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The Crossed Beam Energy Transfer (CBET) of two large laser beams is modeled using two approaches:
(i) based on time-independent Paraxial Complex Geometrical Optics (PCGO) for stochastically distributed
Gaussian-shaped beamlets, and (ii) based on time-dependent conventional paraxial propagation of smoothed
laser beams. Each description of the laser beam propagation is coupled to an hydrodynamics code. Both
approaches are compared in a well-defined plasma configuration, with density- and velocity- profiles corre-
sponding to an inhomogeneous plasma, including a resonance zone in which the matching conditions for a
resonant coupling between the two laser beams are fulfilled. The comparison is made either for laser beams
smoothed by a random phase plate (RPP) or for ‘regular beams’ without laser speckles and of the same size.
In general, a very good agreement is found between the PCGO simulations and the fully time-dependent
paraxial-type simulations carried out with the code Harmony. The role of the laser speckles in the case of
smoothed laser beams is also investigated for each approach. The comparison shows that the code based on
the PCGO approach correctly describes the CBET in situations where a resonant energy exchange occurs,
past a transient period on the picosecond time scale. The PCGO-based CBET model is applied to the hydro-
dynamic simulation of a CBET experiment. The results are in overall good agreement with the experimental
data. The conclusions presented in this paper are promising for the numerical modeling of the laser beams
propagation in a complex geometry and for large cm-size plasma volumes.

I. INTRODUCTION

Laser-Plasma Interaction (LPI) is subject to numerous
nonlinear couplings between the electromagnetic (EM)
and the plasma waves1–3. Among these couplings, the
overlap of several laser waves in the plasma produces
ponderomotive beatings able to drive Ion Acoustic Waves
(IAWs), and the latter can lead to an energy exchange
between the incident laser waves. This process of Stim-
ulated Brillouin Scattering (SBS), also referred to as
Cross-Beam Energy Transfer (CBET), is notably impor-
tant in Inertial Confinement Fusion (ICF). Early theoret-
ical work4 showed that resonantly excited IAWs can be
driven in the baseline National Ignition Facility (NIF)5
configuration, and CBET is now used to tune the sym-
metry irradiation in the ICF indirect drive on the NIF6.
Direct-drive configurations have also been found to be
subject to the CBET instability7,8, affecting both the
symmetry of implosion and the laser-target coupling.
The processes at play in the CBET occur on a wide
range of spatial and temporal scales. Typical plasmas
in the ICF-related experiments have millimeter length
scales and evolve on the nanosecond time scale. They
are studied by means of radiative hydrodynamic codes.
Thus, an efficient modeling of the CBET must be added
to the hydrodynamic codes in order to design LPI exper-
iments and to improve our understanding of the laser-
plasma coupling,

The laser-plasma interaction in ICF hydrodynamic

codes used for the design and the interpretation of ab-
lation and implosion experiments rely on Ray-Tracing
models (RT)9. The propagation and interaction of laser
beams in plasma are modeled by bundles of needle-like
rays characterized by a power density and following the
geometrical optics (GO) laws and characterized by a
power. The RT models are rather well suited to com-
pute the inverse Bremsstrahlung energy deposition, but
the modeling of the nonlinear laser-plasma interaction
requires the knowledge of quantities such as the inten-
sity and the direction of propagation of the laser beams,
which are not available in standard RT packages. Inline
models of CBET in Ray-Tracing based hydro-codes have
been successfully implemented7,8,10, although they re-
quire particular numerical methods and parameters, such
as sub-time step iterations, local mesh refinement, CBET
gain limitation, IAW amplitude limitation, and beam in-
tensity renormalization to conserve energy. These diffi-
culties arise from the fact that the laser beam intensity,
direction and width are merely estimated on the basis of
the inverse Bremsstrahlung absorption predicted by the
Geometrical Optics (GO) rays. These difficulties are then
essentially due to the errors on the computed laser inten-
sities near the caustics, the loss of accuracy in the low
density regions, and the dependence of the results with
regards to the Lagrangian hydrodynamic mesh resolu-
tion, the topology of the latter depending on the plasma
flows and not on the laser field gradients.

The ray-based Paraxial Complex Geometrical Optics
(PCGO)11 (see12 for a review) is an alternate method
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for describing scalar wave fields. This method has been
adapted to the propagation of laser beams in collisional
plasmas and implemented in the radiative hydrodynamic
code Chic13,14. The optically smoothed laser beams used
in ICF, generated via phase plates and characterized
by speckle patterns, can indeed be modeled by PCGO
beamlets15 so as to reproduce the relevant laser beam
speckle intensity statistics. For clarity, we underline here
the semantic distinction made in this paper: (i) the “laser
beams” refer to the whole large laser beams, of which
we compute the space-time evolutions, and (ii) the so-
called “beamlets” are the elementary PCGO sub-elements
used to compute the evolution of the laser beams; these
beamlets are characterized by a Gaussian transverse in-
tensity profile. The width and curvature radius of these
beamlets depend on the plasma density gradients, and
the PCGO method describes their propagation, refrac-
tion and diffraction.

In comparison with other methods to model a laser
beam propagation, the ray-based Paraxial Complex Ge-
ometrical Optics greatly simplifies the numerical efforts
to describe the Cross Beam Energy Transfer, because the
key quantities for the computation of the steady-state
power transfer16 are readily known. Each intersection
between pairs of beamlets is treated as a steady-state
CBET occurring in a localized zone of plasma, with well-
defined parameters interpolated at the coordinate of the
beamlets centroids intersection. In this framework, the
power transfer between the Gaussian beamlets can be de-
termined either analytically or, at least, by means of a
rapidly converging numerical integration over a limited
zone15,16. Each laser beam is modeled by a great num-
ber of beamlets (typically less or equal to the number of
speckles in the cross section of the beam) so that numer-
ous beamlet-to-beamlet intersections reproduce the Cross
Beam Energy Transfer between the large laser beams.
This approach can be considered to be a method of dis-
cretization in space of the large domain where the laser
beams interact between themselves, thus accounting for
the spatial variation of plasma parameters in the interac-
tion region. This model is implemented inline and with-
out sub-timestep iterations. It takes into account the
plasma inhomogeneity and is implemented in a way such
that energy is naturally conserved.

Although being of great interest for the modeling of
ICF implosions with realistic laser beams15, the compar-
ison of the numerical results for modeling CBET either
with a time-resolved full scale paraxial electromagnetic
code or with a code based on PCGO was still lacking to
benchmark the validity of the latter approach.

We present in the present paper a study of the
widespread CBET configuration in which the energy
transfer takes place between two large laser beams inter-
acting in a homogeneous or an inhomogeneous plasma. In
order to check the validity and the accuracy of the PCGO
method to model CBET, we carry out comparisons be-
tween the numerical results obtained with this method,
with the results provided by the paraxial electromagnetic

code Harmony17–19. In the latter, the laser plasma cou-
pling is based on time-dependent paraxial wave solvers
for the electromagnetic waves embedded in a nonlinear
hydrodynamics code describing together the plasma ex-
pansion and the plasma waves on the acoustic time scale.

The inhomogeneous plasma considered in the present
article corresponds to configurations which can be found
in indirect- and in direct-drive ICF schemes, in which the
dependence of the plasma flow velocity with regards to
the spatial coordinates is predominantly linear. Since the
three-wave resonance conditions for Stimulated Brillouin
Scattering (SBS) are only weakly affected by the density
variations, the frequency mismatch in these SBS reso-
nance conditions is essentially due to the inhomogeneity
of the plasma flow.

The paper is organized as follows: in Sec. II, we
present the analytical framework to model the resonant
laser flux exchange associated with a SBS gain in an inho-
mogeneous plasma. Two cases are considered: (i) where
the average intensity of the first laser beam (a pump)
is many times greater than the average intensity of the
second beam, and (ii) where both beams enter the inter-
action region with similar average intensities. The defini-
tions of the interaction regimes and of the corresponding
spatial gains in the cases of homogeneous and of inho-
mogeneous plasmas are essential for the understanding
of the energy transfer between the beams. These vari-
ous notions are presented in Sec. III. In Sec. IV, we
study the energy transfer between two crossing beams; we
present the comparison between the results of the sim-
ulations carried out with the PCGO method, with the
simulations results obtained with the code Harmony in
two spatial dimensions (2D). The configurations studied
in this section IV are essentially similar to the configura-
tions presented in Sec. II. However, in addition to these
configurations, we also study the case of laser beams with
and without speckles patterns. In Sec. V, we finally com-
pare our numerical data and their interpretation to the
results of a reference experiment carried out on the Nova
laser facility20 .

