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A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation
method, with terms up to second order in magnetic-field nonuniformity. Consistency is
demonstrated by showing that the guiding-center transformation presented here satisfies
separate Jacobian and Lagrangian constraints that have not been explored before. A
new first-order term appearing in the guiding-center phase-space Lagrangian is identified
through a calculation of the guiding-center polarization. It is shown that this new polar-
ization term also yields an exact (and more transparent) expression of the guiding-center
toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric
magnetic geometries. Lastly, an application of the guiding-center Lagrangian constraint
on the guiding-center Hamiltonian yields a natural interpretation for its higher-order
corrections.

1. Introduction

The consistent derivation of a Hamiltonian guiding-center theory that includes second-
order effects in magnetic-field nonuniformity is an important problem in magnetic fusion
plasma physics. While the derivation of the second-order corrections in the guiding-center
Hamiltonian equations of motion yield higher-order corrections that may be ignored in
practical applications, they can nonetheless be useful in gaining insights into higher-order
perturbation theory.

Recently, Parra and Calvo (Parra & Calvo 2011) and Burby, Squire, and Qin (Burby
et al. 2013) derived guiding-center theories with second-order corrections in the guiding-
center Hamiltonian using different methods. Parra and Calvo (Parra & Calvo 2011)
constructed their guiding-center transformation based on a microscopic view that treats
the lowest-order gyroradius p, as a zeroth-order (nonperturbative) term that is intro-
duced by a preliminary transformation, which introduces explicit gyroangle dependence
in the preliminary phase-space Lagrangian. The subsequent derivation of the guiding-
center phase-space Lagrangian proceeds through an asymptotic expansion in powers of
a small ordering parameter eg = pg/Lp < 1 defined as the ratio of the gyroradius pg
to the magnetic nonuniformity length scale Lg. Burby, Squire, and Qin (Burby et al.
2013) , on the other hand, derived the second-order guiding-center Hamiltonian through
a computer-based algorithm that bypassed the issue of gyrogauge invariance.

These theories were compared by Parra, Calvo, Burby, Squire, and Qin (Parra et al.
2014) and were found to agree up to a gyroangle-independent gauge term in the guiding-
center phase-space Lagrangian. Both works reproduced the first-order results of the pi-
oneering work of Littlejohn ((Littlejohn 1979), (Littlejohn 1981), & (Littlejohn 1983)),

1 Email address for correspondence: abrizard@smcvt.edu
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which made certain simplifying assumptions on the symplectic part of the guiding-center
phase-space Lagrangian.

The purpose of the present work is to use the standard Lie-transform perturbation
method to derive higher-order guiding-center Hamilton equations of motion with as few
assumptions about the guiding-center Hamiltonian and Poisson-bracket structure as pos-
sible. In the process, we show that a consistent treatment of guiding-center polarization
and the accurate guiding-center representation of the toroidal canonical angular mo-
mentum, which is an exact constant of motion in axisymmetric magnetic geometry, re-
quires that a new first-order term be kept in the symplectic part of the guiding-center
phase-space Lagrangian. We also introduced two new constraints on the guiding-center
transformation that guarantee the consistency of the guiding-center Hamilton equations.

The material contained in this manuscript is presented in tutorial form, with detailed
calculations appearing for the first time. The remainder of the paper is organized as
follows. In Sec. 2, we present a summary of the general formulation of guiding-center
Hamiltonian theory, in which corrections associated with magnetic-field nonuniformity
appear at all orders in the guiding-center Hamiltonian and/or the guiding-center Poisson
bracket. In Sec. 3, the formulation of Lie-transform perturbation theory for the Lagrange
one-form is presented up to fourth order in the ordering parameter €, which are explicitly
solved in Secs. 4-7. The ordering parameter € is used in the renormalization of the electric
charge e — e/e that appears in the macroscopic view of guiding-center dynamics, in which
the magnetic-nonuniformity length scale is finite while the gyroradius is small. In Secs. 8-
9, we present the Jacobian and Lagrangian constraints that establish the consistency of
the guiding-center phase-space transformation. In Sec. 10, we derive the guiding-center
polarization directly from the guiding-center transformation, which further constrains
the transformation, and discuss the conservation of the guiding-center toroidal canonical
momentum. In Sec. 11, we summarize our work. Lastly, the Appendices A-G provide a
wealth of results that support the material presented in the text.

2. Guiding-center Hamiltonian Theory

Guiding-center Hamiltonian dynamics is expressed in terms of a guiding-center Hamil-
tonian function that depends on the guiding-center position X, the guiding-center parallel
momentum pj, and the guiding-center gyroaction J = p B/ (defined in terms of the
guiding-center magnetic moment u and the gyrofrequency Q = eB/mc for a particle of
mass m and charge e); it is, however, independent of the gyroangle 6 at all orders. Since
the guiding-center phase-space coordinates are non-canonical coordinates, a noncanonical
guiding-center Poisson bracket is also needed. In what follows, we use the macroscopic
view whereby an ordering parameter € is introduced by renormalizing the electric charge
e—efe(eg, Q— e Qand J — eJ).

In the present work, the guiding-center Hamiltonian is defined as

Hye = — + 7, (2.1)
where the effective guiding-center potential energy
U =JQ+ eV + Ty + - (2.2)

is defined in terms of higher-order corrections ¥, (n > 1) that vanish in a uniform
magnetic field. The guiding-center symplectic structure, on the other hand, is expressed
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in terms of the guiding-center Poincaré-Cartan one-form
rgCE(EA+H)-dX+eJ(d9 ~ R-dX), (2.3)
€C

where the symplectic guiding-center momentum

I =) "I, = pb+ el + T+ (2.4)

n=0

is expressed in terms of the gyroangle-independent vector terms IT, (n > 1), which con-
tain corrections due to magnetic-field nonuniformity, and the presence of the gyrogauge
vector R guarantees that the the guiding-center one-form (2.3) is gyrogauge-invariant.
We note that the guiding-center phase-space Lagrangian

Py — Hyodt = [(éAmHB) X + ¢ J (40 — R-dX)| - (21:'1 + JQ) dt

n ie” (Hn-dX — v, dt) (2.5)

n=1

can either be derived simultaneously or separately.

The guiding-center Poisson bracket obtained from the guiding-center Euler-Poincaré
one-form (2.3) by following the following inversion procedure. First, we construct the
guiding-center Lagrange two-form

B*k ) . R
we = dlge = T cijp dX* A X7 +dpy AD"-dX + eR* - dX A dJ +ed] A,

where €, denotes the Levi-Civita tensor. We note that the Lagrange component-matrix
is invertible since the guiding-center Jacobian

Tox € * __ € ok
Tye = /det(wye) = eb*- (53 ) = S Bi" # 0, (2.6)
with the following definitions
E— c 2
B :VX[A—FE(EH ¢ JR)}, (2.7)
) | SR oI,  , O,
b*=—=b+e— +€ — + -+, 2.8
9 Op) Op) (2
_, 011 oI, O0Il,
R°=R - ¢!~ =R - - 2.9
Y o7 ~ “ar T 29)
~ ~ 11
B* =b*.B* = b+eb+-~- .B*. (2.10)
I ap|

Here the fields B* and b* satisfy the identities

vV:-B* = 0
Y (2.11)
OB*/op; = e(c/e)V xb*

which will play an important role in the properties of the guiding-center Poisson bracket.
Next, we invert the guiding-center Lagrange matrix to construct the guiding-center

Poisson matrix with components Jg, such that J& weevs = 0%. Lastly, we construct
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the guiding-center Poisson bracket {F, G}gc = (0F/0Z) Jg‘f (0G10ZP):

F F B* F
G S LAy By E R T
gc

% W @ % B|T* 8p|| apH
€ cb* . .
— g VFXVG, (2.12)

where the modified gradient operator V* = V + R*0/00 ensures gyrogauge-invariance.
The derivation procedure of the guiding-center Poisson bracket (2.12) guarantees that it
satisfies the standard Poisson-bracket properties, while the guiding-center Jacobian (2.6)
can be used to write Eq. (2.12) in phase-space divergence form

0

{F, G}gc - jlg o (jgc F {79, G}gc). (2.13)

The Hamiltonian guiding-center equations of motion dgZ%/dt = {Z%, Hgc}ge are
expressed in terms of the guiding-center Hamiltonian (2.1) and the guiding-center Poisson
bracket (2.12) as

) o N
% — ;:* -V, (2.15)
bl _ o ‘;—3’ g daeX (R _ e—la&r][), (2.16)
and
dz;‘] _ _6—1% =0, (2.17)

where the last equation follows from the effective guiding-center potential energy ¥ being
gyroangle-independent to all orders in e. We note that the Hamiltonian guiding-center
equations of motion (2.14)-(2.15) satisfy the guiding-center Liouville theorem

dgc X 0 dgcp)|
. k% _ B** — 2'1
v ( I ar ) + ap|< [ 0, (2.18)

which follows from the identities (2.11).

