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A DRIFT-ASYMPTOTIC SCHEME FOR A FLUID DESCRIPTION OF
PLASMAS IN STRONG MAGNETIC FIELDS

FABRICE DELUZET∗, MAURIZIO OTTAVIANI†, STEFAN POSSANNER∗

Abstract. In this work we present a numerical scheme for the ion Euler equations with
Braginskii closure in the drift ordering of hot and strongly-magnetized plasmas. The
scheme is constructed with the aid of asymptotic-preserving techniques and can be used
on all time scales, ranging from the inverse cyclotron frequency to the time scales of plasma
transport and ion drifts. There is no severe time step restriction related to the choice of
time scale. Electrons are assumed adiabatic. The plasma is a three-dimensional slab in a
uniform magnetic field. We use the ion-temperature-gradient dispersion relation for the
scheme’s verification. The promising results show that this could be a first step towards
all-scale (all-speed) schemes for fluid tokamak simulations. Global plasma simulations
could be envisioned, with the possibility of adapting the numerical parameters to the
desired resolution.

1. Introduction

This work is about the numerical solution of the ion Euler equations with Lorentz force
term in three space dimensions, henceforth called the Euler-Lorentz (EL) system, and
written in dimensionless form:

(EL)



∂nε

∂t
+∇ · Γε = 0 ,

∂Γε

∂t
+∇ ·

(
Γε ⊗ Γε

nε

)
+

1

ε
∇pε +∇ · Πε

∧ =
1

ε

(
nεEε + Γε ×B

)
,

∂wε

∂t
+∇ ·

[Γε

nε
(wε + pε)

]
+∇ · qε∧ = Γε · Eε .

(1)

Here, nε stands for the ion density, Γε = nεuε is the ion flux (uε ∈ R3 denoting the mean
velocity), pε denotes the ion pressure and wε is the ion energy given by

wε =
3

2
nεT ε + ε

|Γ|2

2nε
, pε = nεT ε , (2)

where T ε denotes the ion temperature. The small parameter ε � 1 embodies the scaled
Larmor radius as well as the squared Mach number, as precised in section 2. The magnetic
field B is assumed to be given, with unit vector b := B/|B|, which defines the local
coordinates x = (x⊥, x‖) as

(x⊥)1 := [(Id− b⊗ b)x]1 , (x⊥)2 := [(Id− b⊗ b)x]2 , x‖ := x · b . (3)
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The electric field Eε = −∇φε relates to the plasma density nε via the Boltzmann relation
[38,41], which together with the quasi-neutrality yields

φε = Te ln
(nε
nc

)
, where nc = nc(x⊥) , Te = Te(t,x⊥) , (4)

where φε stands for the electrostatic potential; the equilibrium density nc and the electron
temperature Te are assumed to be known and independent of the ”parallel direction” x‖.
The terms Πε

∧ and qε∧ denote the gyro-viscous stress tensor and heat flux from the Bragin-
skii closure of magnetized fluids [4, 35].

The purpose of this work is the development of a numerical scheme with uniform proper-
ties with respect to the scaling parameter ε. The main difficulty is related to the degeneracy
of the momentum conservation law in the limit ε→ 0. To see this, let us define the parallel
flux Γ‖ ∈ R and the perpendicular flux Γ⊥ ∈ R3 via

Γ‖ := b · Γ , Γ⊥ := (Id− b⊗ b)Γ . (5)

The notation (5) will be used for arbitrary vectors in R3 throughout this work, as well
as for the gradient, ∇(·) = b∇‖(·) + ∇⊥(·). Setting formally ε = 0 in the momentum
conservation law in (1) leads to

∇‖p0 = n0E0
‖ , ∇⊥p0 = n0E0

⊥ + Γ0
⊥ ×B⊥ . (6)

In the limit regime, the perpendicular component of the momentum instantaneously adjusts
in order to establish a zero force balance. The second relation can be solved for Γ0

⊥, yielding
the ”drift approximation”

Γ0
⊥ =

n0E0 ×B

|B|2
− ∇⊥p

0 ×B

|B|2
. (7)

The first term in (7) denotes the electric-field drift and the second term stands for the
diamagnetic drift of the ions. The calculation of the perpendicular flux Γ0

⊥ in the limit
ε→ 0 is thus readily achieved by equation (7).

The equilibrium is different along the magnetic field lines. In this direction, the pressure
waves travel at an infinite speed in the limit ε → 0 in order for the pressure gradient to
balance the electric forces, securing by this mean the zero force regime. The computation of
the parallel flux Γ0

‖ in this low Mach regime is more intricate, since it has disappeared from

the first equation in (6). A first part of this work will thus be dedicated to the derivation of
an equation providing Γ0

‖ whatever the regime. This is achieved thanks to a reformulation of
the system providing an equivalent set of equations in which the drift limit is regular. This
is a standard approach for asymptotic preserving methods, a class of numerical methods
introduced at the beginning of the millennium [37] in the context of multi-scale kinetic
equations [15, 16, 26, 29, 30, 44]. The concept has since been transported to other areas of
multi-scale partial differential equations (PDEs) [17, 36]. Several AP-schemes have been
developed in the context of fluid equations with for instance investigations of the quasi-
neutral limit for plasma descriptions [11,12,21,22], the reduced MHD [24] or, closer to the
asymptotic adressed here, the low Mach number regime [9, 25, 45]. The present work is a
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continuation of a series of papers devoted to the drift-fluid limit [6, 7, 19]. Two strategies
have been introduced in these precedent realizations to overcome the degeneracy of the
parallel momentum equation. One is close to the methodology of the low Mach number
numerical methods, operating a wave equation in order to compute a pressure consistant
with the force equilibrium along the magnetic field lines [7]. The second approach [6, 19],
harness the parallel momentum as the Lagrange multiplier of the aligned force balance
constraint. Both approaches entail the resolution of anisotropic wave or diffusion equations
that degenerate in the drift limit. Indeed, in the ε → 0 limit the diffusion along the
magnetic line is infinite, and the computational domain being periodic, the dominant
operator kernel is populated by the functions with a vanishing aligned gradient. This a
common feature for the simulation of tokamak plasmas that has received a lot of attention
[14], specifically by means of asymptotic preserving methods [3, 18,23,40].

The objective of the present work is to bring the concepts initiated in precedent real-
ization to a richer framework in order to demonstrate the efficiency of the method and
to perform the numerical method verification. The targeted phenomenology is the de-
velopment of the Ion Temperature Gradient Instability (ITG) [10, 13] for which analytic
estimates can be compared to the numerical method outputs. With this aim, the modelling
used so far, in order to provide a proof of principle, has to be significantly complemented.
First, the isotherm [6, 7] or isentropic [19] plasma descriptions are substituted by a full
description of the ions, with an energy equation, furthermore the system incorporates Bra-
ginskii gyro-viscuous terms [4, 35] as mentioned above. The set up is also extended to a
fully three dimensional configuration with, for sake of simplifying the numerical schemes,
a magnetic field constant and align to one of the coordinates. The asymptotic-preserving
reformulation of the system is thus reworked in this enriched framework. In the precedent
realization [6, 7], the ill-posedness of the diffusion equation for vanishing ε is prevented
thanks to a differential characterization of the dominant operator kernel space [8] that
is not readily implemented for periodic geometries. In order to address accurately this
property, the duality based method [18] is operated for the resolution of the reformulated
system with a precision independent of the asymptotic parameter.

This article is organized as follows: in Section 2 the physical context of the plasma fluid
model is precised, with the definition of the scaling assumptions leading to its dimensionless
form. The asymptotic preserving reformulation is addressed in the Section 3 with the
numerical scheme detailed in the Section 4. A stability analysis of the scheme is investigated
by means of a Von Neumann analysis. Finally, Section 5 is devoted to the verification of
the scheme, scanning through the characteristic plasma time scales, from the cyclotron
period to the the drift wave period, which are well separated in fusion plasmas [34], with
a particular attention brought to the intermediate regime characterizing the ITG growth.