II. STEADY-STATE FORMULATION OF CBET IN AN
EXPANDING PLASMA

A. General framework

We consider the energy transfer between two electro-
magnetic (EM) waves propagating in a plasma. The
waves exchange energy through their scattering on the
electron density perturbations of the ion acoustic wave
(IAW) excited by the two EM waves crossing. This en-
ergy exchange is the most efficient in the resonant case
when the beat frequency ωbeat ≡ ω1 − ω2 of the two
laser waves is equal to the local IAW frequency, de-
noted as ωIAW, of the ion acoustic wave of wave-vector
ks = kbeat ≡ k1 − k2, k1 and k2 denoting the wave-
numbers of the incident laser waves 1 and 2. This mech-
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anism corresponds to the process of Stimulated Brillouin
Scattering: the two EM waves, intersect each other at an
angle denoted as θ, exciting the IAWwith the wave vector
ks. The frequency of this IAW is given, in the expanding
plasma, by ωIAW(ks) = ωs + ks.Vp, where ωs = ωs(ks)
denotes the frequency, in a non-moving plasma, of the
IAW with wave-number ks; ωs(ks) is a function of ks
only, namely ωs(ks) = ωs(ks) with ks ≡ |ks|. ωs is given
by ω2

s ≡ k2
sC

2
s , with C2

s ≡ [C2
se/(1 + k2

sλ
2
De)] + 3v2

thi,λDe
denoting the electron Debye length. Cse denotes the
quantity Cse ≡ (ZTe/mi)

1/2 with the usual notations
for which Z, mi and Te denote the ion charge number,
the ion mass, and the electron temperature, respectively;
vthi denotes the ion thermal velocity vthi ≡ (Ti/mi)

1/2,
Ti being the ion temperature. The beating of the two
laser waves is resonant with the IAW of wave-number ks
if the resonance condition ωbeat = ωIAW(ks) is satisfied,
i.e. if the condition ω1−ω2 = ωs(ks)+ks.Vp is fulfilled.
It is consequently convenient to introduce the quantity

δωmis ≡ ω1 − ω2 − ks.Vp − ωs(ks)

so that the resonance condition reads δωmis = 0. In the
particular case of equal laser frequencies, ω1 = ω2, the
resonance condition becomes simply ωs(ks) = −ks.Vp .

Without any loss of generality, we may assume the
following inequality ω1 − k1.Vp > ω2 − k2.Vp, so that
the wave labeled as 1 will henceforth be referred to as
the pump beam. The wave 2 will then be referred to as
the probe beam.

With these notations, the coupled equations describ-
ing the evolution of the waves amplitudes in the slowly-
varying envelope approximation read21:

(∂t + ν1 + Vg1.∇)a1 = −i ω
2
pe

2ω1

(
δn

n

)
a2 , (1)

(∂t + ν2 + Vg2.∇)a2 = −i ω
2
pe

2ω2

(
δn∗

n

)
a1 . (2)

The electric fields Ew1 and Ew2 of the waves 1 and 2
have been decomposed as Ew1 = E1 exp−i(ω1t− k1.x)+
C.C. and Ew2 = E2 exp−i(ω1t− k2.x) + C.C.. Vgi =
c2ki/ωi and νi denote the group velocity and the damp-
ing rate of wave i, respectively; the quantities ai are the
normalized electric field amplitudes ai ≡ vosci/vthe with
vosci ≡ qeEi/(meωi), for i = 1, 2, vthe denoting the elec-
tron thermal velocity.

The ponderomotive force due to the two laser
waves induce a low frequency density modulation, de-
noted as δns, which can be decomposed as δns =
δn exp−i(ωbeatt− ks.x)+C.C., so that δn is the compo-
nent of the density modification which is at the frequency
ωbeat = ω1 − ω2 and wave-number ks.

The linearized ponderomotive modification of the
plasma density due to the beating of the two laser waves
can be easily computed by Fourier transforming the lin-
earized fluid equations and by imposing ω = ωbeat −
ks.Vp, and k = ks, where ω and k denote the Fourier
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Figure 1. Schematic representation of the Cross Beam Energy
Transfer configuration such as considered in the article. The
higher frequency beam 1 propagates along the ξ axis and the
lower frequency beam 2 along the η axis. The plasma param-
eters, density, temperature, velocity, are a priori arbitrary in
the interaction region.

variables. By doing so, and by including the IAW damp-
ing rate νs, one obtains the following relation[

(ωbeat − ks.Vp)
2 + 2iωsνs − ω2

s

](δn
n

)
= Sks ,

with

Sks = Γsa1a
∗
2 ≡

k2
sC

2
se

(1 + k2
sλ

2
D)2

a1a
∗
2,

n denoting the local plasma density, Γs is a convenient
notation for the quantity Γs ≡ k2

sC
2
se/(1 + k2

sλ
2
De)

2. In-
serting the expression of δn/n in the set of equations (2),
one obtains

(∂t + 2ν1 + Vg1.∇)|a1|2 = +
ω2
pe

ω1
Γs=

(
1

Ds

)
|a1|2|a2|2 ,

(∂t +2ν2 + Vg2.∇)|a2|2 = −ω
2
pe

ω2
Γs=

(
1

Ds

)
|a1|2|a2|2 ,

(3)

with =(1/Ds) standing for the imaginary part of 1/Ds,
where the function Ds = (ωbeat − ks.Vp)

2 + 2iωsνs − ω2
s

appearing in the denominator quantifies the resonance
between the laser waves beating and the ion acoustic
wave. In the following, for simplicity, we will restrict
ourselves to the s-polarization for the EM waves, so that
the vectors of the electric fields associated with a1 and
a2 are both perpendicular to the plane defined by the
vectors {k1,k2}.

At this stage it is interesting to make contact with the
Stimulated Brillouin Scattering (SBS) instability in the
regime of strongly damped IAW. We first introduce a new
coordinate system along the respective wave propagation
directions ξ and η with k1 = k1eξ and k2 = k2eη, as
illustrated in Fig. 1. The unit vectors eξ and eη are
separated by the angle θ so that the coordinate system
is generally non-orthogonal (except for θ = π/2). We
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then normalize the intensities |ai|2 to the pump wave
entrance intensity by setting |ai|2 = 〈|a1|2in〉 Ii, in which
〈|a1|2in〉 denotes the average intensity value of the pump
beam 1 taken at the left hand side entry (with respect to
the coordinate η) of the interaction region.

The value of the pump beam (wave 1) normalized in-
put intensity 〈|a1|2in〉 at its entrance in the domain of the
interaction region reads

〈|a1|2in〉 =
〈v2

osc,1〉
v2
T,e

=
9.34× 10−3

N1Te,keV

I1λ
2
1

1014Wµm2/cm2
, (4)

where N1 =(1−ω2
p/ω

2
1)1/2 denotes the plasma refractive

index seen by wave 1, the latter being characterized by its
vacuum wave length λ1 = 2πc/ω1. Assuming a small dif-
ference between the frequencies ω1 and ω2 in the expres-
sion of the coupling coefficients, namely ω1−ω2 � ω1, ω2,
so that ω2 can be replaced by ω1, the equations (5) take
the following form

(∂t + 2ν1 + Vg1∂ξ)I1 = −2(γ2
0/νs) R I1I2 ,

(∂t +2ν2 + Vg2∂η)I2 = +2(γ2
0/νs) R I1I2 , (5)

where the resonance functionR is given by the expression
R ≡ 4ν2

sω
2
s/[(Ω

2
beat−ω2

s)2 +4ν2
sω

2
s ], so that R = 1 at the

resonance Ωbeat = ωs. We introduced in this expression
the symbol Ωbeat defined by the relation Ωbeat ≡ ωbeat−
ks.Vp, and γ0 denotes the SBS growth rate, with

γ2
0 ≡ (

n

nc
)
ω1

4ωs

k2
sC

2
se

(1 + k2
sλ

2
De)

2
〈|a1|2in〉 ,

in which the frequency ωs is itself a function of ksλDe,
namely ωs = ksCse/(1 + k2

sλ
2
De)

1/2.
In the steady-state limit, the previous equations (5)

can be additionally simplified in the cases where the
transverse EM damping rates νi are negligible and in the
limit Vg2 = Vg1. In these limits, the resulting system of
equations, extensively studied in Ref. 22 for the case of
a homogeneous plasma, takes the following form

∂ξI1 = −2β(ξ, η) I1I2 ,

∂ηI2 = +2β(ξ, η)I1I2 . (6)

The quantities involved in the coupling coefficient
β(ξ, η) ≡ [γ2

0/(νsVg2)]R are functions of the local plasma
parameters {Te, ne,Vp} inside the interaction region, so
that in general the coupling constant β is a function of
the spatial coordinates (ξ, η).

