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Abstract. The implementation of a resistive wall in the nonlinear MHD code JOREK
[M Hoelzl et al, J. Phys. Conf. Series 401 012010 (2012)] has been tested against an
analytic theory for the stability of resistive wall modes (RWMs) in cylindrical geometry.
For a range of wall positions and wall resistivities, there is good agreement between the
calculated linear growth rate of the resistive wall mode in large aspect ratio and that
predicted theoretically. Following this successful benchmark of the code, the evolution
of resistive wall mode instabilities in a high pressure, high safety factor scenario for
ITER has been studied. The RWM growth and behaviour is as expected confirming
that the numerical implementation of a resistive wall in JOREK is ready for further
exploitation.
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1. Introduction and Background

In the steady-state 9MA scenario planned for ITER [1, 2], prolonged plasma operation

is facilitated by high pressure and low plasma current leading to high self-generated

non-inductive bootstrap current fraction. Furthermore, plasma scenarios considered for

next-step fusion reactor designs usually consider plasmas with high plasma pressure to

accentuate the non-inductively driven current in order to achieve steady-state plasmas

[3, 4, 5]. Indeed, the EU Power Plant Conceptual Study (PPCS) [6] concluded

that in order to operate a fusion power plant to produce electricity at economically

attractive rates, plasma performance beyond the ITER baseline level [2] is required

[7]. However, such plasma parameters make the discharges more susceptible to

deleterious magnetohydrodynamic (MHD) instabilities which would not be unstable

with conventional H-mode profiles. The ITER steady-state scenario is designed to

operate slightly above the no-wall beta limit, meaning that the stability and control

of the resistive wall mode (RWM) is a significant concern. Reversed shear discharges

have low plasma inductance (li < 0.8), as the current density peaks off axis, and

have predominantly peaked pressure profiles. Both of these facets make such advanced

scenarios more prone to kink instabilities manifest as RWMs. The RWM is a macroscopic

pressure-driven kink mode, whose stability is mainly determined by damping arising

from the relative rotation between the fast rotating plasma and the slowly rotating wall

mode. In the absence of a surrounding wall, the plasma is stable to kink modes until

the normalised plasma pressure, β = 2µ0〈p〉/B2, exceeds a critical value, β∞. Here 〈p〉
is the volume averaged plasma pressure and B is the magnetic field. In the presence of

an ideally conducting wall, the plasma is stable to a critical value, βb, with the range

β∞ < β < βb called the wall-stabilised region. In practice, the vessel wall has a finite

resistivity. Thus, on the time scale required for eddy currents to decay resistively, the

magnetic perturbation of the external kink mode can penetrate the wall and so wall-

stabilisation is lost.

It has been shown in a number of machines that the plasma can in fact operate

above the no-wall β-limit [8, 9, 10, 11], even with very low rotation [12, 13, 14]. Whilst

the RWM is often treated linearly, there are numerous empirical observations which

indicate nonlinear behaviour of the mode interacting with other plasma instabilities [15],

energetic particles [16, 17] and plasma rotation [18]. Consequently, in order to make

reliable extrapolation to ITER, it is important to understand the nonlinear evolution

of the RWM above the predicted no-wall stability limits. The evolution of the RWM

has been studied previously analytically [19] and with MARS-Q [20], NIMROD [21] or

M3D [22], in each case with different assumptions in the nonlinear models. The JOREK

code, a nonlinear MHD code, has been extended to include a resistive wall boundary

condition [23] allowing studies, for instance, of the nonlinear evolution of resistive wall

modes. The implementation of the resistive wall in JOREK is outlined in section 2,

before a benchmarking of this implementation against analytic theory is presented in

section 3. Finally, the first nonlinear simulations of resistive wall mode behaviour in
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ITER are shown in section 4.

2. Implementation of a resistive wall in JOREK

JOREK is a nonlinear code which solves the reduced MHD equations in toroidal

geometry [24, 25]. In the poloidal plane, third order Bézier finite elements are used as

the spatial discretisation [26], whereas in the toroidal direction a Fourier decomposition

is employed. Thus a 3D model of the plasma can be simulated. A resistive wall model

has been implemented [23] for JOREK via a coupling to the STARWALL code such

that the interaction of the plasma with 3D conducting structures can be investigated.