2. Physical context and scaling

2.1. Fluid equations for strongly magnetized plasmas. The model investigated here
is based on the Braginskii closure [4] for magnetized plasmas. Let m and Ze stand for
the ion mass and charge, respectively, e denoting the elementary charge and Z ∈ N. In
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physical variables, the fluid system (1) reads

∂n

∂t
+∇ · Γ = 0 ,

∂Γ

∂t
+∇ ·

(
Γ⊗ Γ

n

)
+

1

m
∇p+

1

m
∇ · Π∧ =

Ze

m

(
nE + Γ×B

)
,

∂w

∂t
+∇ ·

[Γ
n

(w + p) +
Γ

n
· Π∧

]
+∇ · q∧ = ZeΓ · E ,

(8)

where the ion energy is given by

w =
3

2
p+

m|Γ|2

n
. (9)

According to Braginskii [4, 35], the gyro-viscous stress tensor reads

Π∧ :=
p

2ωc
· 1

2

{
(b×Wu) · (Id+ 3b⊗ b) + [(b×Wu) · (Id+ 3b⊗ b)]t

}
, (10)

where ωc denotes the ion cyclotron frequency and where Wu is the rate-of-strain tensor
defined by

Wu := ∇u + (∇u)t − 2

3
(∇ · u) Id . (11)

The gyro-viscous heat flux is given by

q∧ :=
5

2

nT

mωc
b×∇⊥T . (12)

These gyro-viscous terms are independent of the collisional regime and have to be included
in fluid models of magnetized plasmas for the sake of a correct description of the drift limit.
We elaborate on this in more detail when we study the cancellation of the diamagnetic
drift terms in the linear, small-ε regime, c.f. section 4.2. Remark in particular that the
model (8) is non-dissipative.

Due to the small mass ratio between electrons and ions, the electron dynamics is much
faster than the ion dynamics. Thus, electron inertia can be rightfully neglected when
studying large scale phenomena. This leads to the ”Boltzmann relation” [41] along the
magnetic field lines:

ne(t, x‖,x⊥) = nc(x⊥) exp

[
e φ(t, x‖,x⊥)

kB Te(t,x⊥)

]
. (13)

Moreover, in this work we assume quasi-charge-neutrality, since we are not interested in
plasma waves. Then, setting ne ≈ n yields an equation for the electric potential,

φ =
kBTe
e

ln
( n
nc

)
. (14)

Since we assume Te and nc to be given in what follows, Eq. (14) completes our model; it
is to be solved self-consistently with the Eqs. (8), where the magnetic field is supposed to
be known.
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2.2. Nondimensional model equations. Let us now write the system (8) in dimension-
less variables. This will be useful for identifying the physical regime we are interested in
(drift ordering). We start by introducing a typical scale for all quantities. For instance,
n̄ stands for the plasma density scale, so that the physical plasma density writes n = n̄n′

where n′ = n′(t,x) is of order one. We also denote by x̄ and t̄ the typical space and time
scales we consider. The dimensionless fluid system completed with the potential equation
reads

∂n′

∂t′
+
t̄ū

x̄
∇′ · Γ′ = 0 ,

∂Γ′

∂t′
+
t̄ū

x̄
∇′ ·

(
Γ′ ⊗ Γ′

n′

)
+
kBT̄

m

t̄

ūx̄
∇′p′ + kBT̄

m

t̄

ωcx̄2
∇′ · Π′∧ =

ZeB̄

m
t̄
( Ē
ūB̄

n′E′ + Γ′ ×B′
)
,

∂w′

∂t′
+
t̄ū

x̄
∇′ ·

[Γ′
n′

(w′ + p′) +
ū

ωcx̄

Γ′

n′
· Π′∧

]
+
kBT̄

m

t̄

ωcx̄2
∇′ · q′∧ =

ZeB̄

m
t̄
m

kBT̄

ūĒ

B̄
Γ′ · E′ ,

φ′ =
kBTe
eφ̄

ln
(n′
n′c

)
.

(15)
The following parameters will characterize the plasma regime under consideration:

vth =

√
kBT̄

m
, ωc =

ZeB̄

m
, ρth =

vth
ωc

. (16)

Here, vth stands for the ion thermal velocity, ωc is the ion cyclotron frequency and ρth
denotes the ion Larmor radius related to their thermal velocity. Our choice of scales for
the independent variables is the following:

x̄ := L , t̄ :=
L2

vthρth
, (17)

where L stands for a macroscopic length scale, for instance the large radius of a Tokamak
vessel, and the time scale t̄ is known as the ”Bohm time”. We now introduce the small
parameter ε as the square of the ratio between the ion Larmor radius and the macroscopic
length scale L, signifying that we are interested in strongly magnetized plasmas:

ε :=
(ρth
L

)2

� 1 . (18)

Furthermore, we relate the characteristic macroscopic velocity ū to the chosen space and
time scales, respectively, leading to

ū :=
x̄

t̄
= vth

ρth
L

= vth
√
ε , =⇒ ū

vth
=
√
ε� 1 . (19)

It becomes clear that the flow velocities we aim to observe are small compared to the
thermal velocity; hence we are interested in the subsonic regime, characterized by a small
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Mach number. In order to complete the scaling, we suppose

Ē =
φ̄

x̄
, Ē = ūB̄ , kBT̄ = eφ̄ , T̄ = T̄e . (20)

The assumptions (17)-(20) represent the so-called ”drift-ordering” of the plasma fluid equa-
tions; applying them to system (15) and neglecting terms of order O(ε) in the energy
equation yields the scaled Euler-Lorentz model (1), completed with the scaled potential
equation (4). The primes will be omitted for clarity in the following.

3. Asymptotic-preserving reformulation

3.1. General considerations. In equation (6) we indicated that the drift limit ε→ 0 in
the (EL)-model requires a reformulation of the momentum conservation law, in order to
find the correct asymptotic equation for Γε‖. This reformulation is now presented in detail.

It is based on the works on asymptotic-preserving (AP) schemes for isothermal fluid models
summarized in [17] and implemented in [6, 7]. The reformulation is not unique, as several
different approaches can be taken to ”extract” the asymptotic behavior of Γε‖. Our aim
is to formulate a wave equation for Γε‖ by using the mass conservation law. In the limit
ε→ 0, the wave equation will degenerate to an elliptic problem along the field lines of B.
Depending on the boundary conditions, the elliptic problem has to be treated with care in
order to yield a unique solution Γ0

‖. We address the difficulty arising for periodic boundary
conditions in the subsection 3.2 - ”AP-formulation in a uniform B-field”.

Remark 1. The following paragraphs clarify the AP reformulation of the (EL)-system (1)
on the continuous level. We suggest that readers who are interested in the numerical scheme
go directly to Section 4 and consult Section 3 where necessary, since the reformulation can
be carried out (perhaps in a more intuitive way) also in the semi-discrete setting.

Proposition 1. Suppose that the (EL)-model (1) is posed with initial conditions (nε0,Γ
ε
0, w

ε
0),

and Γε
‖,0 is such that it satisfies the momentum conservation law at t = 0. Then, for ε > 0,

an equivalent formulation of the (EL)-model is obtained when replacing the momentum
conservation law with

ε
∂2Γε‖
∂t2
−∇‖

[
(T ε + Te)∇‖Γε‖

]
−∇‖

[
(T ε + Te)(Γ

ε
‖∇ · b +∇ · Γε

⊥)
]

+
∂b

∂t
· ∇
[
(T ε + Te)n

ε
]

+∇‖
[
nε
∂(T ε + Te)

∂t

]
= ε

∂

∂t

(
Γε · ∂b

∂t

)
− ε ∂

∂t

{
b ·
[
∇ ·
(
Γε ⊗ Γε

nε
+ Πε

∧

)]}
, (21a)

∂Γε
⊥

∂t
+
∂(b⊗ b)

∂t
Γε + (Id− b⊗ b)∇ ·

(
Γε ⊗ Γε

nε
+ Πε

∧

)
+

1

ε
∇⊥(nεT ε) (21b)

=
1

ε

(
− nε∇⊥φε + Γε

⊥ ×B
)
,

Proof. Let us recall the notation introduced in (5) and thereafter. Applying the projection
(Id− b⊗ b) on the momentum conservation law in (1) yields equation (21b). Taking the
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scalar product of the momentum conservation law with the unit vector b yields

∂Γε‖
∂t
− Γε · ∂b

∂t
+ b ·

[
∇ ·
(
Γε ⊗ Γε

nε

)]
+

1

ε
∇‖(nεT ε) + b · (∇ · Πε

∧) = −1

ε
nε∇‖φε . (22)