B. Case of an expanding plasma

We now consider the energy exchange between two EM
waves propagating in a plasma with a linear velocity pro-
file, a constant density and a constant temperature. In

k1
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Figure 2. (color) Schematic representation of the CBET con-
figuration. The high frequency beam 1 propagates along the
ξ axis and the low frequency beam 2 along the η axis. The
plasma flow velocity is in the s direction with value Vp,0 at
the intersection between the beams centroids. The line of
constant Vp = cs is indicated by a dashed line.

the vicinity of the resonance point where Ωbeat ≈ ωs,
the resonance denominator Ds can be approximated by:

Ds ≈ 2ωs(Ωbeat − ωs + iνs) . (7)

In this limit, the nonlinear coupling coefficient β(ξ, η)
becomes simply:

β(ξ, η) =
γ2

0/(νsVg,2)

1 +
[

Ωbeat−ωs

νs

]2 . (8)

In this expression of β(ξ, η), the quantity Ωbeat =
ωbeat − ks.Vp depends on space through the spatial de-
pendence of Vp. Let us first define the coordinate system
to describe Vp. We consider a generic point M and de-
note by O the point corresponding to the intersection
of the central axis of beam 1 with the central axis of
beam 2 (see Fig. 2). Concerning the Cartesian coordi-
nates, we choose the y-axis to be the axis parallel to the
expansion velocity Vp(y) and going through the point
0; the x-axis is the axis orthogonal to Vp(y) and go-
ing through the point 0. A generic point M will there-
fore be defined by its Cartesian coordinates (x, y), with
OM = xex+yey, ex and ey denoting the unit vectors of
the axis Ox and Oy. We consider a plasma with a linear
velocity profile of the form Vp(y) = [Vp,0 + y cs/L⊥]ey
for a point M of coordinates (x, y). Thus, Vp,0 is the
plasma velocity at the point O of intersection of the axis
of beam 1 and beam 2, and L⊥ is the velocity gradi-
ent defined as: L⊥ = cs/(∂yVp)|y=0 in this Cartesian
coordinate system. We now denote by eη and eξ the
unit vectors along the axis Oη and Oξ (see Fig. 2). In
the coordinate system (eη, eξ), the vector OM is writ-
ten as OM = ηeη + ξeξ in which its coordinates η and
ξ are given in terms of x and y through the relations



5

x = ηex.eη + ξex.eξ and y = ηey.eη + ξey.eξ. Conse-
quently, Vp(y) = [Vp,0 + y cs/L⊥]ey becomes a function
of η and ξ. We denote as φ the angle between ks and Vp,
so that ey.eξ = − sin(φ+θ/2) and ey.eη = − sin(φ−θ/2).
In this coordinate system, β(ξ, η) becomes

β(ξ, η) =
γ2

0/(νsVg,2)

1 +
k2sc

2
s

ν2
s

[Q0 −Q(ξ, η)]
2
, (9)

with

Q0 =
ω1 − ω2

kscs
− 1 ,

Q(ξ, η) =

∣∣∣∣Vp,0cs − η sin[φ− (θ/2)] + ξ sin[φ+ (θ/2)]

L⊥

∣∣∣∣ cosφ .

(10)

III. THEORETICAL GAINS AND COMPARISON WITH
PCGO-BASED CBET

In the preceding section we have derived the equations
that describe the coupling between two laser beams, to-
gether with the coupling coefficients relevant for an ex-
panding plasma close to resonance. In this section these
results will be used to determine the transfer from beam
1 (pump beam) to beam 2 (probe beam). To properly
address the pump to probe transfer, taking into account
the width of the laser beam, one has to integrate across
the beam profiles.

Throughout this section, the amplification factor of
beam 2, T2, is defined as follows:

T2 ≡
∫ ξc

−ξc
Iout

2 (ξ)dξ/

∫ ξc

−ξc
I in

2 (ξ)dξ , (11)

In this expression, ξc is defined by ξc ≡ D1/(2 sin θ), D1

being the beam 1 diameter; the quantities Iout
2 and I in

2

are given by Iout
2 (ξ) = I2(ξ, ηc), I in

2 (ξ) = I2(ξ,−ηc) with
ηc ≡ D2/(2 sin θ), D2 being the beam 2 diameter. The
linear gain G2 corresponding to the beam 2 amplification
factor T2 is defined by G2 ≡ ln(T2).

1. Small probe-to-pump intensity ratio

The pump beam remains unaffected by the pump-
probe energy transfer throughout the interaction region
whenever the intensity ratio I2/I1 is small, i.e. I2 � I1.
Assuming an initially constant transverse profile for the
beams, i.e. I in

1 (ξ) = I in
1 and I in

2 (η) = I in
2 , the equation

(6) yields:

Iout
2 (ξ) = I in

2 exp

∫ ηc

−ηc
2β(ξ, η′)dη′ , (12)

so that Eq. (11) for the T2 transmission factor reads:

T I2�I12 =
1

2ξc

∫ ξc

−ξc
exp

[∫ ηc

−ηc
2β(ξ, η)dη

]
dξ . (13)

The analytical integration of β in this equation requires
the splitting of the integral above into two separate sub-
domains to account for the absolute value of the velocity
in Eq. (10). These domains are delimited by the line
where the plasma velocity is zero; this line is defined
by η sin(φ − θ/2) + ξ sin(φ + θ/2) = L⊥Vp,0/cs. The
corresponding gain factor GI2�I12 = ln(T I2�I12 ) accounts
for the local plasma parameters in the interaction region
along the directions ξ and η. For a finite length inter-
action in an inhomogeneous medium, GI2�I12 has an a
priori upper bound Gmax given by21

Gmax ≡
2γ2

0Lint

νsVg,2
, (14)

so that one has GI2�I12 ≤ Gmax. Lint denotes the
maximum interaction length for a resonant coupling;
Lint is given by the minimum between the interaction
length in an inhomogeneous plasma, denoted as Linh,
and the beam width, denoted as Lbeam, namely Lint ≡
min {Lbeam, Linh}; in these expressions Linh is given by

Linh = π
L⊥νs/ωs

cosφ sin[φ− (θ/2)]
, (15)

and Lbeam by

Lbeam =
D1

2 sin θ
, (16)

Lint reduces to Linh in the case Linh < Lbeam when
the inhomogeneity is the limiting factor for the gain;
Gmax is then the so-called Rosenbluth gain23, denoted as
GRos for what concerns the intensity amplification and
given by GRos = (2πγ2

0/ωsVg,2))L⊥,eff , where L⊥,eff =
L⊥/[cosφ sin[φ− (θ/2)]] denotes the effective flow gradi-
ent length.

For the case discussed in this article, we have cho-
sen the following reference parameters for the plasma:
νs/ωs = 10−1, ne/nc = 10−1, Te = 3 keV, Z = 2.5,
ZTe � Ti, and the mass number mi/mp = 4.252, mp

being the proton mass. The beam parameters are the
following: the intensity of beam 1 in vacuum, I1, is given
by I1λ2

L = 0.9× 1014 Wµm2/cm2, the intensity of beam
2 satisfies the condition I2 � I1; both beams have equal
diameters D1 = D2 = D = 600λ, they have equal wave-
lengths λ = 351 nm, and the angles between them is
θ = 20◦.