2.1. JOREK Equilibrium

JOREK requires the density, temperature and FF ′ profiles (where F = RBφ, R is the

major radius and Bφ is the toroidal magnetic field) and the plasma geometry as input.

In addition to minor and major radii, the computational boundary is defined by either

the values of the poloidal flux Ψ on the boundary at given (R,Z) coordinates or the

ellipticity, triangularities and quadrangularities. After initialisation, JOREK defines

the computational boundary and the initial grid for solving the equilibrium. When the

flux surfaces have been calculated, the grid is adjusted to align with the flux surfaces.

2.2. Reduced MHD Equations

In the present work, the following reduced MHD model has been used:

• 1

R2

∂Ψ

∂t
= η(T )∇ ·

( 1

R2
∇⊥Ψ

)
=

1
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where η is the plasma resistivity, T is the plasma temperature, u is the stream function,

v is the velocity, ρ is the density, J is the current density, B is the magnetic field,

∆∗ = R2∆ · (R−2∇), j is the toroidal current density, ω is the vorticity, Sρ is a density

source, κ is the ratio of specific heats, and ST is a temperature source. K is the transport

coefficient, and D is the particle diffusivity. The magnetic field is defined as

B =
F0

R
êφ +

1

R
∇Ψ× êφ

and the flow as

v = −R∇u× êφ + v‖B
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The weak form of each equation is calculated using test functions equivalent to

the JOREK basis functions – Bézier and Fourier basis functions [27] – and any higher

derivatives can be reduced by partial integration. The physical quantities are also

expanded in the basis functions. The time stepping uses a Crank-Nicholson or Gear’s

scheme.

2.3. Coupling JOREK and STARWALL

The default boundary conditions in JOREK consist of a computational domain

surrounded by an ideally conducting wall. When implementing the free boundary

conditions, the boundary integral in the weak form of the current equation remains

finite. The STARWALL code [28] solves the magnetic field equation in a vacuum (as

a Neumann-like problem). The code can do this in the presence of 3D conducting

structures (generally referred to collectively as the “wall”) which can include holes,

coils and other 3D structures. This allows the inclusion of realistic wall geometry, and

modelling MHD stability in machine-specific configurations.

The wall is modelled as infinitesimally thin triangles with the surface currents

assumed to be constant within each wall triangle. The wall is also characterised by its

effective resistance ηw/dw where ηw is the wall resistivity (JOREK-normalised) and dw
the wall thickness. STARWALL has previously been coupled to the CASTOR MHD

code to perform linear stability studies with a resistive wall [29].

A detailed description of how JOREK is coupled to STARWALL can be found in

reference [23]. In the coupling of STARWALL to JOREK, the boundary condition is

given by the component of the magnetic field normal to the boundary of the JOREK

computational domain in the poloidal plane. This boundary is often referred to as

the interface [23]. STARWALL generates response matrices for the specified 3D wall

structure which can be used to express the magnetic field component tangential to the

interface in terms of the normal component.

3. Benchmarking the resistive wall implementation in JOREK

The implementation of the JOREK-STARWALL coupling has previously been

benchmarked against the linear MHD code CEDRES++ [30]. In order to validate the

n = 0 component, the free boundary equilibrium of an ITER-like limiter plasma was

computed by JOREK and compared to the same equilibrium computed by CEDRES++.

It was found that the results agreed well, with small differences ascribed to the

discretisation of the poloidal field coils, as described in reference [23].

Here we demonstrate benchmarking of the resistive wall implementation against an

analytical treatment of the Resistive Wall Mode. The growth rate of the ideal kink in

a cylindrical plasma of circular cross section, can be calculated analytically [31]. The

wall is assumed to be resistive, of thickness d at radius rw > a, where a is the plasma

minor radius. The plasma current is a channel, where J = Jz ẑ. The step function is
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characterised by the parameter r0 such that

Jz(r) =

{
J0 r ≤ r0
0 r > r0

(1)

where r0 < a is the width of the current channel. We also assume zero pressure in the

plasma, and a step function for the plasma density with the step located at the same r0
as the current density profile. From the expression for the current density, the poloidal

magnetic field and the safety factor profile can be calculated (with a constant toroidal

field Bz(r) = B0). The safety factor is constant at q0 = 2B0/(Rµ0J0) within the radius

of the current channel, and then increases parabolically to the edge of the plasma.

q(r) =

{
q0 r ≤ r0

q0
r2

r20
r > r0

(2)

Following the calculation found in [31], and assuming modes of the form

ψ(r, θ, z) = ψ(r)eimθ−inz/R

with m,n the poloidal and toroidal mode numbers respectively, and ψ the perturbed

flux. The torque balance equation can be calculated from the z component of the curl

of the vorticity equation.

