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Abstract18

The existence of Edge Localised Modes (ELM) rotating precursors few milliseconds before an19

ELM crash was reported in many experiments (KSTAR, MAST, AUG, NSTX, TCV, JET). More-20

over, in these experiments, similar nonlinear dynamics are observed at the ELM crash. In the21

present letter, the rotation of ELM precursors and the dynamics of expelled filaments at the ELM22

crash are explained using both, linear ballooning theory and nonlinear MHD simulations with the23

JOREK code. It is shown that unstable ballooning modes, localised at the pedestal, grow and ro-24

tate mainly in the electron diamagnetic direction in the laboratory reference frame. Approaching25

the ELM crash, this regular rotation decreases corresponding to the moment when the magnetic26

reconnections and edge ergodisation occur. During the highly nonlinear ELM crash, the ELM27

filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly28

generated via the Maxwell stress tensor.29

∗ Email: jorge.a.morales@outlook.com
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I. INTRODUCTION30

Edge Localised Modes are MHD instabilities that appear at the edge of the tokamak31

plasma in high confinement mode (H-mode). They are characterised by periodic bursts of32

matter and energy. The crash of this instability leads to the relaxation of the edge pressure33

pedestal. Then the edge pedestal rebuilds and another ELM cycle occurs. The quantity34

of energy that is expelled periodically can cause partial erosion or melting of plasma-facing35

components (PFC). This could limit the operational capabilities of future larger tokamak36

devices like ITER and DEMO. For recent review articles on ELMs we refer to [1, 2].37

In recent years, measurements performed with electron cyclotron emission imaging38

(ECEI) have provided insights on the dynamics of this instability prior to and during39

an ELM crash. ECEI measurements in the KSTAR tokamak [3] show that the ELM evolu-40

tion can be separated in three different phases. The first is a linear phase where the localised41

mode grows, the second is a quasi-quiescent state where the mode growth decreases and the42

third is when the ELM crash occurs. In the majority of cases, during the linear phase, the43

rotation of the precursors (structures preceding an ELM crash) is observed in the electron44

diamagnetic direction. Near the crash, the rotation speed of the precursors decreases and45

the precursor structure seems to extend radially towards the last closed flux surface where46

the ELM crash occurs. These measurements are in agreement with AUG ECEI measure-47

ments [4, 5]. In AUG, the rotation of the ELM precursors is also found in the electron48

diamagnetic direction but the first-expelled ELM filament is observed to reverse rotation49

and to propagate in the ion diamagnetic direction. In a third device, NSTX, gas puffing50

imaging is used to characterise the precursors rotation and the filament expulsion of an ELM51

[6]. In this last device the precursors are also observed rotating in the electron diamagnetic52

direction and at the crash, the filament slow down and also reverses rotation direction53

(propagating in the ion diamagnetic direction). In TCV with magnetic measurements [7]54

and in MAST using beam emission spectroscopy [8] similar results were obtained. Recently55

in JET, fast infra-red thermography measurements at the divertor [9] show ELM precursors56

stripes moving radially outward. This also suggests ELM precursors structures rotating in57

the electron diamagnetic direction.58

Several instabilities can be candidate to explain the ELM precursors. The microtearing59

mode instability has been proposed as one of the possible candidates [8, 10]. This instability60
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shares several characteristics with the experimental measurements but its radial extend is61

short (of the order of the ion Larmor radius). This last feature is incompatible with some62

of the observations. Also peeling modes and drift waves can be considered but, the firsts63

are characterised by low toroidal mode numbers that are inconsistent with the observa-64

tions and the seconds are electrostatic in nature, a characteristic not compatible with the65

electromagnetic properties of ELM precursors.66

Ballooning modes are strong candidates to explain the observations [11]. In this67

manuscript we will focus on this last instability. Analytically in the linear phase we consider68

ideal and resistive ballooning modes taking into account bi-fluid diamagnetic effects. Nu-69

merical calculations using the nonlinear code JOREK [12, 13] are performed. A comparison70

with the analytical results in the linear stage is carried out. This numerical code is also used71

to analyse the nonlinear saturation of the instability and to characterise the mechanism that72

allows to explain the reversal of the filaments rotation at the ELM crash.73

II. THE LINEAR BALLOONING MODE ROTATION74

The reduced MHD equations over the magnetic flux Ψ, the electric potential Φ and75