The intensity profiles of beams 1 and 2 at their en-
trance in the interaction region, denoted as J1 and J2,
are the following

J1(η) = exp

[
−
∣∣∣∣η sin θ

D

∣∣∣∣8
]
,

J2(ξ) = I2:1 exp

[
−
∣∣∣∣ξ sin θ

D

∣∣∣∣8
]
, (17)

where I2:1 denotes the upstream beam 2/beam 1 inten-
sity ratio. Such profiles can be easily produced by means
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k1

k2

k1

k2
Figure 3. Illustration of the resonance function considered
in this article, normalized to its maximum value. The two
waves enter the domain along the upper-left and bottom-left
boundaries of the domain, such as indicated by arrows. Note
that the ξ and η axis are shown as if they were orthogonal, but
actually one intersects the other with the acute angle θ = 20◦.

of Random Phase Plates. The beam widths can be con-
sidered to remain constant throughout the interaction re-
gion, in agreement with the assumptions made in Sec. II.
The plasma velocity profile is linear, with L⊥ = 500λL,
Vp,0 = cs and φ = π. The resulting resonance function is
illustrated in Fig. 3. The corresponding theoretical gain
GI2�I12 is computed by numerical integration of Eq. (11).
We find a beam 2 intensity amplification T I2�I12 = 685,
so that the corresponding gain factor is GI2�I12 = 6.53.
By comparison, the value of Gmax is Gmax = 8.51.

This theoretical configuration is reproduced with
PCGO, modeling each super-Gaussian beam by NB =
100 PCGO Gaussian beamlets in a planar two-
dimensional geometry. The beamlets are pseudo-
randomly focused around the interaction region so as to
reproduce the intensity distribution of beams smoothed
by Kinoform Phase Plates (KPP), as described in Ref.
15. The resulting intensity pattern is comparable to
what would be obtained with a real speckle distribution,
with larger speckles of radii ∼ 5 − 50λL. This pseudo-
speckle pattern produced with PCGO is able to model
the correct intensity distribution in a plasma of laser
beams smoothed by KPPs in the intensity domain be-
tween 0.1〈I〉 and 5〈I〉, where 〈I〉 denotes the mean laser
intensity. The higher intensity statistics cannot be re-
produced due to the limitations imposed by the mini-
mum size of PCGO beamlets (see Refs. 15 and 24). The
CBET gain GI2�I1inh,PCGO is computed as a discrete version
of Eq. (11), where the summation spans over the beam
2 beamlets, namely

expGI2�I1inh,PCGO =

NB∑
k=1

Iout
k wout

k

NB∑
k=1

I in
k w

out
k

, (18)

where Ik and wk stand for the intensity and width of the

beamlet k, respectively. The PCGO-based CBET model
yields T ros

PCGO = 700, corresponding to GI2�I1inh,PCGO = 6.55.
The simulation results are in excellent agreement with
the theory in this case, and also for other values of L⊥,
θ, φ, ne/nc in the validity domain of the theory presented
in Sec. II. The main constraint is the validity of Eq. (7),
the latter limiting the range of L⊥ which can be explored.

For two beams, modeled by NB = 100 beamlets each
one, the large-scale resonance function is discretized by
104 beamlet intersections. The energy transfer between
the intersecting beamlets is computed by applying Eq.
(6) to each intersection. Since the size of the beamlets
is small compared to the overall beams, the coupling co-
efficient β from Eq. (8), being evaluated at the center
of the intersection for the local plasma parameters, is as-
sumed to be constant around the intersection centroid
(defined as (η, ξ) = (0, 0) for each). The accuracy of
this method is naturally related to the width of each el-
ementary beamlet intersection region compared to the
width of the resonance function. In practice, the Gaus-
sian beamlets used in PCGO are small compared to the
characteristic inhomogeneities encountered in the typi-
cal CBET configurations. As an example, for a typical
direct-drive ICF configuration, CBET occurs near the
resonance region (Vp,0 = cs), where the gradient scale
lengths of the density, temperature and velocity are much
larger than the typical beamlet width of 10-30 λL. In
configurations where this assumption would not be cor-
rect, the precision of the PCGO-based CBET model may
be enhanced by replacing β(0, 0) by the average value
of the nonlinear coupling coefficient in the interaction
zone

∫ ∫
β(ξ, η)dξdη/(4ξcηc), for each elementary energy

transfer between beamlets.

2. Interaction between beams of similar intensities

We now consider the case where the ratio of the
beam intensities at their entrance in the crossing domain,
I2:1 ≡ I in

2 /I in
1 , is close to unity. In this regime the pump

depletion has to be taken into account. For inhomoge-
neous plasmas, the estimate of the gain in such cases re-
quires a direct numerical resolution of the equation (6).
This numerical integration is the most efficiently achieved
by taking the crossed derivatives in the equations (6):

∂η∂ξI1 = −2∂η( β(ξ, η) I1 I2 ) ,

∂ξ∂ηI2 = 2∂ξ( β(ξ, η) I1 I2 ) . (19)

This system is integrated using the Implicit Differential-
Algebraic solver25–27. The initial conditions are defined
on the input boundaries of the interaction region for both
beams; there are consequently four initial conditions to
specify; I1(−ξc, η), I1(ξ,−ηc), I2(ξ,−ηc) and I2(−ξc, η).
Two of these are the initial intensity profiles of the beams,
J1(η) = I1(−ξc, η) and J2 = I2(ξ,−ηc), defined by Eqs.
(17).

The other two initial intensities, denoted G1(ξ) =
I1(ξ,−ηc) and G2(η) = I2(−ξc, η), are solutions of the
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partial differential equations (6) for the intersection re-
gion edges:

∂ξG1(ξ) = −2β(ξ,−ηc) G1(ξ) J2(ξ) ,

∂ηG2(η) = 2β(−ξc, η) G2(η) J1(η) , (20)

where the initial conditions for these equations are
G1(−ξc) = J2(−ξc) = I2:1 exp(−1) and G2(−ηc) =
J1(−ηc) = exp(−1).

We integrate Eqs. (19) and (20) for two intensity ra-
tios: I2:1 = 1 and I2:1 = 1/8. The other plasma and
beam parameters are the same as in Sec. III 1. The
theoretical gains computed from the probe beam power
amplification are, for the two cases, G1:8

inh = 2.061 and
G1:1

inh = 0.692. Simulations using the PCGO-based CBET
model and the intensity profiles (17) yield the gain val-
ues G1:8

inh,PCGO = 2.056 and G1:1
inh,PCGO = 0.692, which

are in excellent agreement with the theory. Furthermore,
the output intensity profiles obtained with the numerical
solution and the PCGO modeling are also in excellent
agreement one with the other. Thus, the PCGO model-
ing is able to accurately reproduce the regions of pump
depletion and probe beam amplification. This conclusion
is discussed further in Sec. IVB2 in the comparison of
the PCGO results with the paraxial solver ones.

IV. CBET MODELING USING PARAXIAL
ELECTROMAGNETIC WAVE SOLVERS

In order to describe the propagation of two well sep-
arated electromagnetic waves, paraxial wave solvers for
the electric field (or the vector potential) of each beam are
used. For the interaction of two electromagnetic waves,
a system of partial differential equations using paraxial
operators has to be solved with terms describing the cou-
pling between the various modes17–19. Instead of the sys-
tem of equations for the beam intensities (5), a system of
equations for the corresponding complex-valued ampli-
tudes is solved in the Cartesian coordinates. The main
axis x is directed along the bisector of the propagation
direction of the two interacting beams.

A. Formalism of the Harmony code

The code Harmony17–19 has initially been designed to
describe the coupling of two electromagnetic waves, with
amplitudes a+ and a−, propagating in opposite direc-
tions. The coupling of these two waves is then mediated
by short-wavelength IAWs.

In the configuration considered in the present article,
the two laser beams propagate in the same direction, the
angle θ between their axis satisfying the condition θ <
25◦, in which case the IAWs generated by their beating
propagate perpendicularly to the symmetry axis located
between the directions of propagation of the two crossing
beams. To simplify, we will consider that the two incident

transverse waves have the same frequency ω1 = ω2 that
we will write as ωt, and consequently the same damping
coefficients ν1 = ν2 = νt and the same group velocity
modulus, Vg,1 = Vg,2 = Vg,t. Therefore, in the code
Harmony, the counter-propagating field a− is set to zero
and the field a+ contains two components

a+ ≡ eik‖·x[a1e
ik⊥·y + a2e

−ik⊥·y] . (21)

In this decomposition, the wave vectors ±k⊥ denote the
wave vector components transverse to the symmetry axis
Ox, namely |k⊥| = |k1| sin(θ/2), with |k1| ≡ k1 =
(N1ω1/c). k‖ denotes the wave vector component along
the symmetry axis, with k‖ = ex|k1| cos(θ/2). The equa-
tion for the field a+ reads:

Lpar(a+)=−iω1

2

δn

nc
a+ (22)

where δn = (n− neq) is the density perturbation around
the equilibrium density neq and where Lpar(a+) is the
paraxial operator Lpar(a+) = [∂t + Vgt,x∂x + νt −
i(c2/2ωt)4⊥]a+, with Vgt,x ≡ Vg,tcos(θ/2). The field
a+ is generated by considering two separate wave-fields
for a1 and a2 in Fourier space, corresponding to their
near field. Each wave-field is centered around ±k⊥, re-
spectively, with a width ±∆k that has to be smaller than
|k⊥|. The wave-fields are smoothed by random phase
plate (RPP) elements whose width δk is a fraction of
∆k ≡ k1/[1 + 4f2

#]1/2 (see Ref. 28), with the focusing
f-number f# = 7. The overall field a+ has hence no on-
axis field components and the initial fields a1 and a2 are
spatially separated in y at x = 0, for |k⊥| in the interval
|k⊥| < |k1 [sin(θ/2)− 1/(2f#)]|. The latter condition is
fulfilled e.g. at θ = 20◦ for f# > 3 .