∇2
⊥ψ −

µ0m

Bθ(m− nq)
dJz
dr

ψ = iγ
µ0r

Bθ(m− nq)
∇× (ρv) · ẑ (3)

where ρ is the plasma density, γ is the growth rate and v the plasma velocity. Assuming

an incompressible, ideal plasma, and using Faraday’s law, it is possible to expand the

right hand side of Equation 3 to obtain

∇2
⊥ψ−

µ0m

Bθ(m− nq)
dJz
dr

ψ = iγ
µ0r

Bθ(m− nq)
ρ∇2
⊥

[ rψ

Bθ(m− nq)
+
dρ

dr

d

dr

( rψ

Bθ(m− nq)

)]
(4)

Equation 4 is reduced to ∇2
⊥ψ = 0 for 0 ≤ r < r0 and r0 < r ≤ a: this is the

vacuum equation for ψ. The jump condition

rψ
′

ψ

∣∣∣
r0

+
2m

m− nq0
= (γτA)2 q2

0

(m− nq0)2

rψ
′

ψ

∣∣∣
r0−

(5)

is calculated by integrating Equation 4 across the jump at r = r0, where the Alfven

time is τA =
√
µ0ρ0R/B0, and ρ0 is the plasma density at the plasma centre.

For a resistive wall located at rw > a, the second jump condition is given by

rψ
′

ψ

∣∣∣
rw

= 2γτw (6)

where τw is defined as the field penetration time for the m=1 mode, τw = µ0σrwd/2,

σ is the wall conductivity. Equations 4, 5, and 6 combine to give an equation for the

growth rate, γ, of the RWM [31]

ν

m− nq0
− 1

1− γτw
(γτw+µ)

(
r0
rw

)2µ =
(γτA)2

2

q2
0

(m− nq0)2
(7)

where ν =sgn(m), µ = |m|.
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It is possible to neglect the effect of plasma inertia with the ordering γτA << 1,

γτw ∼ 1. However, the inertia contribution will be included in the benchmarking. The

inertia contribution is essential to capture the behaviour of the plasma when the wall

radius is large. Equation 7 is cubic, with one primary root corresponding to the RWM,

and two complex conjugate roots to the plasma mode.

In the no-wall limit, τw = 0 (or rw →∞). The ideal kink should be unstable, which

leads to the condition

m− ν < nq0 < m (8)

In the ideal wall limit, τw →∞, with the wall location at r = rw. The wall radius

ridealw at which the ideal kink is found to be marginally stable (i.e. γ = 0) is given by

ridealw = r0

(
1− (m− nq0)

ν

)− 1
2µ

(9)

For wall radii rw > ridealw , the ideal kink will be unstable. For these radii, the plasma

inertia contribution to Equation 7 is necessary.

The toroidal mode number was taken as n = 1, and, given that, m = 2 was

discovered to be the most unstable poloidal mode number for this analytic equilibrium.

The plasma equilibrium used in JOREK has a circular cross section, and an aspect ratio

R/a = 10 to allow comparison to Equation 7, which was derived in a cylindrical plasma.

To reproduce the density and current profiles in JOREK, approximations to a step

function are used since the discontinuities at r = r0 would be difficult numerically. The

level of smoothing employed was tested, but the simulations were found to be insensitive

above a threshold.

An individual STARWALL response matrix is required for each of ten wall radii

tested from rw = 1.1m to rw = 8.0m. Since n = 1 is the most unstable mode, only

n = 1 modes are included in these linear benchmark simulations. The time taken to

establish a linear eigenmode is dependent on the wall radius. In the following results,

q0 = 1.1 and the current and density steps are located at ψN,0 = 0.8. The marginal wall

radius ridealw = 1.59a for growth of an ideal kink mode in JOREK is found to agree with

Equation 9.