Lastly, it will be useful in what follows to expand Egs. (2.14)-(2.16) in powers of € as

oo

A A
= > e st (2.19)

n=0
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where, up to second order in e (without expanding Bﬁ‘*), we find

dSX pH B

2.2
dt m B‘T*7 (2.20)
dTX ov; B c by
b+b Q 2.21
dt apH B eBl"k* < VXbtbxV(JQ) ( )
d;X o0Vs B c [P oIl
II, - JR Q
dt 8p‘| B Bﬂ‘* [ VX( ! J ) ap” XV(J )
ov
ool WY ——LvUxb+ be\If1> (2.22)
eB” ( I 8p‘|
dgp) _ B _ ~ B
Tl B|T* V() = JQ(V-b) B‘T*, (2.23)
dipy _  cp| ~ B
Tl B|T* VXb-V(JQ) — % VU, (2.24)
Py _ Vx bV +V x (Il - JR)-V(J Q)] — 2. Vs, (2.25
T 5 [ T XE VI VX (- TR)- VR - gV, 229
which satisfy the guiding-center Liouville theorem (2.18) separately:
B n - B** n —
v<| dt>+8p|(' dt ’
at each order €” (for n =0,1,2,...). We will also need the expression
dgc0 1 oV, 50Uy dgcX oIl 2] 1 )
= Q ARr- _
di 6<+8J+ a7 T ) T a7 ‘a7 )
(2.26)

where the first term (e71€) is dominant while the remaining terms vanish in a uniform
magnetic field.

The guiding-center Hamiltonian (2.1) and the guiding-center phase-space Lagrangian
(2.3) are defined in terms of the scalar field ¥ and the vector field II. In a purely
Hamiltonian representation, the vector field IT = p”B is independent of the gyroac-
tion J, while the scalar field ¥ = JQ + eV, + €2 U, + --- contains all the correction
terms associated with the nonuniformity of the magnetlc field. Hence, in the Hamil-
tonian representation, the vector field b* in Eq. (2.14) is b* = = OII/0p| = b while
R* = R - 0II/0J = R in Eq. (2.16). In a purely symplectic reprebentatlon on the
other hand, the scalar field ¥ = J ) is independent of the parallel momentum p, while
the vector field IT = pj b+ eIl; 4+ --- contains all the correction terms associated with

the nonuniformity of the magnetic field. Hence, the vector fields b* and R* are defined
in terms of the expressions (2.8)-(2.9), respectively.

In the perturbation analysis presented below, it will be shown that a purely symplectic
representation is impossible, i.e., ¥ # J to all orders in €. In standard guiding-center
and gyrokinetic theories, we find ¥; = 0 and IT; # 0 at first order, which will also be
adopted in the present work.
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3. Guiding-center phase-space Lagrangian: Lie-transform Derivation

The derivation of the guiding-center Hamiltonian (2.1) and the guiding-center phase-
space Lagrangian (2.3) by Lie-transform phase-space Lagrangian perturbation method is
based on a phase-space transformation to guiding-center coordinates Z¢ = (X, py; J,0)
generated by the vector fields (Gy, Ga,---):

1
7% = 2% + Gy + € <G§“+2G1-dG?)+-~-, (3.1)
and its inverse
1
2% = 7% — eGY — € <G§—2G1-dG?>—|—-~-. (3.2)

The guiding-center Jacobian (2.6) associated with the phase-space transformation (3.1)
is defined as

Tee=To — a% [jo (G +eGg+-) - %G?a%(yoa%m) + }

=D+ e+ €T+ (3:3)

where Jy = e B/c. Next, the effective guiding-center potential energy (2.2) is defined in
terms of the guiding-center transformation as

p x p

Wl—a”ﬂln =-Q(G{ + JGX-VInB) — EH (@ + 1), (3.4)
p x p 1

Uo— LIy = —Q(G] + JG5-VInB) — L (G)' + My) — Gi-d¥i.(35)

Beginning with the general relation between the old (particle) phase-space Lagrangian
e
vy = (;A + p) vdx = ety + 7, (3.6)
we derive the new (guiding-center) phase-space Lagrangian I'y:

FgC:Tgcl'y +dS = ¢! (Fo + €Ty + €Ty + )7 (3.7)

where each perturbation term I', = '}, dZ%+d.S,, is expressed in terms of the symplectic
components 'y, and the nth-order component of the phase-space gauge function S =
Si1+€Sy+---.In Eq. (3.7), the push-forward operator T = - - exp(— €*£3) exp(—e£1)
is defined in terms of the product of Lie-transforms exp(—¢™ £,,), where the nth-order
Lie derivative £,, is generated by the nth-order vector field G,,. According to Cartan’s
homotopy formula, the Lie derivative £¢ of a one-form = yields the one-form

Loy=tg-dy + dig-7) = Gwap d2? + d(GY7a). (3.8)

Note that, according to this formula, the exterior derivative d and the Lie derivative £¢
commute, i.e., £5(dvy) = d(£g7). Furthermore, an arbitrary exact exterior derivative d.S
can be added to the push-forward Tg_clfy in Eq. (3.7) without affecting the guiding-center
two-form

wge =dlge = d(Tl7) + d°S = T (dy) = T w, (3.9)

since d? for any k-form vanishes and the push-forward Tg_c1 commutes with d (because
all functions of Lie derivatives do).
When the push-forward Tgcl and the phase-space gauge function S are expanded in
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powers of € in Eq. (3.7), we obtain the zeroth-order equation

Ty = 7 = SA(X)-dX, (3.10)

the first-order equation
Ii=m—£17 +dS1 =7 — u-wo + doy, (3.11)
the second-order equation
1
Fo=—4Lov — £&1m + 55370 + dS
1
= —l2-Wyg — =< L1~ (wl + wgcl) + dO’Q, (312)

2
the third-order equation

1 1
Is=—£L3v — £am1 + 5«5%71 + £oL1 v — gf‘;”}’o + dS;

L L
=13 wo — L2 Wgel T §1 -d <L1 cw1 + 51 -wgcl) + dos, (313)

and the fourth-order equation

1 1
Fy=—Lyv + £3(£170 — 1) + £2 (-ffm - 517%70 + 213270)

1 1
- 6;9? (71 - 4£wo> + dSy (3.14)

L 1
52' [wgc2 -5 d (Ll cwyp + o1 'wgc1>:|

— Lid |:L1 -d (Ll ‘w1 + L—l-wgcl)} + doy,
8 3

where ¢, - wi = GY Wkag dz? and, since £, = tn - Wi + d(tn - Y&), we have redefined
the phase-space gauge functions S,, — o, by absorbing all exact exterior derivatives:
d(---) +dS, = do, (ie., 01 = S1 — t1 - ). The phase-space gauge functions o, in
Egs. (3.11)-(3.14) are generally considered to be gyroangle-dependent functions (i.e.,
(o) = 0) but it is not a strict requirement. Note also that we use results obtained at
lower orders to simplify expressions at each higher order (i.e., at second order, we use
L1 — 5 £37%0 =3 L1 + 5 £111).

In Egs. (3.11)-(3.13), we need to evaluate the contractions ¢, - wo generated by the
vector fields (Gy, Gz, -+ ) on the zeroth-order two-form:
%gﬁj dX' A dX7 = %wol«j dX' A dX7, (3.15)
where the magnetic field is B = V X A. Using the contraction formula (3.8), we obtain
the n'"-order expression

= —lgWo — L3 Wgel —

wo=dy =

Ly - wo = ngG’;-dX, (3.16)

where G denote the spatial components of the nth-order generating vector field G,,.

