma can be due to both diffusion and convection processes.
The value of Q, meanwhile, controlled by the width of the fluctuation spectrum, can determine whether
coherent periodic behaviors are to be expected, as reflection of wave-particle trapping in a narrow (nearly
periodic) spectrum. As the nonlinearity parameter K ' S/Q ' S2/∆`, from Eqs. (4) and (5), one may
conclude that the convective relaxation discussed in Secs. 2 and 3 is relatively unimportant in case (i)
and/or (ii), where K < 1. Here, we show that, even in this “standard” weak-turbulence limit, significant
non-diffusive behavior can be expected, consistent with our numerical simulation results. In order to
illustrate this, we derive a toy-model of diffusion-convection under the assumption that the spectrum be
sufficiently broad, i.e., that Q� 1 as well as S > 1 (the case (i) and/or (ii) previously treated).

The goal is to capture the self-consistent evolution of fluctuation spectrum and beam distribution
function. Thus, the first model equation should render Eq.(1), that is the destabilization of Langmuir
waves by the beam particles; while the second one must reflect the nonlinear beam relaxation due to
“weak” turbulence as described in Eq.(11). Thus, we can write

∂τE = E∂ξ̄′G0 ,

∂τG0 = ∂ξ̄′
(
E∂ξ̄′G0

)
, (29)

where the dimensionless function E is connected with the fluctuation intensity and G0 with the k = 0

Fourier component of the beam distribution function, f0. This model can be properly derived from the
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Vlasov-Poisson system, as represented in the Fourier space under the assumptions above. By inspection
of Eqs.(29) and comparison with Eqs.(1) and (11), it is possible to show

E(ξ̄′, τ) = 2πη̄
m

`0∆`
|φ(k, τ)|2

∣∣∣∣
k=(2π`0/L)(1−η̄`0ξ̄′)

, (30)

G0(ξ̄′, τ) =
η̄

`2
0

ωpL
f0(v, τ)

nB

∣∣∣∣
v=(ωpL/2π`0)(1+η̄`0ξ̄′)

, (31)

where we recall thatm is the number of modes in the Langmuir fluctuation spectrum and `0 the reference
(central) mode number. By direct substitution, it is readily verified that Eqs.(29) admit the solution

G0(ξ̄′, τ) = Ḡ0(ξ̄′) + ∂ξ̄′E(ξ̄′, τ) , (32)

with E(ξ̄′, τ) satisfying
∂τE = E∂ξ̄′Ḡ0 + E∂2

ξ̄′E . (33)

Here, Ḡ0(ξ̄′) represents the initial beam distribution function and the source of instability.
To illustrate the ability of Eqs.(29) to capture essential features of the broad beam relaxation for

Q � 1 as well as S > 1, we solve Eq.(33) numerically and compare E(ξ̄′, τ) and G0(ξ̄′, τ), obtained
from Eq. (32), with the numerical simulation results for case (i) discussed in FIG.2 and FIG.3. The initial

-0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ’

@a
rb

.u
ni

ts
D

Τ=5

-0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ’

@a
rb

.u
ni

ts
D

Τ=12

-0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ’

@a
rb

.u
ni

ts
D

Τ=18

-0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ’

@a
rb

.u
ni

ts
D

Τ=50

Figure 14. Evolution of the velocity distribution function G0 (blue filled line) and the
spectral density E (red line) as a function of the normalized velocity ξ̄′ at different stages of
the evolution of FIG.3.

conditions for Ḡ0(ξ̄′) are given in order to properly represent the Gaussian distribution of the simulation
(see FIG.1) and, for convenience, we also assign a Gaussian E(ξ̄′, 0) profile resembling the initial mode
amplitude. The behavior of E (red line) and G0 (blue filled line) for different time steps is shown in
FIG.14, well reproducing both the early stages of evolution and the plateau formation at later τ .

Note that E(ξ̄′, τ) represents the intensity spectrum evolution discussed in Sec. 4.3 and plays the role
of an “effective diffusion coefficient”. In this respect, we can compare, for fixed times, the behavior of
E and the normalized spectrum evaluated from the right-hand side of Eq.(30) with the simulation results
for |φ(k, τ)|. This is shown in FIG.15 for τ = 50, comparing the numerical solution of Eq.(33) and the
value of E from Eq.(30) evaluated by substituting a smoothed profile of the simulated spectrum of case
(i). There is a good agreement between numerical simulation results and the toy-model proposed here.