The plasma was surrounded by a resistive wall, with resistivities ranging from

2.5 × 10−1Ωm to 2.5 × 10−6Ωm. The growth rates show the expected behaviour for a

RWM as the resistive wall is moved further from the plasma: the stabilising influence

of the wall is reduced and the growth rate increases, levelling out as the wall moves

to infinity (see figure 1). Additionally, the more conductive the wall, the greater the

stabilising influence it exerts on the plasma. The JOREK growth rates can be compared

to the calculated growth rates, using Equation 7. A comparison between the analytical

and JOREK growth rates can be seen for two different wall resistivities in Figures 1 and

2. The agreement is reasonably good although at the higher wall resistivity there is a

slight disagreement when the wall is located close to the plasma edge.

The inertia is important for larger wall radii, where rw > ridealw , in which case,

equation 7 is cubic in γ. One solution will correspond to the RWM, and the two
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Figure 1. The RWM growth rate as a function of the resistive wall position as
predicted by Equation 7 and calculated by JOREK for ηw = 2.5 × 10−4Ωm. At
smaller wall radii, JOREK finds larger growth rates than the analytic estimate.

Figure 2. The RWM growth rate as a function of the resistive wall position as
predicted by Equation 7 and calculated by JOREK for ηw = 2.5 × 10−5Ωm. The
analytic and JOREK simulation growth rates are, for this wall resistivity, very good.

complex conjugate solutions correspond to the plasma mode. Figure 3 shows the results

of including the inertia term for a range of wall radii. For wall radii such that rw < ridealw ,

inertia is not a significant contribution to the calculation of the growth rate of the

mode. As shown by the dark blue markers, the JOREK growth rate and the analytic

calculation excluding the inertia term agree well. For larger wall radii, the dark blue

markers showing the analytic growth rate without inertia included disagree substantially
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Figure 3. The RWM growth rate as a function of the resistive wall position as
predicted by Equation 7 and calculated by JOREK for ηw = 2.5 × 10−1Ωm. The
inclusion of the inertia correction into the analytic growth rate equation is crucial for
calculating the growth rate for larger wall radii.

with the JOREK results. The inclusion of inertia resolves the discrepancy.

4. ITER simulations with JOREK and realistic wall

Having benchmarked the JOREK-STARWALL coupling against analytic theory for

RWM stability, the numerical implementation has been applied to study the resistive

wall mode evolution in an ITER advanced scenario plasma, which is expected to

experience RWMs at high normalised pressure.

4.1. ITER Equilibrium

The inclusion of the resistive wall is useful while investigating the nonlinear MHD

physics in ITER advanced scenarios. The key features that need to be included in the

equilibrium are the reversed safety factor profile and a sufficiently high βN (above the

no-wall limit) with a plasma current Ip = 9MA, a toroidal field BT = 5.3T, a bootstrap

fraction fbs = 0.52 giving a fusion yield Q = 5. Previous simulations of the advanced

scenarios for ITER can be found in [32, 33]. The wall is modelled as a thin shell and

we consider two cases. The first is an approximation to the ITER first wall, whilst the

second is closer-fitting than the ITER first wall. The two wall positions used are shown

in Figure 4. A no wall situation can be simulated by setting the wall resistivity very

high (∼ 109).

An equilibrium is constructed with the plasma shape shown in figure 4, a hollow

current profile, as shown in figure 5 and the normalised pressure βN = 2.8 is above the

no-wall limit. This gives rise to a safety factor profile as shown in figure 6. The βN can

be raised by scaling the magnetic field. The linear no-wall pressure limit is found to be
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Figure 4. The ITER plasma boundary used in JOREK in R,Z coordinates compared
to the two ITER wall positions simulated with STARWALL: one like the wall designed
for ITER (dashed) and a second conformal closer-fitting wall (dotted).

β∞N = 2.4 with n = 1 being the most unstable mode. The with-wall limit is found to

be βbN = 3.4 in accordance with previous linear stability calculations for a very similar

equilibrium [34] using the MISHKA-F code [35].

4.2. Single mode nonlinear stability simulations

After establishing an initial equilibrium with suitable parameters, it can be evolved in

time. It is necessary to include finite profiles for the plasma resistivity and viscosity

in order to avoid numerical instability. Without dissipation in the plasma, small scale

structures which may develop cannot be resolved by the code. Dissipation will limit how

fine these structures become. This allows further evolution, through a linear phase to

saturation of the mode. The mode found is a global mode, with a displacement across

the whole poloidal cross section.