The density perturbation entering in Eq. (22) is de-
scribed by the hydrodynamic equations:

∂tn+∇nV = 0 , (23)

∂t (nV) +∇ (nVV) + C2
s∇n+ nν̂kV = −nC2

se∇U0 ,

where ν̂k is a wavelength-dependent operator account-
ing for collisional damping and IAW Landau damping.
The ponderomotive force acting on the plasma fluid fol-
lowing Eqs. (23), ∝ ∇U0, takes into account the cou-
pling between the components a1 and a2 of a+, namely
(∇U0)CBET ∝ ∇a1a

∗
2 exp(i2|k1|y sin θ/2), and the square

terms (∇U0)self ∝ ∇(|a1|2 + |a2|2), responsible for self-
focusing.

B. Comparison between PCGO and Harmony simulations

The steady-state CBET results obtained with the
PCGO model are compared with the results obtained
from the time-dependent paraxial code Harmony in sev-
eral cases corresponding to various probe to pump inten-
sity ratios I2:1 and overlapped intensities [Iλ2

L]Σ (defined
in free space), for beams of equal wavelength λL = 1.05
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Figure 4. (color) Initial plasma parameters of the simula-
tions. The color background indicates the plasma velocity
Vp.ey in units of cs. Negative values mean that the flow is
directed along the unit vector −ey. The contours of con-
stant density are shown in black plain lines, for ne/nc ∈
{0.01, 0.05, 0.09, 0.095}, and the contours of constant veloc-
ity are shown in black dashed lines for Vp.ey = ±cs. In the
domain x <1200λL the plasma density slowly increases as a
function of x, so that the main interaction zone starts only
from x >1200λL.

µm. The 2D simulation setup is a box of 4000 λL in
length and 1800 λL in width in the (x, y) coordinate sys-
tem. The velocity and density profiles mimic that of a
thin-foil experiment, with a quadratic density profile and
a linear expansion velocity. For x ∈ [1300, 4000]λL, the
velocity is along the y direction and is described by

Vp(y)/cs = (y − 657λL)/(200λL) , (24)

and the density is modeled by

ne(y)/nc = 0.0995− [(y − 900λL)/(1580λL)]2 , (25)

with y ∈ [0, 1800]λL. Note that the line of Vp = 0 does
not correspond to the density maximum, as in a thin-
foil experiment if only one side of the foil is irradiated
by laser beams. These profiles are linearly extended, via
a ramp, to zero velocity and zero density in the x ∈
[0, 1300]λL interval in order to avoid spurious couplings
of edge modes to plasma waves. The resulting initial
plasma conditions are illustrated in Fig. 4

The plasma is fully ionized hydrogen, with Z = 1
and mi/mp = 1; the IAW damping rate is chosen to be
νs/ωs = 1/10. With these parameters, the plasma veloc-
ity at the center of the interaction region is Vp,0 = 1.2cs
in the direction of increasing y and the density is ne =
nc/10. The position of the resonance can be obtained
by equating Q(η, ξ) and Q0 in Eq. (10), which yields
the optimal plasma velocity Vp,opt = Q0/ cos(φ) = cs at
y ≈ 860λL. The mean intensity profiles (envelop) of the
beams are defined similarly to Eq. (17), with the excep-
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Figure 5. (color) Time history of the probe amplification T2

from Harmony simulations for a single realization of a RPP.
The results at [Iλ2

L]Σ = 0.9× 1014 Wµm2/cm2 for I2:1 = 1/8
and I2:1 = 1/1 are indicated with red (grey) lines and black
lines, respectively. The cases of RPP smoothed beams (i.e.
with speckles) are shown with plain lines and the cases of
‘regular’ beams (i.e. without speckles) at the same average
beam intensities are shown with dashed lines. The time is
normalized to (2k1cs)−1.

tion of the normalizing factor:

〈J1(η)〉 =
1

1 + I2:1
exp

[
−
∣∣∣∣η sin θ

D

∣∣∣∣8
]
,

〈J2(ξ)〉 =
I2:1

1 + I2:1
exp

[
−
∣∣∣∣ξ sin θ

D

∣∣∣∣8
]
, (26)

with D = 600λL. The beams intersect in their focal
plane in a region centered near the resonance line, at x =
2650λL and y = 900λL. The beam crossing geometry in
our simulations is simplified with respect to the general
scheme presented in Fig. 2, since the plasma flow velocity
is parallel to ks (i.e. φ = 0).

The comparison between the PGCO and the Har-
mony results relies on two sets of observables. First,
a systematic study of the asymptotic power transfer
between the beams is made for various values of the
beam intensity ratio I2:1 = I in

2 /I in
1 , namely I2:1 =

{1, 1/8, 1/64}, measured in terms of T2 = Pout
2 /P in

2 =∫
Iout

2 dξ/
∫
I in

2 dξ, as a function of the interaction param-
eter [Iλ2

L]Σ. Secondly, we study the various spatial pat-
terns related to the CBET modeling, including: (i) the
location and amplitude of the IAWs excited by the beams
interaction, (ii) the intensity pattern of the beams in the
simulation volume, and (iii) the deviation of the beams
after the transfer region.

Two series of simulations with Harmony and PCGO
have been carried out using two types of beams, namely:
(i) optically ‘smoothed’ beams generated by phase plates
in the near field, thus producing a speckle pattern for
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each beam in the interaction region (using Random Phase
Plates (RPP) for Harmony and Kinoform Phase Plates
(KPP) for PCGO), and (ii) ‘regular’ beams of the same
width and the same intensity envelope as the ‘smoothed’
beam, but without speckles. In both cases, the width
in the interaction volume is controlled by applying a
super-Gaussian envelope to the beams. The smoothed
beam simulations describe realistic cases, while the regu-
lar beam simulations are carried out to assess the spatial
patterns arising in the transfer region. The fractional
power transfer in simulations with regular and smoothed
beams are found to be comparable, as it can be seen in
Fig. 5. The relaxation time observed in the simulations
depend on the interaction parameters and the speckle
pattern realization. It should be noted that each inten-
sity pattern generated in simulations via RPP or KPP are
single realizations and follow only partially the speckle in-
tensity distribution known for the ensemble average28–30.
The duration of the transient period, defined as the time
it takes for the power transfer to reach its final value (ei-
ther asymptotically or with small oscillations around a
mean value), is in general in the order of ∼ 40 − 70 in
units of (2csk1)−1, corresponding to ∼ 7− 12 in units of
ω−1
s = (2csk1 sin θ/2)−1, that is t ∼ 5−10 ps at λL = 0.35
µm.

1. Asymptotic power transfer

The asymptotic power transfers obtained with both
models are summarized in Fig. 6. For each value of the
interaction parameter [Iλ2

L]Σ, the results for both codes
are determined from numerous simulations in which the
random speckle pattern is varied via different phase
plate realizations. The power transfer values are reliable
around the average values (black points for Harmony
and green solid curve for PCGO) within the standard de-
viation (error bars and green shadows, respectively) on
the basis of 16 realizations for each case (the convergence
is observed to begin with at least 8 realizations). The re-
sults obtained with Harmony are extracted from the
averaged steady-state power transfer. The time-history
of the ensemble-averaged power transfer (over the various
simulations with various random speckle patterns) is il-
lustrated in Fig. 7 for the I2:1 = 1/8 case. As mentioned
just above, the steady-state is reached for time scales of
the order of 5 ps.