Similarly, in Egs. (3.12)-(3.13), we need to evaluate the contractions ¢, - w; generated
by the vector fields (Gy,Ga,---) on the first-order two-form w; = dv;. When evaluated
explicitly, we obtain the (n + 1)*"-order expression

b wi = Dy(p b+pL)-dX — G- (de| + % dJ + % do) . (317
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Here, the spatial components are expressed in terms of the operator D, (---) defined as

0 0 0
o) = P J Y 6 <
D,( )_(Gn 8pH+G”6J+G"80

)(m)—GﬁxVx(m). (3.18)
4. First-order Perturbation Analysis

We begin our perturbation analysis by considering the first-order guiding-center sym-
plectic one-form (3.11), which is now explicitly written as

r, — (pHB n pJ_) dX — ZBXG’f-dX + doy
=pb-dX + (p1 - ZBXG’{) X + doy (4.1)
= | B dX, (42)

where we have separated the terms that are independent and dependent on the gyroangle
0. It is immediately clear that the first-order phase-space gauge function o7 is not needed
to remove the gyroangle dependence on the right side of Eq. (4.1), and thus we set 01 = 0.

The spatial components GY of the first-order generating vector field G; is determined
by the condition

p. — (e/c)BXGY = 0,

which removes the gyroangle dependence in the first-order phase-space Lagrangian (4.1).
This condition can easily be solved as

~

Gx = (b-G1> b~ 2 xpL = G b~ pp, (4.3)

where G| = b- G¥ denotes the parallel component of G¥ (undetermined at this order).

With o1 = 0 and G defined by Eq. (4.3), the resulting first-order guiding-center
phase-space Lagrangian is given Eq. (4.2), where all spatially-dependent fields are now
evaluated at the guiding-center position X. Hence, we obtain the nth-order contraction

ln * Wgel = Dn(p” B) -dX — GZH de, (4.4)

X
no

where G;‘LH =b- G denotes the parallel component of G, and the spatial components

in Eq. (4.4) are
Dn(p” B) = (GI;LH - D KZGi) B + Dy (TBX Gﬁ =+ Gi” I%) . (4.5)

5. Second-order Perturbation Analysis

We now proceed with the second-order guiding-center symplectic one-form (3.12), now
explicitly expressed as

1 B )
j EBXG’; + Dl(Pg)} -dX + 5 G- <(§de+§;d9>

= - EB x GX + DI(PQ)} dX + J df (5.1)
=11, -dX + J (de - R-dx), (5.2)

where

~ 1
P2 = pib+5pl, (5.3)
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and we used oo = 0 with G¥.9p,/0J = 0 and G¥.9p, /00 = 2J. Since Gy =
—0o/0p) = 0, the spatial component of G; is now exactly

(;01c = = Po> (54)

i.e., to lowest order, the displacement from the particle position x to the guiding-center
position X is perpendicular to B.
Using Egs. (3.18) and (4.5) for n = 1, with Eq. (5.3), we find

Dy (Py) = (Gf” + py po-ke> b+ pHT% + J[R - (% + oq)B]

9
+5 (G1 - JpO-V1nB> S+ (Gl + pO.R) B (55)

where a1 = ag : Vb is defined in App. A. We note that R appears in Eq. (5.2) in order
to satisfy the property of gyrogauge invariance. With this choice, we obtain the vector
equation

JR — II, = ngG;c + Dy(Py). (5.6)

From the parallel components of Egs. (5.5)-(5.6), we obtain the first-order component
P T
Gy = —ppok + J(g + al) = Iy, (5.7)

where I = b-II;. By using the definition (3.4), on the other hand, we obtain the
first-order component
G{=Jpy-VInB — o) G} — Ty/Q
2
D T Uy
— py- <JV1nB + an) ~Jo (5 + @) + (Q|H1|—Q>, (5.8)

which yields the first-order guiding-center Hamiltonian constraint
Py J 1

In the next Section, we will discuss how II; and ¥; may be chosen once (G{) is known.
Lastly, from the perpendicular components of Eq. (5.6), we find

X x R 1 (9p

~

9po b

59~ Mix o (5.10)

1

where G35, = b- G% denotes the parallel component of G3.

6. Third-order Perturbation Analysis

The third-order guiding-center symplectic one-form (3.13) is explicitly given in terms
of the spatial components

e ~
Ly = D(Py) = BXGY — Dy (pH b) 4+ Vos = IL, (6.1)
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and the momentum components

6D1(P3) 80'3 2 0 3D1(P3) 30'3
Isp = |G —_— . — - —_— . — | dJ
2 J 6D1(P3) 80'3
- = — . = 2
+{ 3G1+ 20 p0+86 do 0, (6.2)
where
1 ~ 1
P; = apub—i- gpj_. (63)
In Egs. (6.1)-(6.2), we find
1 2N 1 J apL 9 api
—— - == = P 4
Dl(Pg) 2G1 b+ 3(G1 aJ +G1 89 + pOXVX 3 (6 )
1 ~ 1
Di(Ps) = 5 D (pyb) + 3 Di(py1), (6.5)
and
Da(pyB) = (G5 = pys-G5) b+ py (rbx G5 + G3 k). (6.6)
6.1. Momentum components
If we define the new gauge function
2
Gz = o3 + Di(P3)-py = 03 — 3 JGY, (6.7)

where the last expression follows from Eq. (6.4), the momentum components (6.2) become

0o Jc:
[sp = (G)2(| + 03) dp + (G? + 03) dJ

(9]7” oJ
853 J
{ae - (G1 +J W)] do, (6.8)
where we introduced yet another gauge function
_ 1 0
T3 = 03 — 3<2JpO-R+Jap€O-V1nB> (6.9)

in the #-component. By requiring that the momentum components (6.8) vanish, I's, = 0,
we obtain the definitions

053

003
Gy =— — 6.11
2 op;’ (6.11)

0o

0 _ 3
= - —. 6.12

From Eq. (6.10), we immediately conclude that (G{) must be defined as

(G) = — T gyr. (6.13)

By comparing Eq. (5.9) with Eq. (6.13), we obtain

vl _ 1
Enln - \Ifl = —-JQ (2 QH T). (614)
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One possible choice for (Ily), ¥y) is Iy = %JT and ¥y = JQ (g)7), which allows the
Banos parallel drift velocity 0W,/0p; = J7/m to be included in Eq. (2.21). We note
here that, since the right side of Eq. (6.14) is linear in pj;, we may choose ¥; = 0 without
making II; singular. In accordance with standard guiding-center Hamiltonian theory,
we therefore choose

\Ijl = 0
; (6.15)
My = —3J7
so that Egs. (5.7)-(5.8) become
GTfH = —pH Py K + J(T + 061)7 (616)
G{ = p, - <Jv1nB+ 'Q> —Joy (T4 ). (6.17)
Using Eq. (6.17), Eq. (6.10) yields a differential equation for 73:
853 H
50 = (JVlnB+ Q —J g a,
whose solution is
2
- 0 P
g3 = — 5;0 (JVInB—}—m”QFL> —J o az, (6.18)
where we used a; = daz/00 (see App. A). Next, we use Eq. (6.9) to obtain
_ 2 ap ap
O’3=3J<p0'R— 800 VlnB) - 0 (p|600-l<a+ Ja2>. (6.19)
from which we obtain the remaining components (6.11)-(6.12):
3p J (%)
Gy =2¢ 890 Kt (6.20)
2
apy Pk
6 _ Il
Gi=—-py-R + o a2 + 99 (VI B + mJQ>' (6.21)
By combining Egs. (6.19) and (6.21) into Eq. (6.7), we also obtain the expression for o3:
1

where G’Q‘” is expressed in Eq. (6.20). Lastly, the second-order spatial component is now
explicitly expressed as

9pg Jag\~ 1 2| 9py
X — 2 _ryv _ P L —_ —_
G5 ( 9| 20 K+ mQ) b + A (po-K) + JQH (31— 1) o7
1 9po Dj 9pg b
+ o2 + 89 (Vl B + 2mQJ>] 0 II; X ey (6.23)

from which we obtain the gyroangle-averaged expression

b 1 J
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6.2. Spatial components

The remaining components of the third-order one-form (6.1) are I'sx = Iy, where
€ X X X N
Hz:— EBX |:G3 — Q” (TGQJ_ —+ G2” bXH):|
— (Gg“ —D| G)Q{ . R) B + D%(Pg) + Vos, (6.25)

which is now used to determine the components G5' and G%, .
The parallel spatial component of Eq. (6.25) yields the expression for Gg”:

Gg” =p| K- G)Q( + B [D%(Pg) + Vo3 — Hg] , (6.26)
where o3 is defined in Eq. (6.22), and
pis

where Il = b- IT, and App. B gives the expression

b- <Df(P3)> = —Jy (; 2 - <o¢%>) (6.28)

With G¥ and G5 given by Eqs. (6.23) and (6.26), G is now obtained from the definition
(3.5):
Gy =-JG5-VInB — o G3' — T5/Q (6.29)

= _GX InB P~ b- [D2(P Ly 1T
=—G5+(JVh +m - [ i( 3)+V03}*§( Q*E 2“)7

where we used the first-order choice (6.15): ¥y = 0. The gyroangle-averaged contribution
of Eq. (6.29) yields

2
(G2 == (e (JWDB - ib") — oyb- (DAPy)) — & (w2 — Py

1 m 1
= oy — 5 (V2 + 5 Vel = Wiovie) + J of <2 — <a§>>, (6.30)

or the second-order guiding-center Hamiltonian constraint:
p 1 m
E”H2H - Uy =Q {<G:;> - J o (272 - <a§>)] + 5|vgc|2 — I vy, (6.31)

where (G) will be calculated at fourth order in the Lie-transform perturbation analysis,
and the lowest-order guiding-center drift velocity is defined as

b pf
Vee = X <JV1nB—|—m}2R>. (6.32)

In the next Section, we will derive another expression for the gyroangle-averaged com-
ponent (Gy).
Lastly, the perpendicular spatial components of Eq. (6.25), on the other hand, yields
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the expression for G¥:

Gy =G5 b+ 63 (o Vxb) - 63 (g7)
b
- ec—B x [D2(P3) + Vos — II,] , (6.33)

where the parallel component G?,"H is determined at the fourth order.

7. Fourth-order Perturbation Analysis

The fourth-order guiding-center symplectic one-form (3.14) is explicitly expressed in
five parts. The first part is

—uwp = — < BxGY-dX, (7.1)
c
the second part is
—13 Wgel = — D3 (pH B) -dX + G)3CH dp”’ (72)

the third part is

1 1 1 1 L.
—Jrwer =5 Da(JR-IL) -dX — 2 GJdf + 5(Gg - GQ-R) dJ, (7.3)

where R* = R — 0I1; /0J, the fourth part is

322 d [21 : (w1 + wgd)] - % Dy [Dy(Py)] -dX — %(G{ do — a8 dJ)

1 8D1(P2) a
_ lox.2\T2) 4
2G2 S du®, (7.4)
and the fifth part is
1 1 1 1 9D2(P
—gh'd |:11‘d (21'w1 + 311'wgc1)] =— §D‘;’(P4)-dX -3 %'Po du®
1
+3 (46t 6 - d6i 6f)
1
-5 (Gl CdFy, du® — dFy, G‘f)
1 J 4
+61- (dGl do — da? dJ) , (7.5)
where
P, = ipb 4t (7.6)
4 = 3pH 4pJ_7 .

and the momentum coordinates are labeled as u® = (py, J,6) and

oD, (P
F, = 0, 7)
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We now combine these parts to write the components of the fourth-order guiding-center
symplectic one-form (3.14) as

r4xzn4:Va4—ZB><sz—D3(p”B) +%D2(JR—H1) (7.8)
¥ 2 Dy [Di(Py)] — % [D3(P,) — VP, GY] + i(G{ va! — G VG-{),

r4p|_o_g;‘|‘+c:§”;0§-wal;m’); 0-3138%;1')4) (7.9)
oo ) 20t ).

F4JO?;;+G0G"'{R*+8D$SP2)} —% .% (7.10)
_ % (Gl-dFU - 8;}“ G“) + 7 (GJ a(f]e el 6;;{ - Gl.dGi’),

F49£O:%—Gg—7G’2‘-aD;7(9PQ)—%pO-% (7.11)
- % (Gl-de - 8§1a G“) + = (GJ aa(,: ! aaGGJ -dG{).

Hence, the components G¥, and G3' are obtained from Eq. (7.8), the component Gy
is obtained from Eq. (7.9), and the components (G§, Gy) are obtained from Egs. (7.10)-
(7.11), respectively.

From the condition T'yg = 0 in Eq. (7.11), we obtain the missing component (GY) in
Eq. (6.31):

1 /0G% 1 el oG]
PAN 2, - J YY1 6 J
(Gy) = < 20 D1(P2)> + 4<G1 50 G w7 + Gp -dGY >
op o 0F14
+ = <an D2(P4)> - <G1 dFyy — G¢ aol > (7.12)

After several calculations detailed in App. C, we obtain

J J2 T2 ~ 2 B ~
<G2>_ Q) ?‘Fb'VXR—(Oﬁ)—§-V><(bXV1nB)
_ 2
g“[ '(3K—VIHB)+V'K,—T:|. (7.13)

When compared with Eq. (6.30), we obtain the second-order guiding-center Hamiltonian
constraint

p m J
%HQH - \112:5|Vgcl2 — II; - vge + 59 Qﬁ {2(6@) - Kk-(3k—VInB) — V-n}

J2

— b-V x (BXVIHB)]

1 ~
[272 +b-VXR — (a3) —

p
%L (gﬁ |n|2) — I v, (7.14)

J 1
__JQ<62L + 3 QQ|52|> + 5
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where the second-order functions 2, and () depend only on the guiding-center position

1 ~ ~ ~ —~ 2
for=—57" = b-VXR + (a}) + 5b-Vx (bxva) - ‘belnB‘(Z.lB)

1
2
Bo = —2 (a?> - 3kK- (VlnB — m) + V-k. (7.16)

The definitions of (a?) and b-V x R are given in App. A, and the last term in Eq. (7.14)
explicitly involves the undetermined component IT | .

We now note that, in contrast to first-order guiding-center Hamiltonian constraint
(6.14), the right side of Eq. (7.14) contains terms that are constant, quadratic, and quartic
in p|. Hence, since 821 # 0, we cannot choose Wy = 0 without making Il singular in
p|- Hence, while a purely Hamiltonian representation of guiding-center theory is possible
(HnH =0, n > 1), a purely symplectic representation (¥,, =0, n > 1) is impossible.

8. Guiding-center Jacobian

So far we have derived the guiding-center transformation (3.1) up to second order
in magnetic-field nonuniformity. We now summarize the guiding-center transformation
determined by the first-order generating vector-field components

GTzfpm
GY'==pipo-k + J(T + a1),
2
J P Pk
Gi=Jp-VInB — oGy =py- (JVInB+— o | = J o) (7 + ),
op Pﬁ"i
GY{=—-p,-R 0. (VInB
PSP R oy <Vn T ama)

and the second-order generating vector-field components

< 8p0 JO[Q 1 pﬁ 8p0
G3 <2 ol 5p kT Q) 3 | ma (po-K) + Joy (37 —a1) 7
1 9pg pﬁn Ipy b
T3 Qlaﬁae'(wf‘*gmm o0~ T

Gy =py Kk -G¥ + b [D}(P3) + Vo — ],
Gy=—-JG5-VInB — g G3' — ¥5/Q

Pk

x ™ 1 ]
- —G3- (JVlnB + mQ) — opb- [D}(Py) +Vos] — & (v2 — Tl Iy,

while G%, , which is given by Eq. (6.33), is not needed in this Section. The remaining
components G and GY, which are determined from Egs. (7.9)-(7.10), are not needed in
what follows.

We would like to verify that the guiding-center transformation constructed so far is

consistent with the guiding-center Jacobian (2.6) as expressed in terms of Lie-transform
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methods as Eq. (3.3). For this purpose, we will need the gyroangle-averaged components

@y =Jm, (81)
(G) =~ Joy,

N b 1/ J
<G2>:*H1X% + 5 <mQ VLIHB + Qﬁ IQ), (83)

2
(G5 = — oib X k+TI; + g K - JVInB—FM
2 | mS

. (; . <a§>) , (84)

J J? 1 2 N 2
(G3) =5 5|57 + b VXR — (o) -

1 ~ ~
3 b-Vx(beInB)}
’

1
-5 Jef {n-(3n—v1nB)+v-n—T (8.5)
where Eq. (8.5) comes from from the fourth-order expression (7.13).
The guiding-center Jacobian (2.6) is given by Jee/Jo = B /B:
Tec 9 6H2H cb
— =1+ ¢€g7 + ¢ + —=-Vx(IL -JR) | + ---. 8.6
To 9| apu B (IT, ) (8.6)

Hence, at first order, using Egs. (6.16)-(6.17) and (6.21), we find

Ji 1 oGy aa! oGy
%:Ev'<BPO) B <(9p| T T o

G NG
=0T = — ( <3pT> + <8Jl>>' (8.7)

In the last equality, we have used the fact that, since the guiding-center Jacobian is
gyroangle-independent, we may also gyroangle-average Eq. (8.7), which greatly simplifies
the calculations, since Egs. (8.1)-(8.2) yield 8<G11)”>/8p” =0and 8(GY{)/0J = — ) T.