Figure 7 shows the mode in the saturation phase, for βN = 2.6 and plasma

resistivity ηp = 2.6×10−6 (this is given in JOREK-normalised units, which are given by

ηSI = ηJOREK
√
µ0/ρ0 where ρ0 is the central density of the plasma). The plots show

the n = 1 flux perturbation to the equilibrium plasma in the poloidal cross section. The

three plots show the mode with an ITER-like wall (with the corresponding real value of
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Figure 5. The poloidal cross section of the plasma current density showing the hollow
current profile necessary for a reversed shear q profile.

Figure 6. The ITER advanced scenario q-profile and pressure profile as a function of
the normalised toroidal flux.

the ITER wall resistivity), the second, more closely-fitting wall (of the same resistivity

as the ITER-like wall), and an ideal wall at the plasma separatrix. Moving the wall

closer to the plasma partially stabilises the mode: the saturated nonlinear perturbation

amplitude is smaller and the poloidal cross sections show that although the displacement

has a similar structure, it has been reduced by the closer-fitting wall. Comparison with

the mode when an ideal wall is placed at the ITER wall location shows that the ideal

wall stabilises the global mode, with more localised perturbations. These structures at

the top and bottom of the plasma shown in Figure 7 for the ideal wall on the separatrix
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Figure 7. Comparison of the poloidal cross-section of the saturated modes for
βN = 2.6 and different wall configurations A, B, and C: ITER-like wall, closely-fitting
wall and ideal wall on the separatrix, respectively. Plots A and B have the same
wall resistivity. The poloidal plots show the n = 1 flux perturbation. Moving the
wall closer to the plasma partially stabilises the mode, whilst the ideal wall seems to
stabilise global perturbations.

are also seen in the linear phase of growth of the RWM in cases with sufficient plasma

resistivity, as discussed in the next section.

4.2.1. Effect of plasma resistivity Although the RWM is not a resistive instability and

its growth rate should not depend on the plasma resistivity, the inclusion of plasma

resistivity to avoid numerical problems associated with insufficient dissipation has been

investigated in order to find whether it affects the simulation results. The plasma

resistivity has been scanned while keeping βN = 2.6 and using the ITER-like wall as

the boundary condition. Previous simulations were carried out at a plasma resistivity

ηp = 2× 10−6 (in JOREK units). For plasma resistivities less than ∼ ηp = 1.4 × 10−7,

the plasma is stable, and the energy only oscillates instead of entering the linear growth

phase. For plasma resistivities greater than this value, the plasma is unstable and the

mode is able to grow. Figure 8 shows the growth rates for the simulations which vary

plasma resistivity. It can be seen that for small plasma resistivities, the growth rate

is negative: increasing the plasma resistivity increases the growth rate. For sufficiently

large plasma resistivity, the RWM grows. This may be explained by the Glasser-Greene-

Johnson [36] effect as the RWM couples to tearing layer damping [37].

4.2.2. Effect of plasma pressure The mode stability has been explored by changing

βN , and keeping the ITER-like wall as the boundary condition. Increasing βN would be

expected to increase the mode growth rate, since it corresponds to increasing the plasma

pressure. The βN has been varied by scaling the magnetic field and simultaneously

altering the plasma pressure profile in order to retain a constant minimum safety factor
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Figure 8. The plot shows the growth rates for the different values of plasma resistivity
for βN = 2.5, with the ITER-like wall included. The marginal stability point can be
seen when the growth rates become positive.

profile. Figure 9 shows the JOREK growth rate for a range of βN with the same

boundary condition of the ITER-like wall. As expected, an increase in βN corresponds

to an increase in the growth rate of the mode.

4.2.3. Effect of wall resistivity The effect of changing the wall resistivity on the RWM

growth rate has also been studied. Figure 10 shows that for an ITER advanced tokamak

plasma with plasma resistivity fixed at ηp = 2 × 107 (in JOREK units) and βN = 2.7,

the RWM growth rate decreases for an increasingly ideal wall, as expected. As the wall

tends to the ideal wall limit at very low ηW the RWM is stabilised, but as the wall

resistivity increases, the growth rate increases and tends towards the no-wall limit.