Now, due to the Boltzmann relation (4), one has

nε∇‖φε = ∇‖(Tenε) , (23)

such that the electric field term can be absorbed into the pressure gradient defined with
the sum of the electronic and ionic temperatures T ε + Te. Then, differentiating (22) with
respect to time, using ∂t∇‖(·) = ∂tb · ∇(·) + ∇‖∂t(·), further inserting into the pressure
term the mass conservation law stated as

∂nε

∂t
+∇ · (bΓ‖) +∇ · Γε

⊥ = 0 , (24)

and multiplying by ε leads to equation (21a).
Suppose now that ε > 0 and Γε‖ is a solution of (21a). Integrating this equation with

respect to time in the interval [0, s], and using that Γε‖ satisfies (22) at t = 0 (according to

our assumption), it follows that Γε‖ satisfies (22) also at t = s. Thus it is also solution of

the original momentum conservation law. Conversely, any solution of (22) satisfies (21a)
by construction. �

We recognize that the first two terms in equation (21a) form a wave equation along the

magnetic field lines with wave speed
√

(T ε + Te)/ε. In the drift limit ε → 0 information
thus propagates with infinite speed along the field lines, and Γ0

‖ is determined from an
elliptic equation:

−∇‖
[
(T 0 + Te)∇‖Γ0

‖

]
−∇‖

[
(T 0 + Te)(Γ

0
‖∇ · b +∇ · Γ0

⊥)
]

= −∂b

∂t
· ∇
[
(T 0 + Te)n

0
]
−∇‖

[
n0∂(T 0 + Te)

∂t

] (25)

Owing to (24), the equation (25) is equivalent to ∂t∇‖[(T 0 + Te)n
0] = 0. Supposing that

∇‖[(T 0 + Te)n
0]|t=0 = 0 we obtain that the force balance relation (6) along the field lines

is satisfied at all times. The reformulation in Proposition 1 thus yields the correct limit
solution and moreover permits the calculation of Γ0

‖, provided that (25) has a unique solu-
tion. We will address this point in the following subsection.

Another formulation can be stated instead of a wave equation, namely an integro-
differential equation. It mimics the equation constructed thanks to a time semi-discretization
and is thus more representative of the equations implemented in the numerical method.
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Proposition 2. For ε > 0, an equivalent formulation of the (EL)-model (1) is obtained
when replacing the momentum conservation law with

ε
∂Γε‖
∂t
−∇‖

[
(T ε + Te)

∫ t

0

∇‖Γε‖(s) ds
]
−∇‖

[
(T ε + Te)

∫ t

0

(Γε‖∇ · b +∇ · Γε
⊥)(s) ds

]
= −∇‖

[
(T ε + Te)n

ε
0

]
+ εΓε · ∂tb− εb ·

[
∇ ·
(
Γε ⊗ Γε

nε
+ Πε

∧

)]
, (26a)

∂Γε
⊥

∂t
− ∂(b⊗ b)

∂t
Γε + (Id− b⊗ b)∇ ·

(
Γε ⊗ Γε

nε
+ Πε

∧

)
+

1

ε
∇⊥(nεT ε) (26b)

=
1

ε

(
− nε∇⊥φε + Γε

⊥ ×B
)
,

where nε0 stands for the initial density nε(t = 0).

Proof. The proof starts as in Proposition 1. Then insert into equation (22) the relation
(23) and the identity

nε(t) = nε0 +

∫ t

0

∂nε(s)

∂s
ds, (27)

where under the integrand we insert the mass conservation law (24) at time s.
Letting ε→ 0 in equation (26a) leads to

−∇‖
[
(T 0 + Te)

∫ t

0

∇‖Γ0
‖(s) ds

]
−∇‖

[
(T 0 + Te)

∫ t

0

(Γ0
‖∇ · b +∇ · Γ0

⊥)(s) ds
]

= −∇‖
[
(T 0 + Te)n

0
0

]
.

(28)

If the mass conservation law is satisfied we can use (27) to deduce∇‖[(T 0+Te)n
0] = 0. Note

that the zero force regime is recovered without any assumptions on the initial conditions,
unlike the formulation of Proposition 1. �

3.2. AP-formulation in a uniform B-field. For the remainder of this work we assume
a uniform B-field in the z direction, B = b = ez. Moreover, we assume x = (x, y, z) ∈ Ω,
with the finite spatial domain Ω = [0, Lx]×[0, Ly]×[0, Lz] and periodic boundary conditions
in the z-direction. Now, the wave-like equation (21a) for the parallel flux reads

ε
∂2Γεz
∂t2
− ∂z

[
(T ε + Te)∂zΓ

ε
z

]
− ∂z

[
(T ε + Te)∇ · Γε

⊥

]
+ ∂z

[
nε
∂(T ε + Te)

∂t

]
= −ε∇ · ∂

∂t

(
ΓεΓεz
nε

)
− ε
(
∇ · ∂

∂t
Πε
∧

)
z
.

(29)

In the limit ε→ 0 we obtain the second order problem

−∂z
[
(T ε + Te)∂zΓ

ε
z

]
− ∂z

[
(T ε + Te)∇ · Γε

⊥

]
+ ∂z

[
nε
∂(T ε + Te)

∂t

]
= 0 , (30)
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which is ill-posed due to the periodic boundary conditions. The limit equation (30) only
accounts for the macroscopic part of the equation (29), associated to the dominant operator
in the limit ε → 0. Its solution is determined up to a function with a vanishing aligned
gradient, which can be determined thanks to the microscopic information contained in (29).
As mentioned in the introduction, there are multiple ways to restore the well posedness of
the problem for ε = 0, operating a decomposition of the solution into a part in the kernel
of the dominant operator defined by (30) complemented with a correction. The approach
implemented here harnesses the duality-based decomposition [18] of Γεz into its mean and
fluctuation along the z-direction. In what follows we denote the mean along z of a function
a(x, y, z) defined on Ω by

a(x, y) :=
1

Lz

∫ Lz

0

a(x, y, z) dz , (31)

The corresponding fluctuations are defined by

a′ := a− a , =⇒ a′ = 0 . (32)

Hence, there exist two unique functions ηε and ξε satisfying

Γεz = ηε + ξε , ξε = 0 . (33)

Inserting the decomposition (33) into (29) and integrating with respect to z yields the
equation for the mean,

∂2ηε

∂t2
= −∇ · ∂

∂t

(
Γε
⊥

Γεz
nε

)
−
(
∇ · ∂

∂t
Πε
∧

)
z
. (34)

This equation is coupled to (29), which is used to compute ξε:

ε
∂2ξε

∂t2
+ ε

∂2ηε

∂t2
− ∂z

[
(T ε + Te)∂zξ

ε
]
− ∂z

[
(T ε + Te)∇ · Γε

⊥

]
+ ∂z

[
nε
∂(T ε + Te)

∂t

]
= −ε∇ · ∂

∂t

(
ΓεΓεz
nε

)
− ε
(
∇ · ∂

∂t
Πε
∧

)
z
,

(35)

Remark that ∂zη
ε = 0 by construction. In the limit ε→ 0 equation (35) degenerates to

− ∂z
[
(T 0 + Te)∂zξ

0
]
− ∂z

[
(T 0 + Te)∇ · Γ0

⊥

]
+ ∂z

[
n0∂(T 0 + Te)

∂t

]
= 0 , (36)

which is now a well-posed problem for ξ0 due to the integral constraint ξ0 = 0. We see that
the duality-based AP reformulation based on (33) requires integration along the magnetic
field lines. This is easily done for straight field lines but remains challenging for field lines
that do not coincide with the space mesh. Different techniques exist for the latter case,
which we aim to employ in a forthcoming work.

For clarity, let us summarize here the obtained problem reformulation, based on the
wave equation for Γεz = ηε + ξε. We will work with an equation for the temperature T ε

instead of the energy wε (the conservative form of the fluid equations is not paramount for
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our scheme and more generally for plasma under large magnetic fields). The (AP)-model
corresponding to the (EL)-system (1) reads

(AP )



∂nε

∂t
+ ∂zΓ

ε
z +∇ · Γε

⊥ = 0 , Γεz = ηε + ξε , ξε = 0 ,

∂2ηε

∂t2
= −∇ · ∂

∂t

(
Γε

Γεz
nε

)
−
(
∇ · ∂

∂t
Πε
∧

)
z
,

ε
∂2ξε

∂t2
+ ε

∂2ηε

∂t2
− ∂z

[
(T ε + Te)∂zξ

ε
]
− ∂z

[
(T ε + Te)∇ · Γε

⊥

]
+ ∂z

[
nε
∂(T ε + Te)

∂t

]
= −ε∇ · ∂

∂t

(
ΓεΓεz
nε

)
− ε
(
∇ · ∂

∂t
Πε
∧

)
z
,

∂Γε
⊥

∂t
+∇ ·

(
Γε ⊗ Γε

⊥
nε

+ Πε
∧,⊥

)
+

1

ε
∇⊥(nεT ε) =

1

ε

(
− nε∇⊥φε + Γε

⊥ × ez

)
,

∂T ε

∂t
+∇ ·

(Γε

nε
T ε
)
− 1

3
T ε∇ ·

(Γε

nε

)
+

2

3

1

nε
∇ · qε∧ = 0 ,

φε = Te ln
(nε
nc

)
.