the pressure P , are used to calculate the dispersion relation associated with the balloon-76

ing instability. We use the gyro-viscous cancellation to simplify the equation over Φ (see77

e.g. [14]). The ballooning representation is used to reduce the two-dimensional problem to78

one dimension (see e.g. [15]). The following ansatz is applied79

Φ(φ, θ, t) =
+∞∑
l=−∞

Φ̂(θ + 2πl)ei(n[φ−q(θ+2πl)]−ωt), (1)80

for a ballooning mode l = 0. Also, for simplification, we consider the reference frame rotating81

with the E ×B velocity, hence in this reference frame VE×B = 0 (Φ̂n=0 = 0). We will add82

the E ×B velocity contribution at the end of the linear calculation.83

Using these hypothesis the following dispersion relation, in dimensionless form, is found84

ω(ω − ω∗i )

[
(ω − ω∗e) +

q2R2
0 (ω − ω∗e + iηk2θ)

2

iηk2θs
2

[
ω (ω − ω∗i ) + 2γ2I

]]
+

γ2I (ω − ω∗e)

1 +
(ω − ω∗e + iηk2θ)

(
2s (1− s)− 1

)
2iηk2θs

2

 =
−q2R2

0 (ω − ω∗e + iηk2θ)
2

iηk2θs
2

γ4I , (2)
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with ω∗i = −ω∗e = di
∂P0

∂r
kθ eθ, di =

1

ωCiτA
=

mi

eR0
√
ρ0µ0

and γI =

{
− 4

B0R0

∂P0

∂r

}1/2

,85

with θ the poloidal direction, kθ the poloidal wavenumber, ω∗i/e the diamagnetic frequencies86

(ion/electron, non-dimensionalised by the Alfvén time τA), di the diamagnetic parameter,87

γI the ideal interchange growth rate, P0 the axisymmetric pressure, q the safety factor, s88

the magnetic shear and η the dimensionless inverse Lundquist number. Also B0, ρ0, R0, µ089

and e are respectively a reference magnetic field, density, length, the magnetic permeability90

and electric charge.91

At high resistivity (η →∞) and strong magnetic shear (s >> 1) Eq. (2) simplifies to92

ω(ω − ω∗i )(ω − ω∗e) = (iγη)
3 with γη =

[
k2θq

2

s2
R2

0ηγ
4
I

]1/3
. (3)93

Considering the diamagnetic frequencies: ω∗i = −ω∗e = ω∗, the roots of the polynomial can94

be found using Cardan’s method. Taking into account the change of variable: ω = iγ, this95

dispersion relation can be simplified to96

γ
(
γ2 + ω2

∗
)

= γ3η . (4)97

Two limits can be identified in Eq. (4), for γη >> ω∗ the solution γ ≈ γη and if γη << ω∗ we98

have γ ≈ γ3η/ω
2
∗. In the general case three roots exist, one real and two complex conjugates99

[16]. The most unstable root is always the real, the value of ω is pure imaginary because100

ω = iγ, hence at this limit the unstable mode does not rotate in the considered reference101

frame.102

Also at the ideal limit, η → 0, and small magnetic shear (s ≈ 1) the dispersion relation103

Eq. (2) simplifies to the second order polynomial [17, 18]104

ω2 − ω∗i ω + γ2I = 0. (5)105

Two distinct roots exist106

ω± =
ω∗i ±

√
ω∗i

2 − 4γ2I
2

. (6)107

The system is unstable if: |ω∗i /2| < |γI |. And the ideal rotation frequency of the mode is:108

ω∗i /2 [19, 20]. In this case the unstable mode rotates at half of the diamagnetic frequency109

in the ion diamagnetic direction in the considered reference frame.110

Moreover the roots of the general dispersion relation, Eq. (2), can be computed numer-111

ically. We find that in realistic cases, i.e., at low resistivity (η < 10−7) the most unstable112
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FIG. 1. Evolution of the roots with the diamagnetic frequency ω∗i , (top) imaginary part (bottom)

real part.

root is close to the ideal case Eq. (6). In Fig. 1 three computed cases are compared to the113

analytical solution Eq. (6). One can observe that the imaginary part of the root is close to114

the ideal theory if the magnetic shear is small. With increasing magnetic shear the calcu-115

lated mode is more unstable. On the other hand the real part of the root matches very well116

the analytical solution. The rotation of the mode, in the reference frame, is almost exactly117