At second order, we must verify that

Jo 8H2H cB
_ v x (11, — _
Jo  Op| eB V" ( ! JR) (8:8)
0

=59 (816D) - 5 (1@ + 57a7) - 35 (6D - 574 7).

where we once again used the gyroangle-averaged expressions for ( ’2‘,G§”,G‘2’ ), with
(GY"),(G{)) = (J 7, — J oy7). First, using Eq. (8.3), we find

—%v- (B(G§‘>) :—%V- [(BlenB) xB} _ %Bgﬁv- (%)
+£v- <H1 xB). (8.9)
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Next, using Eq. (8.4), we obtain

i P 1 2\ _ L 2 1 § 9 9
ooy (<G2 )+ 5 Joym ) = —3 (af) + 5 VinB o) |x|

Lastly, using Eq. (8.5), we obtain

a J J 2 92 _ J T2 -~ 9 B ~
~57 (<G2>29|T =5 3+b-V><R—<a1>—§-V><(belnB)
1 2
+§QH [KH(SH—VIHB) —|—V~H}. (8.11)

By combining Egs. (8.9)-(8.11) into Eq. (8.8), we obtain

Jo _ Oy cb oIy [~ T 1
2o .V x (O, -JR . (b - (4 =T
Jo Op B v x (I )+ o ap| ( X") mao g7
J

 2mQ
1
+§ gﬁ {K,'(?)K—VIHB) + Vs — V-k = 36> + "'VIHB}

{v- [(ElenB) xB} 4 k-VInB — b-V x (BlenB)}

_8H2H cb o1,  /~ T 1
= VX (IL - JR) + o Gy (bx;e) - (w4 5 7).

Hence, we find

Jo _ Ol cb
%~ op + B V x (II; — JR), (8.12)
only if Iy /0p; = 0 and I, = — L J7.

We see that, while the Jacobian constraints are satisfied up to second order in magnetic-
field nonuniformity, we are unable to obtain a constraint on the perpendicular component
IT; ;. Littlejohn ((Littlejohn 1983)) chose II;; = 0 (ie, II; = —1J 7b) as a way
to simplify the symplectic (Poisson-bracket) structure. In Sec. 10.1, we will show that
II,, = —% Jb X Kk s0 that, with Eq. (6.15), we find that

1 ~
M, = — 5 JVxb. (8.13)

We will also show that Eq. (8.13) leads to an accurate guiding-center representation of
the toroidal canonical momentum.

9. Push-forward Lagrangian Constraint

We now wish to explore a new perturbation approach to guiding-center Hamiltonian
theory. We begin with the following remark for the phase-space Lagrangian formulation of
single-particle dynamics in a potential U(x), where the particle position x and its velocity
v are viewed as independent phase-space coordinates. From the phase-space Lagrangian
L(x,v;%,v) = mv-dx/dt—[m|v|?/2+U (x)], we first obtain the Euler-Lagrange equation
for x: mdv/dt = —VU. Since the phase-space Lagrangian is independent of dv/dt,
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however, we immediately obtain the Lagrangian constraint

oL dx

= = _ 0. 9.1

ov ~ Mat P T 1)
We would now like to obtain the guiding-center version of the Lagrangian constraint

(9.1). First, using the functional definition for dg./dt:

dgc 1 (d
;t = Tgc1 <dt Tgc) , (9.2)
we introduce the guiding-center Lagrangian constraint
dx dg dee X dgcp
T, = T.)x) = e Bee) = 7t 9.3
" (dt) m g (Tee) m(dt ST ) ge P 9:3)

expressed in terms of the guiding-center velocity dg.X/dt and the guiding-center dis-
placement velocity

dgcpgc _ 6_1 87\11 apgc + dgCX-v*p dgcpH apgc

dt aJ 99 dt g dt  py’

(9.4)

which includes the polarization velocity d{p..)/dt). Here, the guiding-center displace-
gc
ment is expanded as

pgcETgclx—X:ep0+e2p1+e3p2+-~-, (9.5)
where the higher-order gyroradius corrections are
1
p=-G; — 3 Gy - dpy, (9.6)
1

We note that, in general, we find (p,,) # 0 and p,, - -b#0forn > 1.
In Eq. (9.3), the push-forward of the particle momentum T, p can be expanded up
to second order in € as

TeP=p + ¢ [PO‘VP - <GT'B e T G"amﬂ

toJ b o0
— [G;-Vp + <G§' b + Gé’% + Gga(%)]
+—2G d<Gp b+ G/ a;’j e ag; - pO.Vp> +o, (98)
while the push-forward of the particle velocity is expanded up to second order in € as
Eahie el S DR G R O
+ %’VSPO + dle -Vopy dS;:” ggﬂ )

where we used m doX/dt = p b, Vi =V + (R—0II,/9J) 0/00, and dp,/0p| = 0 with



Equivalent Higher-order Guiding-center Hamiltonian Theories 19

U; = 0. At the lowest order in ¢, the guiding-center Lagrangian constraint (9.3) yields

N 9pg
= b Q—=. 9.10
p = pb+ mi—g (9.10)
At the next orders, we used the expansions dg.Z%/dt = Y € d,Z*/dt (which now
includes the expansion of Bﬁ*) to obtain

2
aX 1 (p S b
m :<|V><b+Jb><VQ> - D <9|\T)b
m

a0
N v
=bXx <JV1nB + an) = M Vg, (9.11)
mP2X_ (M_Mfm)g_m(g ) ve
dt ap” m 5‘p‘| I 8¢
+oy [Vx (T — JR)=BB-Vx (T, - JR)|,  (9.12)

where we used OIT; /dp = 0.

9.1. Flirst-order constraint

At first order, the guiding-center Lagrangian constraint (9.3) yields

2 06

_ 9p, dopy
G1 dp =m (Vgc + Q W + dt B (913)
where
dopy _ Pl byl Ligg
20 L\ (pyr) B+ 5T A0+ (V-5) oo (9.14)
0 p -~ 1 0
0P = E” {2 (po-#)b — o (T4 a1) 22 — ay Po]

J N
+E(a1b - 2a1-VlnB). (9.15)

The first-order guiding-center Lagrangian constraint (9.13) yields the following compo-
nent equations

N N op dop
(po-VpP)-b — G¥' =mb- <vgc + 0 6—91 + dt(’), (9.16)
9py g _ 9P 9p, dopy
(po*Vp) 20 Gi=m 50 "\ Vee + Q 50 + ) (9.17)
9po o _ . 0pg 9p, dopy
(po- VD) 57 G =mag=e (Ve + Q % T a ) (9.18)

The parallel equation (9.16) becomes

0 ~
J (7‘ + 2a1) - o = mQ%-b — D) Py K,
which yields the same expression (6.16) for G}
G = —pypy-K + J (7’ + al). (9.19)

The remaining equations (9.17)-(9.18) yield the components G{ and GY.
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9.2. Second-order constraint

At second order, the guiding-center Lagrangian constraint (9.3) yields

x N opL ap.1 1
de X ap, 0 D 0py di; X dop;
= m— Q—=+ —(Uy——1I —_— — .V .
m S w0 G g (e = Ty ) S m S Vi +m S

The parallel component of the gyroangle-averaged second-order constraint equation (9.20)
yields

py Oy 0Py P do{p1) + X of
— - — | =(G b — (G¥-Vb-
mn (m 8p‘| 8pH < 2 > tm dt < 2 v pJ'>
1 ~
-2 <G1- d (G, .dp)> b. (9.21)
If we combine this equation with Eq. (6.27):
My = —(G5') + py &+ (G5) + b~ (D}(P3)), (9.22)

the contributions from (G5') cancel out when Egs. (9.21)-(9.22) are combined and we
obtain the second-order equation
0

m%(%ﬂgﬂ — \I/2> =m

do{p1)
dt

b+ pyr-(G3) — (G3-Vb-p.)