The PCGO and Harmony codes produce results in
good agreement one with the other, for a wide range of
pump intensity values and for various pump/probe in-
tensity ratios. The dispersion (standard deviation) of
the results from Harmony and PCGO-based CBET de-
pend on the speckle size, on the first hand, and on the
choice of the beamlet size, on the other hand. This dis-
persion can be characterized by the relative error ε, ε be-
ing defined as the ratio of the standard deviation to the
probe amplification. The standard deviation for f# = 7
shows a relative error of the order of ε ∼ 12 − 13% in
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Figure 6. (color) Probe amplification as a function of the in-
teraction parameter [Iλ2

L]Σ in units of 1014 Wµm2/cm2 for 3
values of the upstream intensity ratio I2:1 =1 (lower curves
and points), 1/8 (center), and 1/64 (upper). The results ob-
tained with the PCGO-based CBET model are shown with
solid lines and the results from Harmony with symbols. In
both codes, each point for a given interaction parameter is
based on 16 simulations using different random speckle pat-
terns. The resulting ±1 standard deviation is shown as error
bars for Harmony and with a shaded envelope for PCGO.
Estimated values from Eq. (27) are shown as blue dashed
lines. The upper horizontal scale indicates the Rosenbluth
gain values corresponding to the Iλ2

L values of the bottom
scale.
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Figure 7. Time-history results from Harmony: probe am-
plification in the I2:1 = 1/8 case, exhibiting the statistical
variance due to the different random speckle patterns. The
solid lines represent the average value, while the correspond-
ing shaded areas correspond to the ± 1 standard deviation
region. The blue line and the blue-shaded area correspond
to [Iλ2

L]Σ =1.8, the orange line and the orange-shaded area
correspond to [Iλ2

L]Σ =0.9, and the green line and the green-
shaded area correspond to [Iλ2

L]Σ = 0.45× 1014 Wµm2/cm2.
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the Harmony results, independently of the probe/pump
ratio. For smaller speckles, corresponding to a smaller f-
number, the relative error decreases due to the increased
number of speckles in the crossing volume. For f# = 5
we find a relative error ε ∼ 8%. The influence of the
high intensity speckles30, not fitting well to the ensem-
ble average, is evidently reduced for smaller speckle sizes
(i. e. for smaller f-numbers). In the PCGO simula-
tions, the relative error of the probe amplification (in its
asymptotic value) depends more strongly on the number
of beamlets chosen for the computation than on their size
. The curves shown in Fig. 6 are based on 100 beamlets
of width 10λL at their focal points, resulting in an error
of ε ∼ 10%, approximately, slightly smaller than for the
f# = 7 Harmony simulations.

After accounting for the statistical fluctuations, both
models are in quite good agreement one with the other,
for intensities up to [Iλ2

L]Σ ≤ 1.5 × 1014 Wµm2/cm2.
This is thought to be related to the splitting algorithm
employed in PCGO: the overlap of PCGO beamlets does
not reproduce the wings of the larger laser beam as much
as in Harmony. Consequently, the inverse transfer res-
onance region is less covered in the PCGO-based CBET
simulations than in the Harmony simulations, thus lead-
ing to an overestimate of the power transfer. Note that
this limit is not an issue inherent to the PCGO model
itself; it is due to its present formulation in the case of
KPP smoothed beams (see Ref. 15).

Finally, it should also be noted that the Harmony
simulations at high intensities and for I2:1 = 1 do not
necessarily reach a steady-state regime: the power trans-
fer may not converge to the single value seen in the
PCGO simulations (Pout

2 /P in
2 ∼ 1.66), but rather oscil-

lates between two values 1.1 < Pout
2 /P in

2 < 1.4. In this
case, a mutual energy exchange takes place between the
beams, due to the fact that the resonance zone corre-
sponding the inverse energy transfer is not too far. Har-
mony also takes into account the self-focusing (via the
term (∇U0)self , see Sec. IVA) of individual speckles, this
effect depending on the speckle pattern realization. The
discrepancy at high intensities can also be thought to be
related to the modeling of the beam wings in the PCGO
simulations.

Figure 6 also shows, in blue curves, estimates of the
power transfer in terms of the probe amplification Tprobe

computed with the analytical model derived for a homo-
geneous plasma in Refs. 22, 31, and 32. It is given by

Tprobe = (I2:1G̃)−1 log
[
1 + eG

(
eI2:1G̃ − 1

)]
, (27)

where G is the gain value associated to the transfer, and
G̃ the corresponding value defined by G̃ = GD1/D2 =
Gξc/ηc, see section III 1. For an inhomogeneous plasma,
such in the cases discussed here, under the condition
that the resonant zone is well confined inside the zone
of the beams overlapping, one can take for G the Rosen-
bluth gain GRos given by Eq. (15) as a good approx-
imation. For simplicity, we have taken the same value

for G̃, namely G̃ = Gros. In this case, the probe am-
plification Tprobe has a small gain behavior of the form
Tprobe → 1+G for G = G̃� 1, and a saturation behavior
such as Tprobe → 1 + 1/I2:1 for a large gain G = G̃� 1.
This simple model shows a qualitative agreement with
the simulations, although it overestimates (by a factor
up to 2) the power transfer in the intermediate regime
(G neither small nor large) at least for not too small I2:1

values. This model can still be kept as a rough guideline
for the power transfer for angles up to θ < 45◦, as does
the model from Refs. 33 and 34 for almost oppositely
crossed beams35.

2. Spatial characterization

As mentioned before, two resonance lines are present in
the interaction region, defined here by Vp.ey = ±cs. The
asymptotic value of the energy transferred between the
beams depends on the balance between the power trans-
fer from the downward beam to the upward beam in the
region where Vp.ey > 0, and the power transfer from
the upward beam to the downward beam in the region
where Vp.ey < 0. Given the input velocity profiles, these
lines are located at ycs,+ = 860λL and ycs,− = 460λL.
These two locations are expected to be the domains of
maximum IAW amplitude. The relative density pertur-
bation δn/neq (neq denoting the unperturbed density) is
obtained in Harmony from the resolution of the non-
linear fluid equations (23). In the PCGO-based CBET
model, this amplitude can be estimated in the framework
presented in Sec. II by writing the equation for the evo-
lution of the ion density perturbation,

[∂2
t + 2(νs − ıΩ)∂t − (Ω2 − ω2

s + 2ıνsΩ)]
δn

ne
= −ω2

sa1a
?
2 ,

(28)
in which the inequalities Vg,s � Vg,1, Vg,2 have been as-
sumed. The steady-state density perturbation predicted
by the PCGO-based CBET is consequently∣∣∣∣ δnne

∣∣∣∣ =

∣∣∣∣ ω2
sa1a

?
2

Ω2 − ω2
s + 2ıνsΩ

∣∣∣∣ . (29)

The value of this expression for the density perturba-
tion has to be computed a posteriori from the global
intensity field, in order to account for the contributions
of all the beamlets in the a1a

?
2 term. The resulting den-

sity perturbation map is compared to the results from
Harmony in Fig. 8. In the main resonance region
(where V > 0, y = 860λL), the average and maxi-
mum values of the perturbations are both in good agree-
ment between the PCGO-based modeling results and the
Harmony results, with (δn/ne)mean ' 5 × 10−3 and
(δn/ne)max ' 1× 10−2, respectively. It is not surprising
to see that the IAWs amplitude in the downward velocity
quadrant is slightly underestimated in the PCGO mod-
eling, because the V < 0 resonance region covered by
the PCGO beamlets is underestimated. Finally, we note
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Figure 8. (color) Amplitude of the density perturbations δn/ne from Harmony (left) and from PCGO (right). The simulations
results correspond to the parameters I2:1 = 1/1 and [Iλ2

L]Σ = 0.45× 1014 Wµm2/cm2.

Figure 9. (color) Snapshots of the intensity pattern in the region where both beams overlap, for I2:1 = 1/8 and [Iλ2
L]Σ =

0.9 × 1014 Wµm2/cm2. The input intensity profiles correspond to RPP-smoothed smooth beams in the left panel, and to
flat-top beams (so-called ‘regular’ beams) in the middle and the right panels, respectively. The results are from Harmony
(left, middle), and from the PCGO-based CBET model (right). The colorbar shows the corresponding values in units of 1014

W/cm2 for λL = 1 µm. Note that some speckles in the left panel exceed the average intensity by up to 7 times (saturated
colorbar).

that the spatial locations of maximum IAW amplitudes
for both models are in agreement with the theoretical
values of ycs,+ and ycs,−.