ω∗i /2.118

To calculate the mode poloidal rotation, in the laboratory reference frame, we add to119

the intrinsic ballooning mode rotation the poloidal E×B velocity and the parallel velocity120

V� · bθ (both velocities projected in the poloidal plane). The radial electric field in H-mode121
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is observed to be dominated at the pedestal by the radial pressure gradient of the main ions122

[21]. Also the pitch angle is considered to be small (B is mainly in the toroidal direction).123

For these two reasons, in the pedestal region, the poloidal E × B velocity VE×B can be124

approximated by125

VE×B ≈ (E ×B) /B2 ≈ (∇rPi ×B) /
(
enB2

)
. (7)126

Finally the poloidal rotation of the ballooning modes in the laboratory reference frame

for the resistive and ideal limits writes

Resistive: Vmode = VE×B + V� · bθ (8)

Ideal: Vmode = VE×B + V� · bθ + V ∗i /2, (9)

with the poloidal ion diamagnetic velocity V ∗i ≈ (B ×∇Pi) / (enB2). In dimensionless units127

(non-dimensionalised by the Alfvén speed) this velocity becomes128

V ∗i = ω∗i /kθ ≈ di∇rP. (10)129

Also the poloidal dimensionless E × B velocity at the pedestal, where the radial electric130

field is mostly induced by the radial pressure gradient, can be approximated by131

VE×B ≈ −di∇rP. (11)132

The radial gradient of the pressure is negative. Therefore, by convention, we have chosen the133

E×B and electron diamagnetic velocities in the positive direction and the ion diamagnetic134

velocity in the negative direction.135

Using the JOREK code [12, 22, 23] the linear growth of the ballooning instability with136

and without diamagnetic effects can be analysed. ELM precursors were previously observed137

with the JOREK code without diamagnetic effects [22]. Here we include diamagnetic effects138

to analyse their effect on the precursors dynamics. The parameters used for the simulations139

are close to a JET tokamak plasma, as in Ref. [24]. Realistic values of the inverse Lundquist140

number, di parameter and normalised parallel heat conductivity are typically: η = 10−8,141

di = 10−2 and κ� = 8000 [25]. These values correspond to the following tokamak parameters142

in JET: R0 = 2.9m, B0 = 1.8T , nped = 3.3 · 1019m−3 and Teped = Tiped = 1.8 keV .143

The magnetic flux perturbation is presented in Fig. 2. Without diamagnetic effects,144

di = 0, the mode grows and rotates at low speed, as was found in Ref. [12]. On the145
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FIG. 2. Magnetic flux perturbation n = 6, same parameters as in Ref. [24] (10 µs between images),

(top) without diamagnetic effects and (bottom) with diamagnetic effects, di = 1.7 · 10−2. In the

bottom the rotation is anticlockwise, i.e., in the electron diamagnetic or E ×B direction.

other hand, if diamagnetic effects are taken into account the mode rotates in the electron146

diamagnetic direction with a velocity of several km/s. The E × B velocity is strongly147

reduced if diamagnetic effects are not taken into account since this velocity is proportional148

to di at the pedestal (see Eq. (11)).149

We perform several computations varying the diamagnetic parameter, the resistivity and150

the parallel heat conductivity. The ballooning mode velocity rotation is plotted against151

the diamagnetic parameter in Fig. 3. In this figure we observe a linear scaling with the152
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conductivity.

diamagnetic parameter di, in agreement with Eqs. (8) to (11).153

In our simulations the E×B and the diamagnetic velocities dominate over the poloidally154

projected parallel velocity (V� · bθ). For small resistivities, the numerical computations are155

close to the ideal formula Eq. (9) (thick black curve in Fig. 3). We observe that the ballooning156

mode velocity is always dominated by the E ×B velocity, this mode always rotates in the157

electron diamagnetic direction. This can be explained as follows: at the pedestal, the ion158

diamagnetic and E ×B velocities have approximatively the same amplitude but opposite159

direction (see Eqs. (10) and (11)). For realistic cases (low resistivity) the system behaves160

close to the ideal limit. At this limit the ballooning mode rotates with half of the ion161

diamagnetic velocity (see Eq. (9)). As a consequence the E ×B velocity is always larger162

and the ballooning mode rotates in the electron diamagnetic direction in the laboratory163
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reference frame.164