<c-11 - d(Gy -dp)> b (9.23)

N =

+b- (D}(P3)) —
In App. D, the right side is explicitly calculated as

0 —~
m — (ﬂ Iy — \112) = 2p Qﬁ ‘K,|2 — 29 bxk-II; — Jy 52”, (9.24)
8p‘| m
which can clearly be recovered from the second-order guiding-center Hamiltonian con-
straint (7.14).

10. Guiding-center Polarization and Toroidal Canonical Momentum

So far we have been unable to find a way to determine the perpendicular compo-
nent II;, within guiding-center Lie-transform perturbation theory. The guiding-center
Jacobian constraint tells us that OIT; /Opy =0 and II;; = — 3 Jb-VXb=—-1J7.

10.1. Guiding-center Polarization

We show how IT; | can be determined by requiring that the guiding-center transformation
yields the guiding-center polarization obtained by Pfirsch (Pfirsch 1984) and Kaufman
(Kaufman 1986).

The guiding-center displacement p,, = Tg_clx — X is explicitly expressed as

2
Py = —€GY — EGF + %G1~dG’f o =epy + Ep 4o, (10.1)
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where the first-order guiding-center displacement is

« 1 ap op
pi==G5 + 3oV - 5 (G150 4 ct )

~ b
= (qu + 200 Vb- Po> b — o7 py + I X —o

ap op

_ |7 9P 0 .R) 2P0
{Gl 5y (G + e R) } '

Next, we compute the gyroangle-average (p,) and obtain

B
mQ

J

Z—L JVIB—F@ + V I—bb
T mQ L mSQ 2mQ

J = b
+ <2bXH+H1> Xm.

21

(10.2)

(10.3)

Lastly, the guiding-center polarization density is defined as the first-order expression

2
_ PoP Pk
" =clon - ov- (B)) = -5 (rwims + 1)
J = b
+ <2b><n =+ H1> Xiﬂ,
which yields the Pfirsch-Kaufman formula
1) — o}y Ve
ﬂ'éc) = ebxX 0
only if we use the definition
J ~
II,, = ——-bxk
2
Hence, by combining with the condition (6.15), IT;j = b-II; = — % J 7, we find
PN J -
m = -5 (rb+bxx) = -5 Vxb,

and

= bx Vv [J (I_BB)] + B,

with the gyroangle-dependent part p; = p; — (p;) is
~ 9o\ 1 9po
=_ 2 Rl Vi BN “(r— YFo
P Q||{ <'€ 89) +2(T ay) py + az 20
J ~
+ = (asb ~ 22,-VInB).
ms2
Lastly, the guiding-center phase-space Lagrangian is expressed as

T = (A +pb = SJVXD) -dX + ¢J (df — R-dX),

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

when terms up to first order in magnetic-field nonuniformity are retained. In Eq. (10.10),



22 Brizard and Tronko

we have retained the guiding-center polarization contribution to I} = — % JV xb. We
now show that this polarization correction enables us obtain an exact expression for the
guiding-center toroidal canonical momentum up to second order in e (i.e., first order in
magnetic-field nonuniformity).

10.2. Guiding-center Toroidal Canonical Momentum

There is now well-established connection between polarization and the conservation of
toroidal canonical momentum in an axisymmetric magnetic field, here represented as

B = By(¥) Vo + Vo x VY, (10.11)

where ¢ denotes the toroidal angle and 1) denotes the magnetic flux on which magnetic-
field lines lie (i.e., B+ V1 = 0). Note that we have added a toroidal magnetic field B, Vo
in Eq. (10.11), with a covariant component B, that is constant on a given magnetic-flux
surface.

We first calculate the guiding-center toroidal canonical momentum from the guiding-
center phase-space Lagrangian (10.10):

ox
Oy

~ 1 A
Py = 6A+p|b—eJ<R+ 2VXb>}

10.12
s (10.12)

~ 1 ~ 1
=— i ¥+ pyby — €J [bz + V- (bx 2R2w) + b-Vx <2R2wﬂ ,
where we used R-90X/d¢ = b, (i.e., the component of b along the symmetry axis Z for
toroidal rotations), we wrote 9X/0¢ = R? V¢ in terms of the major radius R = |[Vip| 71,
and we used the identity F- VX G=V-(G X F)+ G-V X F, for any two vector fields
F and G. Next, we use

. 1 . PR
b-V x <2R2w> = b (VRxRVy) = b (Rx$) = b,

and
~ 1 1 0X 1
bx -R?Vy = — (B el
><2R Vo 2B( ¢V¢+V<vaw)xa(p 2BV1/;,
so that Eq. (10.12) becomes
e J e
Py = — — b, — 2.J b, | = - . 10.1
gep Ec’l/) + p” © € |: J + \% <2mQ cV?/J)] ( 0 3)

Here, we suspect that the last term in Eq. (10.13) is related to the second-order finite-
Larmor-radius (FLR) correction to the first term.
To prove this relation, we introduce the guiding-center magnetic flux

oo = (Tg'0) = <w+ep0-w—e2 [G’;-vwécrd(po-w)} +>

= + € <<P1> Vi + %<POP0> : va) +o (10.14)

where we used the definition p; = — G¥ — 4 Gy - dpy. Next, using Eq. (10.8), we obtain

v J — J —
wgcdﬂrez{bxvé'v#”rv' [M(Ibb)] -Vz/f+2mQ(Ibb):VW}

_ 2 |y. (7 B x Yee .
=14 + ¢ {v (2mQ vw) + bx 5 v¢]. (10.15)
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Lastly, we use the identity Vi = B x 0X /0, with B-vgc = 0, to obtain

T Vec — By Ve, X\ _ B X\ _ B
b x Q Vi = b X Q (Bx&p)Q Vge 95 = g Ve

Hence, the final expression for the guiding-center toroidal canonical momentum defined
by Eq. (10.13) is

& doX d1X oX
P = — — 1, — — | -— — 2€eJb 10.16
8e¥ €c Vge + m( dt te dt ) Op € Oz ( )
where dpX/dt = (p”/m)g and diX/dt = v, while
doX  dX\ X , dye
— — ] -=— =mR
( a T dt ) o Y Tat

denotes the guiding-center toroidal momentum with first-order corrections due to the
guiding-center magnetic-drift velocity.

The last term in Eq. (10.16) might be puzzling until we consider the guiding-center
transformation of the particle toroidal canonical momentum

_ B e 8X
Pap = (T2 P,) = <Tg01 (_ec W+ mv-&p>> (10.17)
I fldix . *18—}(
=gt e () - (5))
_ e QX | dueppc)  (0uX | Ouchye
ecwgc+m<< 7 + 7 . 0o + 9o

e
__ecwg6+m<dt e ) e T e oy

Since dp,/0p =7 X p, in axisymmetric magnetic geometry, the last term becomes

9p Ipo\ _ 9p0 (5 _ -
mQ<69 90 = emf} 20 (ZXpg)) = —2€Jby,

and we recover the guiding-center toroidal canonical momentum (10.16) from the guiding-
center transformation of the particle toroidal canonical momentum (10.17).

Lastly, we note that the guiding-center toroidal canonical momentum P, is defined
as the guiding-center push-forward of the particle toroidal canonical momentum FP,:

dgc X dgcp Oge X Ogep
P _ T*1P _ _ET*1 gc gclge \ | gC gcFPgc
8o ge ¥ ec & v+m dt + dt %) + dp )’

(10.18)

which guarantees the invariance of the guiding-center toroidal canonical momentum Py,
dge Pycy _1(dP,

= F =T —= ] = 0. 10.19

dt 8¢\ dt ( )

We have shown in Eq. (10.17), however, that Py, = (Tg!'P,), since Py, is defined as
the toroidal component of the gyroangle-independent guiding-center symplectic Lagrange
one-form (10.10). Hence, the gyroangle-dependent terms in T ! P,— (T P,) must vanish
identically, which is proved up to second order in e (first order in eg) in App. G.
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11. Summary

A systematic derivation of the higher-order Hamiltonian guiding-center dynamics has
been derived by Lie-transform perturbation analysis. The guiding-center Poisson bracket
derived from the guiding-center phase-space Lagrangian (10.10) is

(Ri6) (2060006 B (G 06 O )
gc

a6 oJ aJ 06 BlT 8p‘| 8p‘|
ECB
— -V*F * 11.1
T V*F x V*G, (11.1)

I
where V* = V 4 (R + 1 V x b) 8/90 and

~ J 1 ~
B* =V x A+eCp'b—e2C<R+Qbe> : (11.2)
e e
* _A * 2 J - ]_ ~
oIl 1 ~
R°=R — ¢! — =R + = b 11.4
€ 57 + 5 V X b, (11.4)
The guiding-center Hamiltonian, on the other hand, can be chosen as (with Il = 0)
2
Hy = ﬁ + JQ + Uy, (11.5)

where the second-order guiding-center Hamiltonian is expressed as

2

Ty = JQ (27;]19 Ba1 + %gﬁ 62|> - % (gﬁ |n|2) + IO v (11.6)
Here, we have isolated the contribution from the perpendicular polarization component
IT; | and the coefficients 351 and By are defined in Egs. (7.15)-(7.16).