(37)

The system (37) is defined on [0, T ] × Ω ⊂ R3, where T > 0 and Ω is a rectangular
parallelepiped Ω = [0, Lx]× [0, Ly]× [0, Lz]. It is supplemented with initial conditions,

nε(t = 0,x) = nε0(x) , Γε(t = 0,x) = Γε
0(x) , T ε(t = 0,x) = T ε0 (x) , (38)

ε
∂Γεz
∂t

∣∣∣
t=0

+ ε∇ ·
(

Γε
0

Γεz,0
nε0

)
+ ∂z[(T

ε
0 + Te)n

ε
0]) + ε(∇ · Πε

∧,0)z = 0 , (39)

ηε(t = 0, x, y) =
1

Lz

∫ Lz

0

Γεz,0 dz , ξε(t = 0,x) = Γεz,0 − ηε(t = 0, x, y) , (40)

and boundary conditions,

Dirichlet: nε(t, 0, y, z) = nl , nε(t, Lx, y, z) = nr ,

T ε(t, 0, y, z) = Tl , T ε(t, Lx, y, z) = Tr ,

Neumann: ∂xΓ
ε(t, 0, y, z) = ∂xΓ

ε(t, Lx, y, z) = 0 ,

∂xη
ε(t, 0, y, z) = ∂xη

ε(t, Lx, y, z) = 0 ,

∂xξ
ε(t, 0, y, z) = ∂xξ

ε(t, Lx, y, z) = 0 ,

+ periodic boundary conditions in y and z.

(41)

Here, nl, nr, Tl and Tr are fixed constant densities and temperatures at the x-boundaries,
respectively.
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4. Drift-asymptotic numerical scheme

We shall now write the asymptotic-preserving numerical scheme for the (EL)-system
(1). The scheme is based on the ideas elaborated in the previous section, in particular
on the reformulation of the conservation law for Γεz, in a uniform magnetic field B = ez.
This reformulation is carried out here on the time semi-discrete level, which is simpler than
discretizing the (AP)-model (37) directly. After semi-discretization in time, in a second step
the spatial discretization is presented. We implement a finite volume scheme for hyperbolic
conservations laws [39], with an artificial viscosity of local Lax-Friedrichs (Rusanov) form.
A von Neumann stability analysis brings some insight into the CFL-condition on the time
step in our scheme.

4.1. Semi-discretization in time. In what follows we omit the superscript ε on the
unknowns for the sake of a more transparent notation. For a function a(t) defined on R+

we denote

am = a(tm) , tm =
m∑
q=0

(∆t)q−1 , (∆t)−1 = 0 , (42)

where (∆t)q is a variable time step, defined later via a CFL-condition. For more trans-
parency in the notation we set (∆t)q ≡ ∆t in what follows, even though variable time
stepping is allowed in the simulations. The starting point is a time semi-discretization,
where the implicitness of the parallel mass flux, the parallel pressure gradient as well as
the momentum in the Lorentz force are mandatory:

(EL)∆t



nm+1 − nm

∆t
+ ∂zΓ

m+1
z +∇ · Γm+1

⊥ = 0 ,

Γm+1
z − Γmz

∆t
+∇ ·

(
Γm/m+1 ⊗ Γmz

nm

)
+

1

ε
∂z[(T

m + Te)n
m+1] + (∇ · Πm

∧ )z = 0 ,

Γm+1
⊥ − Γm

⊥
∆t

+∇ ·
(
Γm ⊗ Γm

⊥
nm

+ Πm
∧,⊥

)
+

1

ε
∇⊥(nmTm)

=
1

ε

(
− nm∇⊥φm + Γm+1

⊥ × ez

)
,

Tm+1 − Tm

∆t
+∇ ·

(Γm+1

nm
Tm
)
− 1

3
Tm∇ ·

(Γm+1

nm

)
+

2

3

1

nm
∇ · qm∧ = 0 ,

φm+1 = Te ln
(nm+1

nc

)
,

(43)

where Γm/m+1 = (Γm+1
⊥ ,Γmz ) but this quantity could have been left totally explicit, as well

as the momentum in the temperature equation. However the resolution of the equations
can be sequenced is such a way that these implicitations come at no cost. Note that we used
relation (23) in the second equation and that the last equation furnishes an initial condition
for the electric potential φ0. Inserting now the density nm+1 from the first equation into the
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pressure term of the second equation, multiplying by ε, applying the unique decomposition
(33) for the parallel flux, i.e. Γm+1

z = ηm+1 + ξm+1 with ξm+1 = 0 and ∂zη
m+1 = 0, we

obtain the semi discrete AP-scheme

(AP )∆t



nm+1 − nm

∆t
+ ∂zΓ

m+1
z +∇ · Γm+1

⊥ = 0 , Γm+1
z = ηm+1 + ξm+1 , ξm+1 = 0 ,

ηm+1 − ηm

∆t
+∇ ·

(
Γm+1
⊥ ⊗ Γmz

nm

)
+ (∇ · Πm

∧ )z = 0 ,

ε

∆t
(ξm+1 + ηm+1 − Γmz ) + ε∇ ·

(
Γm/m+1 ⊗ Γmz

nm

)
−∆t∂z[(T

m + Te)∂zξ
m+1]

+ ∂z[(T
m + Te)n

m]−∆t∂z[(T
m + Te)∇ · Γm+1

⊥ ] + ε(∇ · Πm
∧ )z = 0 ,

Γm+1
⊥ − Γm

⊥
∆t

+∇ ·
(
Γm ⊗ Γm

⊥
nm

+ Πm
∧,⊥

)
+

1

ε
∇⊥(nmTm)

=
1

ε

(
− nm∇⊥φm + Γm+1

⊥ × ez

)
,

Tm+1 − Tm

∆t
+∇ ·

(Γm+1

nm
Tm
)
− 1

3
Tm∇ ·

(Γm+1

nm

)
+

2

3

1

nm
∇ · qm∧ = 0 ,

φm+1 = Te ln
(nm+1

nc

)
,

(44)

The cycle for solving the system (44) at each instant tm is as follows:

start loop: Γm+1
⊥ → ηm+1 → ξm+1 → (nm+1, Tm+1)→ φm+1 end of loop.

Some of the individual steps in the loop require a more detailed discussion:

- Computation of Γm+1
⊥ : For ε ≥ 0 and for a general magnetic field B, the simple

case B = ez included, we introduce the matrix ΩB, defined via ΩB(·) := (·) × B. The
matrix reads

ΩB =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 . (45)

We further introduce the parameter κ := ε/∆t. For κ > 0 the matrix κId−ΩB is invertible,
Id denoting the identity matrix,(

κId− ΩB

)−1

=
1

κ(|B|2 + κ2)

[
κ2Id + κΩB + (B⊗B)

]
. (46)

This last expression emphasizes the singularity of the matrix κId−ΩB in the limit κ→ 0.
However, the matrix [κId−ΩB] is invertible on the orthogonal of the b⊗b-operator kernel
for all values κ ≥ 0. The projector on this kernel orthogonal reads Id−b⊗b, which is the
projector on the local perpendicular plane with respect to B. Hence we define the matrix
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Θκ, invertible for κ ≥ 0,

Θκ := (κId− ΩB)−1(Id− b⊗ b) =
1

|B|2 + κ2
[κ(Id− b⊗ b) + ΩB] . (47)

With the help of this matrix, the perpendicular flux in system (44) is obtained as

Γm+1
⊥ = Θm

κ

[
κΓm
⊥ − ε∇ ·

(
Γm ⊗ Γm

⊥
nm

+ Πm
∧,⊥

)
−∇⊥(nmTm)− nm∇⊥φm

]
. (48)

Equation (48) is an expansion of the perpendicular flux at time tm+1 in powers of ε around
the drift approximation Γm

D , defined as

Γm
D := −nm∇⊥φm × ez −∇⊥(nmTm)× ez . (49)

Indeed, the drift approximation appears as the zero-order term in (48).