One interesting implication of Eqs.(29) is to illustrate how non-diffusive behavior may arise in such
a system, and how this is a consequence of the self-consistent evolution of fluctuation intensity on the
same time scale of particle transport. The crucial role of fastest growing modes was already pointed out
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Figure 15. Plot of E numerically estimated from Eq.(30) (blue line) and the theoretical
values of E calculated from Eq.(33) (red line), versus the normalized velocity ξ̄′ at a fixed
time τ = 40.

is Sec. 3, since such fluctuations play a key role in the nonlinear evolution. Fastest growing modes are
resonant near an inflection point of G0, in the neighborhood of which Eqs.(29) can be cast as

∂τG0 ' ∂ξ̄′E∂ξ̄′G0 '
(
G0 − Ḡ0

)
∂ξ̄′G0 . (34)

After sufficiently long time that the inflection point of G0 has evolved to a region where the initial beam
distribution Ḡ0(ξ̄′) is sufficiently small, Eq.(34) can be cast as the inviscid Burgers equation [54]. This
has the formal solution G0 = G0

(
Ξ(ξ̄′, τ)

)
, with Ξ(ξ̄′, τ) obtained from

ξ̄′ = Ξ− τG0(Ξ) ; (35)

and it is known to generate a propagating shock solution, which is visible in the plateau formation at
lower speed in the rightmost panel of FIG.14. It is also worthwhile noting that, away from the Ḡ0(ξ̄′)

localization region, Eq. (33) for E ≡ expW reduces to the heat equation with exponential nonlinearity
[55]

∂τW = ∂ξ̄′Ḡ0 + ∂ξ̄′
(
eW∂ξ̄′W

)
. (36)

5. Conclusions and Discussions

In this work, we analyzed the relaxation of a broad supra-thermal particle beam in a cold
one-dimensional collisionless plasma, modeled as a linear dielectric medium. In particular, we show
that such a relaxation process must be characterized by convection and diffusion in the velocity
space, when the Chirikov parameter is larger than one. We adopt the Hamiltonian formulation of
the problem described in Ref. [41], where the broad supra-thermal particle beam is discretized as
superposition of n � 1 cold beams self-consistently evolving in the presence of m ≥ n modes
nearly degenerate with Langmuir waves. Essential element of this analysis is the crucial role played by
wave-particle nonlinearity in determining the non-diffusive feature of supra-thermal particle transport,
which self-consistently evolves with the fluctuation intensity spectrum. Thus, parameters other than
Chirikov play important roles, such as the ratio of wave-particle trapping time to the scattering time
(which is related with the ratio of wave-number spectrum width to the Chirikov parameter), and the
nonlinearity parameter, straightforwardly related to the former two.
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A detailed theoretical analysis for sufficiently large nonlinearity parameter has shown how the
convective relaxation of large-amplitude or strongly shaped beams is meso-scale; in that it has limited
duration in time and is always followed by a long-time, diffusive relaxation of the quasi-linear type.
The quasi-linear relaxation is, therefore, asymptotic (t → +∞), while the convective relaxation
is not. It represents, nevertheless, the initial, “violent” relaxation phase for a “broad” beam in a
plasma and is driven by excessively large free-energy reservoir associated with this type relaxation
problem. Mathematically, the relaxation problem for broad beams is described by a self-consistent
system of coupled nonlinear differential equations, Eqs.(13) and (14), which generalize their quasi-linear
relatives by directly taking into account the amplification of the resonance domain through the nonlinear
interaction and the communication among the beams.

We carried out numerical simulations of broad supra-thermal particle beam relaxation changing
parameters controlling particle transport and the nonlinear dynamic regime. In particular, we have
chosen two cases, respectively (i) and (iii), characterized by a “broad” and a “nearly periodic” (“narrow”)
fluctuation spectrum consisting of linearly unstable modes only; and the two corresponding cases,
respectively (ii) and (iv), where modes of the linear stable spectrum have been accounted for as well.
These show show the crucial role played by the linear stable spectrum for transport phenomena, which
are characterized by both diffusive and convective processes, as demonstrated by test particle transport
analyses.

Numerical simulation results for the “narrow” spectrum exhibit the coherent behavior of spectrum
intensity and particle distribution function typical of persistent phase space structures due to wave
particle trapping, which suppress convective transport. The plateau in the particle distribution function,
in this case, is not formed, unless modes of the linear stable spectrum are accounted for, which not
only enhance diffusion but convection as well, because of enhanced detrapping rate and drag in velocity
space.

Numerical simulation results for the “broad” spectrum cases, meanwhile, show that a plateau
in the distribution function is always formed time asymptotically. Controlling the wave-number
spectrum width by including or not the modes of the linear stable spectrum yields behaviors of the
diffusion coefficient that are consistent with earlier analyses by Escande et al. [38–40]. Further to
this, convective transport is observed even for small nonlinearity parameter. This persistent mixed
diffusion-convection relaxation is due to the self-consistent evolution of fluctuation intensity on the same
time scale of particle transport, as demonstrated by an analytical toy-model, whose solution is in good
qualitative and quantitative agreement with numerical simulations. This toy-model provides a valuable
tool, allowing the identification of respective roles of convection and diffusion in the velocity space
relaxation; in particular, elucidating how convection processes are not negligible during the relaxation of
a bump-on-tail initial profile, especially during the meso-time-scales.

In conclusion, the present study provides understanding and insights into the mixed
diffusion-convection relaxation of a broad beam in a cold one-dimensional plasma in the presence of
weak Langmuir turbulence. In particular, crucial roles are played by wave-particle nonlinearity and the
self-consistent evolution of particle distribution function with the fluctuation intensity spectrum. These
results are of general interest as well as practical importance, in the light of their possible implications
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as paradigm for Alfvénic fluctuation-induced supra-thermal particle transport in fusion plasmas near
marginal stability.
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