These guiding-center Hamilton equations have passed several consistency tests along
the way. First, we verified that our guiding-center transformation satisfies the guiding-
center Jacobian constraints at first and second orders, provided 0II; /dp; = 0. Next, we
verified that our guiding-center transformation also satisfy the guiding-center Lagrangian
constraints at first and second orders.

We also showed that the perpendicular component of IT;, which could not be de-
termined at the perturbation orders considered in this work, could nevertheless not be
chosen to be zero in contrast to the choice made by Littlejohn in (Littlejohn 1983).
We showed in Sec. 10 that the choice ITy = — % J V X b not only yields the standard
Pfirsch-Kaufman guiding-center polarization (10.5) but also an accurate guiding-center
representation of the particle toroidal canonical momentum (10.16). By comparison,
the guiding-center toroidal canonical momentum obtained by Littlejohn is (Pycy)rar =
—(e/ec) 4 pj b, — € J b, (calculated with the choice IT;; = 0).

Lastly, we show in App. F, that the guiding-center Hamiltonian (11.5) can be expressed

Hy = ";< 2>. (11.7)
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dgc X dgC P gc
dt dt
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Appendix A. Dyadic Calculus

In this Appendix, we present the basic expressions associated with the gradient and
curl operations on the rotating vectors U* = (L, p, b), where we shall use the identities

apo_ op.L
PL Gy =27 a9 Po
opL Opy _, _ _9pL Opg
87 o0 90 97

In writing the following expressions, we use

VXB:TBJFBXK,,
VXIZ—Z)\XR — CPJ_I + C11p,
Vxp=1xR —Cp Ll + Ci,p

where the matrix elements

Cip, = 1-Vb-1 =1V.b+ 20
Ci, = 1 Vg-ﬁ— 5T — o
C,. = ﬁVB-I:—§T—a1
Cpp = p-Vbep=1V:b - 209

with a,, = a,, : Vb expressed in terms of the dyadic tensors

1~ -~ Oas
=_- (1 L) _ %2
2 2( ptp 20
1 o~ ~ PR 1831
=- (11— ):—f—,
2=7 ( PP 100

so that das/90 = a1 and day /00 = — 4 .

We also make use of these matrix elements to write the components of the dyadic

gradients

VI = Rjp- (k1) b~ (Coul + Cpup) b

Vi = -RI - (k) bb— (Cupyl +Cpp) b

Vb = bk + (Cppp + Coupl + Cupylp+ €L 1T)

(A7)



26 Brizard and Tronko

from which we obtain the divergence identities

~

Vb = Cpp—l—CJ_J_
V-l = Rp— kL : (A8)

V.p = —R-1L — k-p

and the useful expressions

VpOZ—%VlanO—R%— (Po )b+CLpaa’;0+Cppp0} b,
V-pO:—p0-<1V1nB+l<a+B><R)7
VXpL—*VIHBXpL - Rx% — (CplpL + C 8;;),
with
J [~ ~ ~ 1
(pyVpo) =~ [BXR — (V-b)b — 2VllnB]
%-VXpL:—JPB-R— (T+2a1)},
88[;0 VX%:_B'R+ (a0 +5).
%'VX%:—élJag.
We will also use the following expressions
%:%A- [Vpo + (R+ v x )%’;0]
ST p0 + 57~ (pom)B). (A9)
dodlzl :%E {VpL + <R+;be> 85);]
:—]:JL[;(V-B)pl - %Tag;; (pJ_"{)B] (A10)

We conclude this Appendix by presenting the dyadic identity derived from Eq. (A 7):
VB (Cpp) (CJ_J_) + 2 CJ—ﬂ CpJ-
1
=3 {(V b - 7'2] + 2 [(a1)2 + 4 (a2)2] , (A11)
which implies that

(@) + 4 (02) = ((@)®) + 4 ((a2)’), (A12)

as is easily demonstrated by noting that the gyroangle-derivative of the left side of
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Eq. (A 12) vanishes. Next, we note that

(@) = (%) ten) = 4 (), (A13)
and thus the dyadic identity (A 11) becomes

o~ o~

Vb : Vb =V-.k — b-V(V-b) = {(V-B)Q - 72} + 4 ((@)?). (A1)

N |

We will also need the related dyadic identity
(VB) "+ Wb = |+ (Cpp)* + (CLL)® + (Cup)* + (Cpr) (A15)
. (V-B)2+T2 4 <(a )2> — Vb : Vb + |k[? + 72
5 1 : .

Lastly, we give the expression for the gyrogauge-invariant vector field

11 o~ o~ 7 o~ N N
Vszi{Vb:Vb—(V-b)Q] b+ (V-b)k — k-Vb, (A16)
which yields the relations
N 1 . N
b-VxR:§V-{n—b(V-b)}, (A17)
and

(@) = L5.vxR + 1[72 + (V-B)z] (A18)
Vo 8 '

Appendix B. Calculations of D; and D%
We begin with the operators D; and D? acting on 4l b:

D, (pHB) = (G + py po-K)b + p| T% =J (T + a1> b+ oy7pi, (B1)
D} (pyb) = [J7(r+ ) + 7 (6] + %G{) + 0Bb-Vx (5 pu] %
- (pl\TG?)po + {Gi] (r+a) — 4Jax G - QHT%°VXPL
—J%-Vx [(r+a1)BH b, (B2)
from which we obtain
(Di(pyb)) = Jrb
Dy(pyb)-py = 0 , (B3)

Dl(pub)-apo/a@ = 2.]9”7'
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and

T A 0

<D% (pl\ b>> b= <G1] (T4+a1) — 4Jo¢2G§)> — o <ap90.v><pL>

=—-2Jy (72+<a?> fTB-R), (B4)
~ Op 2J | 4.J?

2 9P\ _ 4 2 i Pl Ao\ (240 5 2 2

<D1 (pr) ae> mo (‘]T +T<G1 T3 G1>) (mg Joj ), (B5)
~  OG% OG* 1

<D1 (p” b) . 892 > =J <a1 692|> + o7 <2 JQHT + 5 <g‘1]>>

J2 2 3 2 2

Next, we consider the operators D; and D? acting on p, :

J opL 0 opL
Y

Di(p1)=Gi-dpi + 2JR = J{2R — (7’—|—20¢1)B} + 9l T g
il
m(/’o"‘i) - Joj (T+a1)

opL
oJ

o~

:J[QR - (T+2a1)b} n

2
PP K
+ |ogas + 20 <v1nB + )] opL (B7)

2mQ 7 || 06

D¥(p1) =2G{ R = [G{ (7 + 2a1) = 8Ja2 G{| b + pyx V x [Di(p1)]
[ e 1 Jp
(GF0ug0) 2761 &F - o af Gt | 2

aJ

opL
00’

[ 1
(G109Y) + = (] G| + 4! G{)]

2J (B8)

from which we obtain

Di(pi)-py = —2JGY

(Di(p1)) = JER—7b) — bx (JVInB+p oK)
, (B9)
Di(p1)-0py/00 = 2JR-9p,/90+ (G —J p,-VInB)
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and
(D¥(py)) -b=2(G))b-R — <G{ (r+2a1) — 8Jas G‘f>
B
- <a"90-v>< [Dl(pl>]>
= J o (g# + 6 (a?) — 3TB-R>, (B 10)
2 Ipy J ~ b
D1(Pl)'w :2<G1 Po> 'bXR—F?Jﬁ'VX (Di(p1))
+ <(G%aag{)—2Jgf G?—;Jgi’G{>, (B11)
G 2J2 5 5
(Do) B2y == 25 () - Tt
2 1 2 5 0g¢
+ <J (9)” + 7 (6])" + ol ael>’ (B12)
where