- Computation of ξm+1: the equation for the fluctuation ξm+1 of the parallel flux is
a one-dimensional heat equation in the parallel direction, with the constraint of zero mean
on the solution. The coordinates (x, y) appear only as parameters. This can be a strong
point of our scheme when thinking of parallelization. The constraint can be implemented
by introducing a Lagrange multiplier λm+1(x, y), independent of z. In particular, we solve

ε

∆t
ξm+1 −∆t∂z[(T

m + Te)∂zξ
m+1] + λm+1 = − ε

∆t
(ηm+1 − Γmz )− ε∇ ·

(
Γm/m+1 ⊗ Γmz

nm

)
− ∂z[(Tm + Te)n

m] + ∆t∂z[(T
m + Te)∇ · Γm+1

⊥ ]− ε(∇ · Πm
∧ )z , (50)

ξm+1 = 0 .

The Lagrange multiplier is an additional unknown which supplements the equation for the
constraint. Integrating equation (50) along z yields λm+1 ≡ 0.

4.2. Cancellation of the diamagnetic drift. The gyro-viscous stress tensor Πε
∧ and

heat flux qε∧ were included in the (EL)-model (1) for the sake of the correct description of
the low frequency physics in the drift regime ε� 1, in particular of the ion-temperature-
gradient (ITG) modes. In order to simplify the implementation of the numerical scheme,
we take into account only those gyro-viscous terms necessary for the correct ITG dispersion
relation, which is given in (90). Hence, we define

Πε
∧ :=

nεT ε

2

0 0 −2∂yu
ε
z

0 0 2∂xu
ε
z

0 0 0

 , qε∧ := −5

2
nεT ε

−∂yT ε∂xT
ε

0

 , (51)

which leads to

(∇ · Πε
∧)⊥ = 0 , (∇ · Πε

∧)z = −
{
nεT ε,

Γεz
nε

}
, ∇ · qε∧ = −5

2

{
nεT ε, T ε

}
, (52)

where {µ, ν} = ∂xµ∂yν−∂yµ∂xν stands for the Poisson bracket in the xy-plane. Employing
the relations (52) we shall explicitly account for the cancellation of the diamagnetic drift
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terms in our numerical scheme. Using the drift approximation (49), remark thus the
identities

∇ · Γm
D = {φm, nm} , Γm

D · ∇(·) = nm{φm, ·}+ {nmTm, ·} . (53)

We now use (52) and (53) to rewrite the semi-discrete system (43). For some number
σ ≥ 0, we rewrite the particle conservation law as

nm+1 − nm

∆t
+ ∂zΓ

m+1
z +∇ · [Γm+1

⊥ − σΓm
D ] + σ{φm, nm} = 0 , (54a)

the parallel momentum conservation law as

Γm+1
z − Γmz

∆t
+∇ ·

[
(Γm/m+1 − σΓm

D)⊗ Γmz
nm

]
+

1

ε
∂z[(T

m + Te)n
m+1] (54b)

+ σ{φm,Γmz }+ (σ − 1)
{
nmTm,

Γmz
nm

}
= 0 , (54c)

and, finally, the temperature equation as

Tm+1 − Tm

∆t
+∇ ·

[
(Γm+1 − σΓm

D)
Tm

nm

]
− 1

3
Tm∇ ·

[(Γm+1 − σΓm
D)

nm

]
+ σ{φm, Tm}+ (σ − 1)

5

3

Tm

nm
{nm, Tm} = 0 .

(54d)

In what follows, σ : R+ → [0, 1] will be some function with the properties

σ(0) = 1 , σ(ε) = 0 for ε ≥ 1 ,
σ(ε1)− σ(ε2)

ε1 − ε2

≤ 0 for ε1 6= ε2 . (55)

This function will serve as an ε-dependent switch, choosing between different formulations
in the regimes ε ∼ 1 and ε→ 0, respectively. For ε ≥ 1 one obtains the original formulation
(43). In the case ε = 0, however, we have σ = 1 and Γm+1

⊥ = Γm
D , such that the equations

(54) read

nm+1 − nm

∆t
+ ∂zΓ

m+1
z + {φm, nm} = 0 , (56a)

Γm+1
z − Γmz

∆t
+ ∂z

[(Γmz )2

nm

]
+

1

ε
∂z[(T

m + Te)n
m+1] + {φm,Γmz } = 0 , (56b)

Tm+1 − Tm

∆t
+ ∂z

(
Γm+1
z

Tm

nm

)
− 1

3
Tm∂z

(Γm+1
z

nm

)
+ {φm, Tm} = 0 . (56c)

Note that the diamagnetic drift is absent in the Poisson brackets, a consequence of the the
vanishing Larmor-radius as ε → 0. To lowest order, finite Larmor radius effects do not
contribute to the macroscopic plasma drift, fact which is guarantueed by the gyro-viscous
Braginskii terms (51). Note that the above manipulations on the system (43) carry over to
the AP-system (44). In our code we implemented a function σ that depends on γε, which
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is an indicator of the regime investigated, defined as the ratio of the small scale ε to the
squared mesh size (see equation (78)):

σ =

{
0 if γε > 1 ,

1 if γε ≤ 1 .
(57)

Remark 2. The rewriting of the scheme in the form (54) and the introduction of the switch
function σ are not related to the asymptotic preserving properties of the scheme but to that
of the conservation of specific equilibrium states. This feature will be discussed in more
detail for the ITG simulation. The definition (57) of the switch function σ is quite coarse,
with a non smooth transition from one formulation to another. Particular attention should
be paid to this definition in future work.

4.3. Space discretization. We implement a local Lax-Friedrichs (Rusanov) scheme [39]
for the space discretization of the system (44). The mesh covering the spatial domain
Ω = [0, Lx]× [0, Ly]× [0, Lz] is the following:

xi = (i− 1)∆x , yj = (j − 1)∆y , zk = (k − 1)∆z ,

∆x =
Lx

Nx − 1
, ∆y =

Ly
Ny − 1

, ∆z =
Lz

Nz − 1
,

(58)

where

i ∈ {1, . . . , Nx} , j ∈ {1, . . . , Ny − 1} , k ∈ {1, . . . , Nz − 1} . (59)

A function µ defined on Ω is approximated by its values at the nodes, µi,j,k = µ(xi, yj, zk).
Due to the periodicity in the y- and in the z-direction one has

µi,Ny ,k = µi,1,k ∀ i, k and µi,j,Nz = µi,j,1 ∀ i, j . (60)

To implement the Neumann boundary conditions (also called non-reflecting) in the x-
direction we install ghost points with the indices i = 0 and i = Nx + 1, repsectively, and
set

Γm
0,j,k = Γm

1,j,k and Γm
Nx+1,j,k

= Γm
Nx,j,k ∀ j, k,m . (61)

Space differentials are approximated by standard centered finite differences. In the Rusanov
scheme, for each unknown µm one defines an artificial numerical flux Qmµ ∈ R3 at time
m∆t. The components of the numerical flux in the different space direction are denoted by
Qmµ = (Xm

µ ,Ymµ ,Zmµ ). They are defined at the half-points, i.e. between the nodes defined
in (58). The artificial fluxes Qmµ will guarantuee the stability of the scheme, and are defined
as

Xm
µ,i+1/2 = −

ami+1/2

2
(µmi+1 − µmi ) ,

Ymµ,j+1/2 = −
amj+1/2

2
(µmj+1 − µmj ) ,

Zmµ,k+1/2 = −
amk+1/2

2
(µmk+1 − µmk ) ,

(62)
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for each unknown µ. Remark that, whenever a spatial index is not stated explicitly, it is
i, j or k, respectively. The local viscosities in (62) are determined from

ami+1/2 = max

(∣∣∣∣Γmxnm
∣∣∣∣ , ∣∣∣∣Γmx,i+1

nm

∣∣∣∣)+
√

max
Ω

(Tm + Te) ,

amj+1/2 = max

(∣∣∣∣Γmynm
∣∣∣∣ , ∣∣∣∣Γmy,j+1

nm

∣∣∣∣)+
√

max
Ω

(Tm + Te) ,

amk+1/2 = max

(∣∣∣∣Γmznm
∣∣∣∣ , ∣∣∣∣Γmz,k+1

nm

∣∣∣∣)+
√

max
Ω

(Tm + Te) ,

(63)

Note that we do not take a local but the global maximum of the temperature in these
relations; this stems from the fact that we want our scheme to conserve equilibria with
non-vanishing temperature gradients. Artificial viscosities am = am(x) would destroy such
a property. We remark also that the Rusanov scheme has usually less artificial viscosity
than the Lax-Friedrichs scheme, which is obtained for ami+1/2 = ∆x/∆t, amj+1/2 = ∆y/∆t

and amk+1/2 = ∆z/∆t.