In the present calculations we have not imposed a source of toroidal rotation. The par-165

allel velocity comes from the Bohm boundary conditions that are imposed at the divertor.166

Therefore the projected parallel velocity is small compared to the E ×B and diamagnetic167

velocities. In several devices as KSTAR the toroidal velocity can be very large. This ve-168

locity must be taken into account in the calculation of the ELM precursors rotation in169

the laboratory reference frame. Precursors rotating in the ion diamagnetic direction have170

also been observed. This behaviour can be explained by a strong toroidal rotation that171

counterbalances the E ×B velocity.172

III. NONLINEAR DYNAMICS OF ELM FILAMENTS173

Experimentally the rotation of the modes is observed to decrease just before the ELM174

crash [3, 6]. Also the observations show the rotation of the ELM filaments in the ion175

diamagnetic direction [4, 6, 8]. This rotation is opposite to the one observed for the ELM176

precursors.177

With the JOREK code the nonlinear evolution of the ballooning modes is studied for a178

case with di = 7.6 · 10−3. Near the ELM crash the density field can be observed on Fig. 4.179

In this image, filaments of high density are expelled in the ion diamagnetic direction as180

observed in the experiments.181

The inversion of the rotation occurs at the nonlinear saturation of the instability. The182

perturbed electric potential grows creating periodic vortices with alternating positive and183

negative rotations. The strong correlation between the density and the electric potential can184

be observed on Fig. 5(a). The VE×B vortices are deformed, they are thinner in the radial185

direction and elongated in the poloidal direction, following the magnetic field lines [26]. As186

observed in Fig. 5(a) the density filament is convected by the E ×B velocity vortex. Also187

from the density ρ equation we can show that the density dynamic is governed by the E×B188

velocity term,189

∂ρ

∂t
=

1

R

[
ρR2,Φ

]
+ di

∂P

∂Z
+ Diff. + Source, (12)190

with the Poisson bracket defined as: [f, g] = eφ ·(∇f ×∇g) (cylindrical coordinates). In this191

equation the diamagnetic velocity (second term on the right hand side) does not act as an192

advection term but only as a compression term. Therefore only the E×B velocity convects193

10



FIG. 4. Density filaments are expelled in ion diamagnetic direction, di = 7.6 · 10−3 (5 µs between

images).

the density filament (first term on the right hand side). The diamagnetic velocity does not194

convect directly the density but plays an important role in the nonlinear interactions. As we195

show later, the diamagnetic effects have a non-negligible influence on the E ×B vorticity.196

The profiles of the axisymmetric component of the E ×B velocity are plotted on Fig. 6197

as a function of the normalised magnetic flux. From this figure we notice a strong velocity198

shear created during the ELM crash (see also Fig. 5(b)). At the same time as the filament199

is convected, a strong E ×B shear appears. In the region where the mode perturbation is200

larger (around ΨN = 0.96) the velocity profile decreases and crosses the zero abscissa axis.201

This can explain why experimentally the ELM precursors decelerate approaching the crash.202

The shear increases further and the E × B velocity becomes negative. This effect makes203

the high density filament to cut from the main plasma, the filament is expelled.204

Also in Ref. [12], without diamagnetic effects, a strong E ×B shear was present in the205

nonlinear phase. The major difference with respect to the present computations is the initial206
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(a) (b) (c)

FIG. 5. (a) Density filament (colormap) and electric potential isocontours (white lines), (b) nor-

malised axisymmetric E ×B velocity and (c) Maxwell stress term R−1 [Ψ, j]. All these quantities

are taken at the same instant, during the ELM crash (t = 1273 µs in Figs. 6 and 7).