4.3. Multiple mode nonlinear stability simulations

Recently there have been observations of RWM coupling with core plasma instabilities

[16, 38, 17] and edge localised modes [17], illustrating the importance of understanding

the nonlinear interaction of RWMs with other modes [19]. Initial calculations for MAST

plasmas have shown that the growth of an n = 1 RWM can lead to the destabilisation

of core tearing modes due to perturbations in the current profile [39]. Similarly, JOREK

has been used to study the nonlinear excitation of low-n modes by higher-n instabilities

in simulations of edge localised modes [40]. Following the benchmarking of the resistive

wall implementation in JOREK presented in Section 3, the nonlinear evolution of the

RWM has been studied in an ITER advanced scenario plasma. Here we consider an

ITER plasma with a plasma resistivity ηp = 2×10−7 (in JOREK units), a wall resistivity
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Figure 9. The RWM growth rate as a function of βN for the ITER advanced scenario
with the resistive ITER-like wall, and at the marginal plasma resistivity of 1.4× 10−7.
The β scan is carried out by adjusting Bφ and the plasma pressure in order to keep
the minimum safety factor constant but change βN . As would be expected, increasing
βN increases the growth rate of the mode.

ηW = 1× 10−4, a normalised pressure βN = 2.6 and simulate multiple modes n = 1− 5

nonlinearly. For these plasma parameters marginally above the no-wall limit, the n = 1

mode is found be the most unstable. From figure 11 it is evident that whilst the n = 1

mode has the highest initial linear growth rate, the higher-n modes grow more rapidly

at later times and there is a nonlinear coupling between the different modes. Capturing

this nonlinear interaction is important when assessing the stability limits for advanced

scenario plasmas in steady-state conditions.

5. Discussion and conclusions

The implementation of the resistive wall in JOREK has been successfully benchmarked

against an analytic theory for the stability of the resistive wall mode in cylindrical

geometry. The inclusion of the resistive wall is achieved by coupling JOREK to

STARWALL. By using a linear model for a RWM, the growth rates found in JOREK

simulations could be compared against calculated rates. JOREK finds the same wall

radius at which an ideal wall would stabilise the ideal kink as the analytic theory. There

was also good agreement when the wall was resistive. The wall resistivity is found to

affect the quantitative agreement, though the qualitative behaviour is always in good

accordance.

JOREK was then used to simulate advanced tokamak plasmas in an ITER geometry.

Coupled to STARWALL, the wall is modelled as the realistic ITER first wall with the

corresponding resistivity. A plasma equilibrium was constructed which is unstable to a
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Figure 10. The RWM growth rate as a function of wall resistivity for the ITER
advanced scenario with an ITER-like wall, and at the marginal plasma resistivity of
2 × 10−7 and βN = 2.7. As the wall tends to ideal at very low resistivity, the kink
mode is stabilised, but for the effective no-wall case with very high resistivity, the kink
mode is unstable as the plasma is at a pressure above the no-wall limit, β∞N = 2.5.

Figure 11. The magnetic energy of the n = 1−5 modes in an ITER advanced tokamak
plasma with a resistive wall with plasma resistivity ηp = 2 × 10−7, a wall resistivity
ηW = 1 × 10−4, a normalised pressure βN = 2.6. There is a nonlinear interaction
between the linearly most unstable mode, n = 1 and the high-n modes which become
more unstable during the growth of the n = 1 mode.



Nonlinear modelling of resistive wall modes using JOREK 15

Resistive Wall Mode. The effects of changing the plasma resistivity, the plasma pressure

and the wall resistivity have been studied and behave as expected theoretically.

The successful comparison of the resistive wall implementation in JOREK to

analytic theory and initial simulations of ITER provide a platform for further studies

of the nonlinear evolution of RWM stability in advanced tokamak scenarios. Initial

simulations show the importance of nonlinear evolution of the RWM since higher-n

modes are stimulated during the linear growth phase of the n = 1 kink mode, which is

found to be the most unstable linearly. Understanding and accounting for this nonlinear

evolution will be important when assessing the stability limits in advanced tokamak

plasmas in view of both operating the steady-state Q = 5 scenario in ITER and longer

term for design of fusion power plant plasmas.
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