Poisson brackets are discretized with the Arakawa scheme [1]. The discrete version of
the bracket {µ, ν} evaluated at the point (xi, yj) is defined as

{µ, ν}ij :=
1

12∆x∆y

(
µi+1jAij + µi−1jBij + µij+1Cij + µij−1Dij (64)

+µi+1j+1Eij + µi−1j−1Fij + µi−1j+1Gij + µi+1j−1Hij

)
,

where the coefficients read

Aij := +νij+1 − νij−1 + νi+1j+1 − νi+1j−1 , Eij := +νij+1 − νi+1j ,

Bij := −νij+1 + νij−1 − νi−1j+1 + νi−1j−1 , Fij := −νi−1j + νij−1 ,

Cij := −νi+1j + νi−1j − νi+1j+1 + νi−1j+1 , Gij := −νij+1 + νi−1j ,

Dij := +νi+1j − νi−1j + νi+1j−1 − νi−1j−1 , Hij := +νi+1j − νij−1 .

(65)

4.4. The CFL-condition. In the Rusanov scheme the artificial fluxes (62) provide the
numerical diffusion leading to stability. For this, the time step (∆t)m at time tm must
satisfy

(∆t)m <
1

max
i

(ami+1/2)/∆x+ max
j

(amj+1/2)/∆y + max
k

(amk+1/2)/∆z
. (66)

Note that the time steps computed in this way do not depend1 on ε, fact which stems
from discretizing stiff terms in (44) implicitly. Unfortunately, our numerical tests revealed
that the condition (66) is not sufficient for stability in all ε-regimes. Indeed, we shall show
that there is a more restrictive CFL-condition in an intermediate ε-regime, i.e. when ε
is of the order of (∆x)2 or (∆y)2, respectively, the square of the mesh parameters in the

1They depend implicitly on ε via the unknowns Γm, nm and Tm.
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perpendicular plane (to B). The situation is best explained by means of the following toy
model (B = ez): 

nm+1 − nm

∆t
+∇ · Γm

⊥ = 0 ,

Γm+1
⊥ − Γm

⊥
∆t

+
1

ε
∇⊥nm =

1

ε
Γm+1
⊥ × ez .

(67)

This simple model corresponds to the discretization of the rotation term (B-field term) in
(44). We analyze the numerical stability of a standard Lax-Friedrichs scheme for (67):

nm+1
α,β =

1

4
(nmα+1,β + nmα−1,β + nmα,β+1 + nmα,β−1)

− ∆t

2∆x
(Γmx,α+1,β − Γmx,α−1,β)− ∆t

2∆y
(Γmy,α,β+1 − Γmy,α,β−1) ,

ε

∆t
Γm+1
x,α,β − Γm+1

y,α,β =
ε

4∆t
(Γmx,α+1,β + Γmx,α−1,β + Γmx,α,β+1 + Γmx,α,β−1)

− 1

2∆x
(nmα+1,β − nmα−1,β) ,

ε

∆t
Γm+1
y,α,β + Γm+1

x,α,β =
ε

4∆t
(Γmy,α+1,β + Γmy,α−1,β + Γmy,α,β+1 + Γmy,α,β−1)

− 1

2∆y
(nmα,β+1 − nmα,β−1) .

(68)

Defining Um := (nm,Γmx ,Γ
m
y ) the system (68) may be written as Um+1 = AUm with matrix

A. A stability criterion in the L2-norm can be obtained with the von Neumann method; a
scheme is said to be stable if there exists a constant 0 < ν < 1 such that

||Um+1||2 ≤ ν||Um||2 , (69)

where the discrete L2-norm is defined as

||Um||2 :=

[
∆x∆y

∑
α

∑
β

(|nmα,β|2 + |Γmx,α,β|2 + |Γmy,α,β|2)

]1/2

. (70)

Inserting into (68) the grid wave functions

nmα,β = ei(α∆x)ξ ei(β∆y)η , Γmx,α,β = ei(α∆x)ξ ei(β∆y)η , Γmy,α,β = ei(α∆x)ξ ei(β∆y)η , (71)

we obtain a system Um+1 = A(ξ, η)Um. The three eigenvalues of the matrix A(ξ, η) are
denoted by λk(ξ, η) with k ∈ {1, 2, 3}; they are called the amplification coefficients of the
respective eigenvector. The scheme is stable if |λk(ξ, η)| ≤ ν for all (ξ, η) ∈ R2 and all k.
Otherwise, there may be Fourier components that grow during time iteration.
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It is easily shown that if one takes an explicit rotation term in (67), i.e. Γm
⊥ × ez, the

von Neumann analysis yields the CFL-condition

∆t <
1√
2

min
(√

ε∆x,
√
ε∆y, ε

)
. (72)

In this case the time step is severely restricted when ε is small, which is normal for explicit
time discretizations. With implicit rotation term, c.f. (68), using the inverse R−1 of the
rotation matrix R in the flux equations,

R =

(
ε

∆t
−1

1 ε
∆t

)
, R−1 =

1

1 + (ε/∆t)2

(
ε

∆t
1

−1 ε
∆t

)
, (73)

we find one eigenvalue of A(ξ, η) to be

λ3(ξ, η) =
1

2
[cos(ξ∆x) + cos(η∆y)] =⇒ |λ3| ≤ 1 . (74)

The other two eigenvalues can be estimated to

|λ1,2(ξ, η)|2 ≤ ε

ε2 + (∆t)2

[
ε

2
cos2(ξ∆x) +

(
∆t

∆x

)2

sin2(ξ∆x)

+
ε

2
cos2(η∆y) +

(
∆t

∆y

)2

sin2(η∆y)

]

≤ ε

ε2 + (∆t)2

{
max

[
ε

2
,

(
∆t

∆x

)2
]

+ max

[
ε

2
,

(
∆t

∆y

)2
]}

.

(75)

Consider first

case 1:

(
∆t

∆x

)2

<
ε

2
and

(
∆t

∆y

)2

<
ε

2
. (76)

Clearly one has |λ1,2(ξ, η)|2 < 1 but the time step is restricted by ε. In fact we obtained
the CFL-condition (72) without the restriction due to the rotation term, thus ∆t ∼

√
ε.

However, stability can be obtained also for

case 2:

(
∆t

∆x

)2

>
ε

2
and

(
∆t

∆y

)2

>
ε

2
. (77)

Then, from (75) we get

(∆t)2(γε − 1) < ε2 , γε :=
ε

(∆x)2
+

ε

(∆y)2
. (78)

For γε < 1 this relation holds for all ε and ∆t; in this case there is no restriction on the
time step. This is true in particular for ε → 0 and thus shows the importance of implicit
discretization of the rotation term (B-field term) in our AP scheme. On the other hand,
for γε > 1 we have the CFL-condition

∆t <
ε√

γε − 1
. (79)
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This condition can be restrictive in an intermediate ε-regime, i.e. when (∆x)2 < ε � 1.
Remark in particular that for ε ≈ ∆t equation (79) yields a CFL-condition of parabolic
type,

∆t <
2

1/(∆x)2 + 1/(∆y)2
. (80)

In the mixed case,

case 3:

(
∆t

∆x

)2

>
ε

2
and

(
∆t

∆y

)2

<
ε

2
, (81)

we obtain, similar to the CFL-condition (79),

∆t <
ε√

γε − 2
, γε =

2ε

∆x2
. (82)

The different CFL-conditions (66), (79) and (82) have been taken into account in our
(AP)-scheme as follows: first, we calculate the value of γε for the given space mesh and ε.
Then we choose the time step via

(∆t)m =

{
min(∆tRUS,∆tROT ) if γε > 1 ,

∆tRUS if γε < 1 ,
(83)

where we computed ∆tRUS from (66) and ∆tROT from (79) or from (82), respectively, with
a CFL-number 0.5.