VE×B profile, the profile was close to zero in the cited reference.207

The different terms of the E × B vorticity wE equation, implemented in the JOREK208

code, are plotted as a function of time in Fig. 7 (averaged on the closed flux surface region209

for n = 0). In weak form the vorticity equation yields210

δtwE = −
∫
ρ̂∇u∗ · ∇⊥ (δtΦ) dV =

∫ (
− v2E

2R
[u∗, ρ̂]−Rρ̂wE [u∗,Φ] +R [u∗, P ]

− u∗∇φ · ∇ ×
(
R2ρ (v∗i · ∇)vE

)
− u∗ 1

R
[Ψ, j] + u∗

F0

R2
∂φj + u∗∇φ · ∇ ×

(
R2µ∇2vE

))
dV,

(13)

with u∗ a test function, φ the toroidal direction, µ the dynamic viscosity and ρ̂ = R2ρ. For211
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FIG. 6. Axisymmetric (n = 0) E × B velocity profiles during an ELM crash (averaged in the
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more details we refer to [12, 22, 23, 25].212

In Fig. 7 the equilibrium noted Eq is the static equilibrium (pressure R [u∗, P ] plus213

Maxwell stress tensor, R−1 [Ψ, j] term). Also axisymmetric equilibrium flows [27] generate214

viscous dissipation. We can observe that in the linear phase the static equilibrium Eq and215

viscosity terms balance, there is no vorticity generation. At t = 1.24 ms, the diamagnetic216

term−∇φ·∇×(R2ρ (v∗i · ∇)vE) (Dia) grows but is balanced by the equilibrium and viscosity217

terms. However a small growth of vorticity wE is observed. Then at t = 1.273 ms (same218

time as in Fig. 5) the ELM crash occurs. The term δtwE becomes large, strong vorticity is219

created. This vorticity is generated nonlinearly by the unbalance between the terms in the220

vorticity equation. The terms dominating the wE dynamics are the Maxwell stress tensor221

R−1 [Ψ, j] [12] (see also Fig. 5(c)) and the Dia term. On the other hand the pressure term222

R [u∗, P ] is large but does not behave with the same dynamic as the δtwE term.223
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IV. CONCLUSION224

In the linear phase the analytical ideal ballooning calculations and the JOREK simu-225

lations are in good agreement. They explain why experimentally the ELM precursors are226

mainly observed rotating in the electron diamagnetic direction.227

Near the ELM crash we find a strong nonlinear generation of axisymmetric E×B velocity228

shear. This shear makes the density filaments to be expelled outside the main plasma. Also229

the filaments rotation is opposite to the ELM precursors rotation, i.e., in the ion diamagnetic230

direction, as observed experimentally. The Maxwell stress and diamagnetic terms govern231
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the vorticity generation at the nonlinear phase.232

The ELM crash is a strong nonlinear event (see e.g. [28]). In this letter we focus on233

the early stages of the ELM crash. We observe that the strong E × B shear plays an234

important role in the ELM filament detachment. Another important transport channel is235

parallel conduction [29]. Reconnection [30] is also observed at the early stages of the ELM236

crash and certainly plays an important role on the density and energy transport towards the237

plasma-facing components, in particular towards the tokamak divertor.238

As a perspective for this work we can mention the study of the toroidal velocity profile.239

In this work we have not imposed a toroidal velocity source but it would certainly be an im-240

portant element to take into account in future simulations of ELM precursors. The toroidal241

velocity profile not only influences the precursors rotation but also the linear ballooning242

dispersion relation if a shear exists (see e.g. [31]).243

ACKNOWLEDGMENTS244

We thank C. Norscini, P. Tamain and N. Fedorczak for interesting discussions on this work. This245

project has been carried out within the framework of the EUROfusion Consortium and has received246

funding from the Euratom research and training programme 2014-2018 under grant agreement247

No. 633053. This work has benefited from financial support from the National French Research248

Program (ANR): ANEMOS (2011). A part of this work was carried out using the CCRT-CURIE249

supercomputer within project GENCI (gen2197) and PRACE (ra1904) and the HELIOS super-250

computer system (IFERC-CSC). The views and opinions expressed herein do not necessarily reflect251

those of the European Commission or the ITER Organization.252

[1] A. Leonard, Physics of Plasmas 21, 090501 (2014).253

[2] G. Huijsmans, C. Chang, N. Ferraro, L. Sugiyama, F. Waelbroeck, X. Xu, A. Loarte, and254

S. Futatani, Physics of Plasmas 22, 021805 (2015).255

[3] G. Yun, W. Lee, M. Choi, J. Lee, H. Park, B. Tobias, C. Domier, N. Luhmann Jr, A. Donné,256
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