The spatial beam intensity patterns inside the CBET
region are now compared. We inspect the beam pat-
terns for smoothed beams with speckles (from RPP re-
alizations) on the one hand, and the beam patterns cor-
responding to the ‘regular’ beams having the same av-
erage intensity, power, and size, but without speckles,
on the other hand. In the transfer region, the RPP
smoothed beams (Fig. 9 [left]), exhibit the same fea-
tures in the intensity patterns (Fig. 9 [middle]) than the
features observed with the regular beam, except for the
fine structure of the speckles for which the intensity is
several times the average intensity. Figure 9 [right] il-
lustrates the intensity field obtained with PCGO in the
case of regular beams. The domains where the pump
beam is depleted and where the probe beam is preferen-
tially amplified clearly cover the same part of the beams,
in both simulations. The small-scale structure seen in-

side the interaction region in Fig. 9 [middle] results from
the spatial and temporal interference of the beams; this
small-scale structure is not reproduced by PCGO, which,
by design, only can model constructive spatial interfer-
ences between beamlets. However, the average intensity
value in this region is well reproduced by the PCGO
model. The intensity profiles of the beams exiting at
x = 4000λL are illustrated in Fig. 10 [left-middle] for
both the PCGO and Harmony simulations of regular
beams, respectively. They show a good agreement one
with the other, in particular for the shape of the ampli-
fied beam.

This agreement is confirmed by inspecting the angu-
lar distribution of the beams, shown in Fig. 10 [right]:
it is obtained via the complex fields (a1 and a2 in a+)
at the exit and at the entrance of the interaction zone.
The angular distribution at the laser entrance at x = 0
for PCGO (red for the probe and blue for the pump)
and for Harmony (black), respectively, are (except for
minor details) defined to be identical, corresponding to
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Figure 10. (color) Intensity profiles in the beam overlap region, taken at x = 4000λL, for {I2:1 = 1, [Iλ2
L]Σ = 0.45} (left),

and for {I2:1 = 1/8, [Iλ2
L]Σ = 0.9× 1014 Wµm2/cm2} (middle). The results from Harmony are shown in red (grey), and the

results from the PCGO-based CBET model with regular beams are displayed in black. Right: intensity profiles of the beams
upstream and downstream of the transfer region, as a function of the angle with the x axis. The input beams are centered at
−170◦ and +170◦ and the output beams are centered at −10◦ and +10◦. The results from Harmony are shown with black
lines and the results from PCGO are displayed with colored lines. The blue (light grey) and red (dark grey) curves correspond
to the pump and the probe beams, respectively. The results from Harmony are taken past the initial transient period.

angles ±[160◦, 180◦]. At the exit, for angles in the inter-
val [−30◦, 30◦], the distribution shows the same features:
namely an increase and a narrowing of the peak of the
probe beam, i. e. for angles in the [0◦, 20◦] interval,
and a spreading of the pump beam, i. e. for angles in
[−20◦, 0◦] interval, a beam deviation and a displacement
of the barycenter of its energy density, due to the energy
beam depletion.

The good agreement observed between Harmony and
the PCGO-based CBET model, in both the global energy
transfer, the spatial intensity distribution and the angu-
lar distributions, provides a strong argument that the
PCGO-based model can be used to compute the CBET.
The advantage of the PCGO-based CBET approach lies
in the computation time of each iteration, which is in
the order of 10 s. In contrast, the computation with
the paraxial approach requires several hours (namely 5
h on a single node of a recent processor) to achieve an
asymptotic value of the power transfer after a transient
period of about 30 ps; the CPU time ratio is hence in
the order of 103. Since the CBET computation is in
both cases implemented in hydrodynamic codes, in prac-
tice, one has to compare the times required to advance
an interaction code over one time step of the hydro-
code. For the PCGO-CBET approach, the interaction
code yields its result within a time close to the time-step
of the hydro-code, consequently not significantly slowing
down the hydro-code computing, whereas a paraxial ap-
proach would need minutes to advance because the EM
wave solver requires a smaller time step than the hydro-
dynamic time step.

V. EXPERIMENTAL VALIDATION OF THE CBET MODEL

We now consider the results of experimental measure-
ments of macroscopic Crossed-Beam Energy Transfer in

the case of laser beams crossing in a weakly inhomoge-
neous plasma. These experiments have been carried out
on the NOVA laser facility20. A spherical polyamide shell
of 1.3 mm radius containing 1 atm of C5H12 gas is heated
by eight laser beams of wavelength λL = 351 nm with a
1 ns temporal square pulse. Two additional beams inter-
sect one to the other with the angle θ = 53◦, in a plasma
domain close to the plasma center. The frequency of the
probe pulse is varied between shots, so as to explore the
resonant exchange of energy between the probe and the
pump beams. The probe pulse starts at the same time as
the heater beams and lasts for 2 ns, whereas the pump
pulse starts 400 ps after the heater beams and lasts for
1 ns. The pump beam average intensity is 〈Ip〉 = 1015

W/cm2 while the probe beam intensity is varied from
0.06〈Ip〉 to 0.32〈Ip〉, with a wavelength shift, denoted as
∆λ, which could be as large as 7.3 Å. The probe beam
amplification A is defined as the probe beam transmit-
ted energy divided by the same quantity obtained in a
shot without the pump beam. Simulations of this exper-
iment are conducted using the Chic hydrocode13 with
the PCGO model describing the laser-plasma interaction
including the propagation, absorption, and the crossed
beam energy transfer.

For the 1 ns during which the interacting beams are on,
the Chic simulation predicts a relatively constant plasma
density (∼ ne/nc = 0.1) in the interaction region, with
an electron temperature Te varying between 1 and 2.5
keV. The plasma expansion is rather symmetric and the
velocities of the plasma flows in the interaction region are
in the order of 0.01Cs. Such low values can be explained
by the symmetry of the irradiation geometry, the close
proximity (400 µm) of the interaction region to the center
of the target, and the early timing of the pump beam
compared to the beginning of the plasma expansion. The
probe-beam transfer without the pump beams is in the
order of ∼ 50%, similarly to the results presented in Ref.
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20.
The only free parameter in the PCGO-based CBET

model is the damping coefficient νs/ωs. According to
Ref. 36, the damping rate in CH plasmas depends on
the parameters µ ≡ ksλD and τ ≡ Ti/Te. The hydro-
dynamic simulations show that these parameters in the
interaction region vary from 0.13 to 0.235 and from 0.145
to 0.58, respectively. We resolved numerically the kinetic
dispersion relation given in Ref. 36 for a C5H12 plasma
in this range of parameters. An additional margin of 30%
was added to this range, in order to account for a poten-
tial spatial dispersion of [µ, τ ] in the vicinity of the in-
teraction region. Among the two possible ion modes, we
only consider here the slow mode which has the smaller
damping. While being weakly dependent on ksλD in the
relevant interval 0.1 ≤ ksλD < 0.3, the ratio νs/ωs varies
from νs/ωs = 0.31 to 0.17 for a Ti/Te increase from 0.1
to 0.8. The damping rate can be fitted by the polynomial
interpolation νs/ωs = 0.31 + 0.038µ + 0.85τ − 0.23µτ−
0.16µ2−9.69τ2+ 0.25µτ2+0.26τµ2+ 30.12τ3−44.26τ4+
31.98τ5 − 9.17τ6 with a 0.2% accuracy. This expression
is used for the inline PCGO-CBET computation.

The simulation results carried out with the PCGO-
based CBET model in Chic are compared to the exper-
imental data in Fig. 11. Far from the domain of reso-
nance, the probe beam amplification is rather well repro-
duced by the model. The energy transfer for a vanishing
wavelength shift, ∆λ = 0, is low in the simulations, as
expected in view of the smallness of the plasma flows in
the interaction region. The corresponding experimental
probe amplification for this vanishing wavelength shift is
slightly higher than what is observed in the simulations;
this difference may indicate that the plasma flows are un-
derestimated in our simulations, although the extent of
the error bar for this single measurement does not allow
to conclude firmly along this interpretation.