5. Numerical tests

We now start the verification process of the new (AP)-scheme. In a first part we will
test our scheme regarding cyclotron modes, in order to show the capability of resolving fast
plasma dynamics. We then discuss the dispersion relation issued from perturbations of an
equilibrium with a temperature gradient in x. Due to this temperature gradient, yz-modes
may grow in the plasma, so-called ion-temperature-gradient (ITG) modes, fact which we
will use to test the (AP)-scheme against the ITG-dispersion relation, in particular growth
rates. Finally, we shall explore the solutions obtained in the drift limit ε→ 0, a regime that
is made accessible with our (AP)-scheme, thus showing its unique capability of resolving
all plasma time scales.

Throughout the verification process, we set Lx = 1 and Ly = 2 to define the perpendicu-
lar plane (the domain size Lz can vary for different tests and is indicated in the respective
section). Dispersion relations will be tested via the Fourier transform of the time signal
arriving in the point xo = (Lx/2, Ly/2, Lz/2). Let s(t) stand for such a signal measured at
this point, then its Fourier transform is denoted by ŝ(ω). The power (Fourier) spectrum
is then labeled as Aω := |ŝ(ω)|2.
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5.1. Cyclotron waves. Let us start with the verification of the fast plasma dynamics,
namely the cyclotron waves. In our scaling, the two cyclotron frequencies are

ω = ±ωc = ±1

ε
. (84)

We set Lz = 10 and chose the constant initial profiles

n0 = 1 , Γx,0 = 10−2 , Γy,0 = Γz,0 = 0 , T0 = Te = 1 , φ0 = 0 . (85)

Due to the absence of spatial gradients we shall observe only the pure cyclotron frequencies
(84), provided the time step ∆t is small enough. Instead of the CFL-condition (83) we shall
use a fixed time step which provides the necessary resolution, i.e. ∆t = 0.2 ε. The number
of mesh points in each direction is Nx = Ny = Nz = 20. Power spectra and absolute values
of signals s(t) = Γx(t,xo) for runs with ε ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8} are
shown in Figure 1. Since the time step is decreased with ε, the cyclotron waves are resolved

Figure 1. Simulation of cyclotron modes with the initial conditions (85).
Left: power spectra Aω for signals s(t) = Γx(t,xo) obtained with an
ε-dependent time step. Right: absolute value of s(t) for ε = 10−2 and

different time steps ∆t.

as ε→ 0. For ε = 0.01, the absolute values of the signals s(t) obtained with three different
time steps are observed in the right panel of Figure 1. Remark the damping of the signals
(negative slope), which vanishes as ∆t→ 0 and which is thus a numerical damping. This
is easily understood from our discretization of the Lorentz-force term:

Γm+1
⊥ − Γm

⊥ =
∆t

ε
Γm+1
⊥ × b . (86)

Scalar multiplication by (Γm+1
⊥ + Γm

⊥ ) shows that

|Γm+1
⊥ |2 − |Γm

⊥ |2 =
∆t

ε
(Γm+1
⊥ × b) · Γm

⊥ = − ∆t2

∆t2 + ε2
|Γm
⊥ |2 < 0 . (87)
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The damping of cyclotron waves could be eliminated by using a Cranck-Nicholson dis-
cretization instead of (86). This question, and more generally the derivation of higher
order numerical methods, is deferred to a future work.

5.2. ITG modes. Let us now perform some more challenging simulations, involving spa-
tial gradients. For this, we choose the following equilibrium state of the (EL)-system (1),
denoted with a subscript ’c’:

nc = 1 , Γc =

 0
v∗

0

 , Tc(x) = Te(x) = Tl + v∗x , φc = 0 . (88)

Here, v∗ stands for a constant drift velocity and Tl is the fixed temperature at x = 0. In

Figure 2. Solutions of the ITG dispersion relation (90) as functions of
ε1/2ky for ε = 10−5 (left) and for ε = 10−6 (right) with |v∗| = 2,

kz = 2π/300, Te = 2 and Tc = 2. The instability threshold stated in (91)
occurs where the imaginary part of ω becomes non-zero, indicated by the

dashed lines emerging from the plane Im(ω) = 0.

the following simulations we slightly perturb the equilibrium (88) at t = 0, i.e. we set

n0 = nc + 10−4 cos
(
my

2π

Ly
y +

2π

Lz
z
)

exp
(−(x− Lx/2)2

0.01

)
,

Γ0 = Γc , T0 = Tc , φ0 = 0 ,

(89)

where my stands for the y-mode number (mz is set to one). The reaction of the (EL)-
system to small perturbations can be predicted from the ITG-dispersion relation. The
dispersion relation is obtained by linearizing the system (1) with respect to the stationary
state (88), assuming that Γ⊥ = ΓD +O(ε), i.e. that one is close to the drift approximation
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for the perpendicular flux. Going to Fourier space (injecting plane wave solutions) in the
linearized system then yields the cubic dispersion relation

ω3 ε

k2
z

− ω
(5

3
Tc + Te

)
+ ω∗Te = 0 , (90)

with the drift frequency ω∗ := v∗ky. In order for (90) to have one real and two complex
conjugate roots, the discriminant of the cubic equation must be negative. This leads to
the condition

ky >
2

33/2

(
5
3
Tc + Te

)3/2

|v∗|Te
kz√
ε
. (91)

Solutions of the cubic equation (90) are plotted along with the cyclotron frequencies (84)
in Figure 2 as functions of ε1/2ky for two different values of ε and for |v∗| = 2, kz = 2π/300,
Te = 2 and Tc = 2. The threshold for instability (91) occurs where the imaginary part of
ω becomes non-zero, indicated by the dashed lines emerging from the plane Im(ω) = 0.

Remark 3. In our setting kz is quantized, with a minimum value of 2π/Lz. According to
(91) the instability occurs for ky ∼ ε−1/2, i.e. when the wavelength of the perturbation is of
the order of the Larmor radius, c.f. Eq. (18). The quantization of kz is a consequence of
our simplifying assumption that the magnetic field is pointing in the z-direction, B = ez.
We remark that magnetic configurations in Tokamaks are much more complicated; field
lines form helices, whose twists are indicated by the safety factor q, the number of times
a field line travels around the toroidal direction while it performs one round in the shorter
poloidal direction. In our case q = ∞ everywhere. For finite q, the quantization of k‖
(kz in our case) is revoked and there are regions in the Tokamak where k‖ ≈ 0. In this
situation unstable ITG modes can occur even for large scale perturbations, k⊥ ∼ O(1) (ky
in our case) . The generalization of the here presented AP-scheme to this situation will be
the topic of a future work, for which the present paper serves as a basis.

In what follows we set Tl = 3 and v∗ = −2. First, the evolution of the system initialized
thanks to (88)-(89) is simulated. We show the three-dimensional evolution of the density
n in one situation below the instability threshold (91), c.f. Figure 3, and in one above
the instability threshold, c.f. Figure 4. Below the threshold, a multitude of waves occur
from the initial state (my,mz) = (2, 1), oscillating with the cyclotron- as well as the ITG
frequencies. The density is not concentrated around its initial maximum at x = Lx/2, but
touches the domain boundaries x = 0 and x = Lx after short times. The amplitude of
the initial wave has decreased at t = 0.06 due to the numerical diffusion in the Rusanov
scheme2. The situation is different in Figure 4, where the amplitude of the signal is clearly
growing over time for the mode (my,mz) = (5, 1). On top of that, the density is concen-
trated around its initial maximum at x = Lx/2, and only at the start of the non-linear
phase, at t = 2 in the figure, begins to evolve towards the x-boundaries. Cyclotron modes

2Remark that no physical diffusion is present in the considered Euler-Lorentz system.
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Figure 3. Evolution of the density n below the instability threshold, here
for the mode (my,mz) = (2, 1) with parameters ε = 0.1, Lx = Ly = 1,

Lz = 3, Nx = Ny = 100, Nz = 20.

are completely suppressed in this situation and only frequencies of the ITG-dispersion re-
lation appear.