The energy transfer for a wavelength shift ∆λ > 0.55
nm is also well reproduced within the error bars. The
simulations carried out with a wavelength shift in the
range ∆λ ∈ [0.3 : 0.52] nm yield a larger probe amplifica-
tion than what is observed in the experimental data. The
PCGO-based CBET model predicts CBET linear gains
of the order of 1-1.3, while the maximum experimental
gain is of the order of 1. Thus, the order of magnitude is
correct, even though the experimental gains are slightly
overestimated by theory. These results represent a sig-
nificant improvement over other predictions of the linear
gains for this experiment, of the order of ∼ 20 in Ref. 20,
of ∼ 7 in Ref. 4, and of the order of ∼3-4 in the unpub-
lished Ref. [17] of 20. The numerical results obtained
from the non-paraxial code Kolibri37,38 with a gain ∼1-
1.3, such as presented in Ref. 39, are also consistent
with the experimental results. The over-estimate of the
energy transfer gains may simply indicate the presence
of backscattering in the experiment, the latter reducing
the local laser intensity in the interaction region.

The most important discrepancy between the exper-
imental results and the theoretical predictions is found
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Figure 11. (color) Probe amplifications as a function of wave-
length detuning, for various probe to pump intensity ratios of
II = 0.32 (triangles), 0.13 (squares) and 0.06 (circles). The
probe beam transmission being reproducible to ±15%20. The
error in the energy ratio between experiments is estimated at
±30%. Simulation results are superimposed as empty sym-
bols.

in the position of the resonance peak in λ-space, located
around ∆λpeak

sim ∼ 0.48 nm (for I2:1 = 0.13) in the sim-
ulations and ∆λpeak

exp ∼ 0.6 nm (for I2:1 = 0.13) in the
experiment. This discrepancy is discussed in the follow-
ing, together with the resonance width.

The experimental results are analyzed in the frame-
work described in Sec. II. In order to analyze the depen-
dence of the results shown in Fig. 11 with regards to the
wavelength shift ∆λ, we make the following assumptions:
the plasma parameters are (i) constant across the inter-
action region, (ii) constant during the interaction time,
(iii) constant for shots with different values of ∆λ, (iv)
constant for shots without the pump beam, and, (v), we
assume that the lasers upstream intensity is stable from
shot to shot. The probe beam amplification factor A can
consequently be assimilated to the amplification factor
exp(G), G being the linear gain factor. The dependence
of G on the wavelength detuning between the laser beams
can be estimated from Eqs. (9) and (13):

G(∆λ) ∝ G0

(
1 +

[
ωp

(νs(1 + λp/(∆λ−∆λpeak))

]2
)−1

,

(30)
where G0 is the maximum gain obtained at resonance for
∆λ = ∆λpeak. A nonlinear least-square fit of the gain
function defined above can be made with the experimen-
tal data and the simulation results (for I2:1 = 0.13). Al-
though this approach is only qualitative, it makes it pos-
sible to estimate the temporally- and spatially-averaged
damping rate ν̄s in the experiment, and to discuss the
position of the resonance. As illustrated in Fig. 12, the
averaged damping rates (i.e. the width of the resonance
function) are similar in the simulations and in the exper-
iments, with ν̄s

exp = 1.93 ps−1 and ν̄s
sim = 2.67 ps−1.
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Accounting for the temporal and spatial variations of the
sound speed and of νs/ωs in the interaction region and
during the duration of the interaction, the damping rate
found in the simulations, namely νs ∈ [0.97, 5.3] ps−1,
brackets the value estimated from the gain curves.

The difference of the positions in λ-space of the reso-
nance peaks observed in the experiments and in the sim-
ulations is 1.2 Å. This resonance peak position uniquely
depends on the Doppler shift, which in turn is a func-
tion of the local sound speed velocity and of the irradi-
ation symmetry. We now consider the various contribu-
tions which may explain the observed difference in the
resonance peak positions. Several simulations were con-
ducted using the ideal gas law instead of the Sesame
Equation of States (see Fig. 12), without any significant
difference in the sound velocity. If one assumes that the
plasma flow is aligned along ks, the plasma velocity re-
quired to shift the resonance by 1.2 Å is of the order
of∼ 0.25cs. The hydrodynamic simulations predict that
the velocity vector is directed outward from the center of
target, so that φ ∼ 98◦. With such an angle, the plasma
flow velocity needed to Doppler shift the resonance by the
amount mentioned just above would be ∼ 1.2cs, a signifi-
cant and unlikely value for the central region of a gas bag
target. This conclusion indicates that if the resonance is
shifted due to the plasma expansion, it arises from hy-
drodynamic asymmetries which turn the velocity vector
in the ks direction. In view of the the probe beam angle
and intensity, a strong ponderomotive force could shift
the velocity vector in the right direction. However, the
simulations using the ponderomotive force module based
on PCGO14 suggest that this effect is not relevant here:
the added ponderomotive pressure is not strong enough
to rotate the local velocity vector significantly.

Another tentative explanation of the resonance shift
is related to the effect of the laser spectral width on
the energy transfer. Simulations conducted for spectrally
broadened interaction beams with ∆λspread = 2.5 Å have
shown that the simulated resonance peak is displaced to-
ward the value observed in the experiment by +0.25 Å,
as shown in Fig. 12. However, the resonance width also
appears larger, which tempers the relevance of this as-
sumption.

VI. CONCLUSION

The modeling of the macroscopic Crossed-Beam En-
ergy Transfer between Gaussian optical beamlets, such
as described by Paraxial Complex Geometrical Optics,
has been compared to (i) theoretical formulations of the
CBET gains in the case of laser beams propagating in
an inhomogeneous plasma, (ii) a time-dependent parax-
ial description coupled to a nonlinear fluid model with
the code Harmony, and (iii) measurements, in a gas-
bag experiment, of the CBET gain as a function of the
wavelength detuning between the crossing beams.

The PCGO-based CBET approach is shown to repro-
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Figure 12. (color) Linear gain curves as a function of the
wavelength detuning between the beams. The simulation re-
sults are presented as black open symbols and the experimen-
tal data points as green squares. Concerning the simulations,
the squares indicate the results obtained with the Sesame
EOS, and the circles those obtained with the ideal gas law.
The diamonds correspond to simulation results with a laser
spectral width of ∆λspread = 2.5 Å. The corresponding fits to
a Lorentzian gain function are presented as solid lines.

duce the linear gains and the beam deviation angles such
as given by the theory of a steady-state energy transfer
in an inhomogeneous plasma. A comparison to the time-
dependent paraxial simulations with the code Harmony
confirms that the PCGO-based approach is able to re-
produce correctly the linear gains on a large range of
parameters I2:1 and Iλ2

L, past a transient phase and in
the conditions where a steady-state regime exists. In the
latter cases, it is seen that the PCGO-based model (i)
reproduces the correct spatial repartition of the intensity
field inside the CBET region and provides a correct es-
timate of the beams deviations, and (ii) can be used to
estimate the location and the values of the amplitudes of
the IAWs excited interacting beams. In the cases where
a steady-state does not exist, the PCGO-based model
yields estimates of the linear CBET gain that is close to
the reference solution. The non-stationary situations re-
ported here are caused by the presence of two resonance
regions in the interaction volume with opposite energy
transfer directions. The speckle structure of the crossing
smoothed laser beams appears to play a role when the
number of speckles inside the crossing volume is small.
This case is more likely to occur for larger f-numbers as
compared to our study, and it might eventually lead to
an increasing error in the successive crossed beam inter-
actions.

Finally, a good agreement with a reference experiment
for CBET was found, with linear gains close to the mea-
sured ones, although slightly overestimated. This agree-
ment is significantly better than the previous estimates
made for this experiment. The model predicts optimal
wavelength detuning for the energy exchange slightly dif-
ferent than what is observed in the experiment. It is



15

unlikely that this discrepancy originates from a Doppler
shift effect, unless significant velocity asymmetries were
present in every shot. If one assumes that the linear gains
given by the PCGO-based model are overestimated, ac-
counting for the spectral width of the laser light gives
a gain function which could agree with all of the exper-
imental error-bars. Thus, the maximum gain detuning
observed in the experiment could be explained by statis-
tical fluctuations of the laser and plasma parameters.

These comparisons provide a solid validation of the
PCGO-based approach as a mean to model CBET at hy-
drodynamic scales. It is sufficiently fast to be coupled
to a large scale radiative hydrodynamic code, which is of
great interest for the modeling of CBET in ICF and the
design of high intensity laser-target experiments involv-
ing overlapping beams.
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