Our second task is to verify in more detail the (AP)-scheme by means of the dispersion
relation (90). We use a space grid with (Nx, Ny, Nz) = (40, 200, 20) and remind the reader
that the time step is computed from the CFL-condition (83). We ran two series of sim-
ulations: in the first series we set ε = 10−5, Lz = 100 and initialized separate runs with
y-modes my ∈ {1, 2, 3, 5, 7, 8} (mz = 1). In the second series we set ε = 10−5, Lz = 300
and initialized with the y-modes my ∈ {1, 2, 3, 4, 5, 6} (mz = 1). The simulated signals
s(t) = n(t,xo) and their corresponding Fourier spectra are depicted in Figures 5 and 6.
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Figure 4. Evolution of the density n above the instability threshold, here
for the mode (my,mz) = (5, 1) with parameters ε = 10−5, Lx = 1, Ly = 2,

Lz = 300, Nx = 40, Ny = 200, Nz = 20.

In the plots of the Fourier spectra (each spectrum corresponds to the respective signal
above), the exact ITG frequencies issued from the dispersion relation (90) are shown as
well (dashed lines). A good agreement between theory and simulation is observed in Figure
5. We remark that no growing mode occurs; all parameter sets lie below the instability
threshold. On the contrary, one observes a damping of the signals, which is due to nu-
merical diffusion in the Rusanov scheme, c.f. the fluxes (62). The agreement with theory
is also good in Figure 6; here, however, one observes growing modes for my ≥ 3. In the
corresponding Fourier spectra only one peak is observed. This is because the amplitudes
of the other two branches of the dispersion relation are negligible compared to the growing
branch. The frequency of the growing branch is in almost perfect agreement with theory.
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Figure 5. Signals s(t) = n(t,xo) (subplot-lines one and three) and
corresponding Fourier spectra (to the respective signals above) simulated

with ε = 10−5, Lz = 100 and (Nx, Ny, Nz) = (40, 200, 20) for different
modes (my, 1). The dashed lines in the plots of the Fourier spectra show

the exact ITG frequencies computed from (90).

Finally, we compare the simulated growth rates to their theoretical values. This is
done for the parameter sets (ε = 10−5, Lz = 300) and (ε = 10−6, Lz = 1000) in Figure
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Figure 6. Signals s(t) = n(t,xo) (subplots in lines one and three) and
corresponding Fourier spectra (to the respective signals above) simulated

with ε = 10−5, Lz = 300 and (Nx, Ny, Nz) = (40, 200, 20) for different
modes (my, 1). The dashed lines in the plots of the Fourier spectra show

the exact ITG frequencies computed from (90).

7. Only the growing branch (Im(ω) > 0) is found in the simulations, the amplitudes of
the decreasing branch are too small in comparison. Remark that the first parameter set
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(left subplot) corresponds to the signals shown in Figure 6. We see that the instability
threshold is reproduced accurately, i.e. the imaginary part of ω is zero (or even negative
due to numerical damping) below the theoretical threshold. The discrepancy with the
theoretical growth rates for large wave numbers ky � 1 is due to the numerical diffusion.
Finer spatial resolution is required in order to reduce the numerical diffusion, which in turn
leads to increased computational cost.

Figure 7. Comparison of the simulated growth rates (black squares) with
the theoretical values issued from the dispersion relation (90) (solid lines).

Only the growing branch (Im(ω) > 0) is found in the simulations, the
amplitudes of the decreasing branch are too small in comparison.

5.3. Drift waves. In our last series of tests we set ε equal to zero and take full advantage
of the AP-property of our scheme. In this regime, the dispersion relation (90) yields the
drift frequency

ω0 := ω∗
Te

5
3
Tc + Te

. (92)

Simulations were carried out on the space mesh 40×200×20 with the time step computed
from (83). Results of runs with different mode numbers my are depicted in Figure 8. In
the signals s(t) = n(t,xo) on the left panel we remark a boundary layer at t = 0; in the
drift limit, the scheme immediately restores the force balance in the z-direction as well
as the drift-approximation in the perpendicular plane, leading to the boundary layer for
ill-prepared initial conditions. In the right panel we observe good agreement between the
simulated drift-wave frequencies and the theoretical value ω0.

6. Conclusion

Fluid models are an important tool for the study of large scale plasma phenomena in
fusion devices such as tokamaks. This work demonstrates that all-scale (all-speed) nu-
merical schemes are possible for the plasma fluid equations with Braginskii closure. Our
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Figure 8. Simulation results in the regime ε→ 0. Left: signals
s(t) = n(t,xo) in the drift limit for different modes (my, 1). Remark the

boundary layer at t = 0. Right: comparison of simulated frequencies (black
squares) with the theoretical value ω0 (solid line).

asymptotic-preserving scheme is shown to correctly describe fast cyclotron waves on one
end and low-frequency drift waves on the other end of the spectrum. The correct descrip-
tion of growing ITG modes has been demonstrated as well. The core of the scheme is an
a priori reformulation of the flux conservation law, which permits the correct computation
of the parallel flux in the drift limit. Future tasks involve the generalization of the code to
more complex geometries, with the aim to approach realistic, global tokamak simulations.

Acknowledgments. This work has been carried out within the framework of the EU-
ROfusion Consortium and has received funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053. The views and opinions ex-
pressed herein do not necessarily reflect those of the European Commission.
Furthermore, the authors would like to acknowledge support of the“Agence Nationale de la
Recherche” (ANR) in the frame of the contract BOOST (Building the future Of numerical
methOdS for iTer) and from the ANR MOONRISE (MOdels, Oscillations and NumeRIcal
SchEmes) under the reference number ANR-14-CE23-0007.

References

[1] A. Arakawa, Computational design for long-term numerical integration of the equations of fluid mo-
tion: two-dimensional incompressible flow. Part I, Journal of Computational Physics 135 (1997)
103–114.

[2] M.A. Beer and G.W. Hammett, Toroidal gyrofluid equations for simulations of tokamak turbulence,
Physics of Plasmas (1994-present) 3.11 (1996): 4046-4064.

[3] C. Besse, F. Deluzet, C. Negulescu and C. Yang, Efficient numerical methods for strongly anisotropic
elliptic equations, Journal of Scientific Computing, 55(1) (2013), 231-254.



AP-SCHEME FOR EULER-LORENTZ 29

[4] S.I. Braginskii, Transport processes in a plasma, Reviews of plasma physics 1 (1965): 205.
[5] A.J. Brizard and T.S. Hahm, Foundations of nonlinear gyrokinetic theory, Reviews of modern physics

79.2 (2007): 421.
[6] S. Brull, P. Degond, and F. Deluzet, Degenerate anisotropic elliptic problems and magnetized plasma

simulations, Communications in Computational Physics, 11(1) :147178, 2012.
[7] S. Brull, P. Degond, F. Deluzet and A. Mouton, An asymptotic preserving scheme for a bifluid Euler-

Lorentz system, Kinetic and related models, 4 (2011), 10-40.
[8] S. Brull, F. Deluzet, and A. Mouton, Numerical resolution of an anisotropic non-linear diffusion

problem, Communications in Mathema- tical Sciences, 13(1) :203224, 2015.
[9] F. Cordier, P. Degond, A. Kumbaroa, An Asymptotic-Preserving all-speed scheme for the Euler and

NavierStokes equations, Journal of Computational Physics, 231(17), 56855704, 2012
[10] S.C. Cowley, R.M. Kulsrud and R. Sudan, Considerations of ion-temperature-gradient-driven turbu-

lence, Physics of Fluids B: Plasma Physics, 3(10), (1991), 2767-2782.
[11] P. Crispel, P. Degond and M.-H. Vignal, An asymptotically stable discretization for the EulerPoisson

system in the quasi-neutral limit, Comptes Rendus Mathematique 341.5 (2005): 323-328.
[12] P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-

Poisson model in the quasineutral limit, Journal of Computational Physics 223.1 (2007): 208-234.
[13] N. Crouseilles, P. Glanc, S. Hirstoaga, E. Madaule, M. Mehrenberger, J. Ptri, A new fully two-

dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron insta-
bility to ITG turbulence, Eur. Phys. J. D, 68 11, p. 252, (2014).

[14] N. Crouseilles, M. Kuhn, and G. Latu. Comparison of numerical solvers for anisotropic diffusion
equations arising in plasma physics, Journal of Scientific Computing, pp.1-38, 2015.

[15] N. Crouseilles, M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition
for collisional Vlasov equations: diffusion and high-field scaling limits, Kinetic Related Models, 4, pp.
441-477, (2011).
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