)

2
~ ~ —~ ~ Pi K
b-Vx (Di(pr))=2Jb-VXR — Jr% — b-V x [bx <JV1nB + ')

mS
9py _/9py 7 OPL 0 OpL

T2 2 -~

2

Lastly, we need

dD:(Py) 1 dg)
g W) 1901 B13
1pj ap) Po 2" ap,’ ( )
OD:1(Py) 1/ 897 1, 1
g 0Py 1 0g0 1 2, B14
N os =g\l ar o) tapR )
_ DRy L 090 L\ 2
Bo=—5r="5\"% *39)  3/am 1)
and
0Fy  OFy 1 ogi gﬁ, (B16)
3p‘| 0 4 ap“ 3 mf2
OFyy  OFy; _ 1 (0g]  9g!\ 1 9p, 2
_ = — = | — an - 55, R-— 3 : Bl
dJ o0 4 (&] o0 2 90 37 (B17)

Appendix C. Second-order Calculations for (Gy)
Equation (7.12) defines the gyroangle-averaged component (G ):

1 /0G% 1 0GY oG
o8- 10 o)+ ot 2~ 150+

1/0 1 o 9F1a
+2<£.D§(P4)> - 2<61-de - G > (C1)
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where
0G3 J oy ~ 9pg 1 (9g] 0\ 9pg
= (22 _ 9 .k )b 9Po . 2 (991 _ 5 9Po
20 (mQ 2l Po ") T T ol ~29) 5y
1 (dg% L7\ 9P
*3 <ae 279 ) g (©2)

where gf = G{ —J py-VInB and ¢ = GY + p,-R. We now compute each term
respectively. The first and third terms are

1 /0G% 1, , 1 w2 1 o2 5 0g)

J
L /0py o _ (277 Loo) o 1 7, L7\ 9po 0
2<89’D1(P4) =\3ma §JQ|\ ™t Gy + 29 ) 5g T Jgipy) R

+ e T D) - (7 @)+ 55 @)

4mQ
1 9a? Oag? 1 0g¢
+8<Gzlo|a?|+G1J%}_g{(2p0-v1n3+8991)>,(04)

while the second and fourth terms are

1/, 0GY g 0G{ J\__ 1 /.59p 1/ oy 997
4<G169_ 1gp T eder) == (G g )R I\ gy
1
~ 1 {po V&) (C5)
1/ (3 agi , 9gf
+4<G1 <2p0 VinB + W + % s
and
1 COF, 1 ag° 1
—2<G1'dF19 — Gl 891 >:—4<p0°V(Jégel + 29{)>
1 7 0pg 1 p JT 7
L/ 99t | o (091 991
+8<G1 ot GG ) @

so that Eq. (C1) becomes

1[/2J? JT 1 dg?
gy _ L4 2\ 2 pp 4T J 1 p 991
(Gy) = 3 |:(mQ + ng)T + <Gl ey + Gy Q|T>:| + 5 <G1 8p|> (C7)

Jb 1 g1 o) 9m 0
+4mQ VX<D1(PJ_)>+4 <(G1 291) 20 + Jgipy) R

1 1 g
1o (6t gat - 1%

1/ .,[3 g dg{1 1 ,(09 1
—|—4<G1 [2 (Po VinB+ 20 +2 BN +2g1 20 —2p0 VInB|).
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We now use the identity p,- VA =V -(p, A) — A (V- py), where

so that we obtain
1
5w (et got - s G))
4
g9
J 1 1
v. <p0 (G1 Y 89)>
1
(GJ 5 i > +J91P0>'R
1 dg 1
J - J 1 - In B .
(G 5 Ji +J80> <2Vn + K (C8)
By substituting this expression into Eq. (C7), we obtain

2J2 2 2 P
%'FJQ”T—‘F G Q—’_GlQHT

Jb 1 /g 29t
+4 TS v x (D) + <G1 o

Ly g1
(1 591+J%

m»— »MH =

/\/\

W =

(G3) =

Z
L/ ar _ 3097 |, 09
+4<1[ (VinB n)+289+2&]
1 Jag1
+8<1[— (VinB + )
7 ? VIB+ (C9)
1\ o9 P .

‘We now substitute the definitions of the generating vector-field components and we obtain

J2
2mf)

(Gl = [1T +BVxR - (a2) —

%B-V X (Ex VlnB)}
)

—iJgﬁ {l{-(anVlnB)JrV-nfTQ (C10)

Appendix D. Calculation Details for (p;/m)Ily —
The defining equation

do(p1)
dt

" opy (pH 2 \P2> -m b + pr-(G3) - <G’2‘-V5-m>

+5- (D3(Py)) — 5 (G- d(Gidp)) b (D)

N |
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contains five terms that are calculated explicitly in this Appendix. The first term is

do(p1)
dt

A

b= (pHB-v<p1>) b = p B-V(<p1>-b) = py(p1) K
:—%J@H {V- [B (VB)} — 3H'V1DB} + p| Qﬁ|f<;\2
*QHBXK]-Hl, (D2)

m

where 9({p;) -B)/apu = 0 follows from Eq. (10.3). The second term in Eq. (D 1) is

~ 1
p(G3) Kk = — o bXx kK -TI; + 3 (JQ” k-VInB + p| Qﬁ\"?|2) . (D3)
where we substituted Eq. (6.24). The third term in Eq. (D 1) is
~ ~ 0
—<G’2‘-Vb-pL>——<G§" {b(n-pL) —CpJ_§9J_+CJ_J_pJ_:|> (D4)

= — K- <pJ_ G’2(H> — 2J (QH T) <CPJ_>
1
=5 (Cor (6] =T py-VInB)) = J (Cuv (G1 + py-R)),
Here, using Eq. (6.20), we find — <G’2‘” pL)-k=—2J g |k|?, using Eq. (A7), we find
—2J (¢ 7) (Cpr) = J o) 72, while using Eqs. (6.17) and (6.21), we obtain

1 1 1
and
1
—J(CL1 (GY+py-R)) = —2J¢g) (a3) = — 37l (i),
so that Eq. (D 3) becomes
- 3
—<G}2(-Vb-pJ_> = JQ” <4T2 —2|I<.‘,|2 — <OZ%>>, (D5)
where
oy _ Lon op L 12 ™2l — 2
(af) = ;Vb: Vb + 3 [T - (V-b)} = 4 (a2). (D6)
For the fourth term in Eq. (D 1), we use Eq. (6.28):
~ 1
b- (D¥(P3)) = — Jo (2 - <04?>) : (D7)

Lastly, for the fifth term in Eq. (D 1), we begin with the identity
<G1- d(G, ~dp)> b = <G1 -d [(G1 - dp)- ED + <pO-VB- (Gl-dp)>,

where

opL
aJ
— DP| Po- VB» (D 8)

G, -dp = (G’f” n 2JC,,L) b+ (G{ - JpO-VlnB)
+ (G? + pO-R> %
with
9py

po-Vb = Cpypy + Cp1 50
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First, we find
1 BN = L /g J o dou
_ 2<G1 d[(G1 dp) b}>_2<01 po-r + G ar + J GY
1 1
+pp (ke (561dpg) = 5{po-VE-py) |, (DY)

where we used (G; -dp)-Bz Gllj” +2JCp1 = —p|po-k—Jai. By using

1 J |1 ~ o~ 1,
§<G1'dp0>:m {Q(V-b)b + VLlnB] + 5 0k,
and
1 1 . 1 ,
L (Ve =~ oy ) vn = <Ly (V-r + &),

Eq. (D9) becomes

!

5 (G1-d[(G1-dp)- B]) = T g <ﬁ-V1nB—|n|2—;v-n—<a§>)

+ % py of |kl (D 10)
Next, we find
~ 5 (P07 61000} == 1 (Cop oo+ (1 0p)] + Cou | (G- am)] )
—<J (61 + po-R) Cpp - %(G'{ ~ Jpy-VInB) cpl>
+ oy ((C2) + (C2))
— 7y ({ed) 41 (7). (D11)

If we now combine Egs (D2)-(D3), (D5), (D7), and (D10)-(D11) into Eq. (D 1), we
obtain

9 (7| _ 21,12 ™
miapl‘ (E H2H \I/2> = 2pH QH |Ii| QQH bXk H1 JQH ﬂQH, (D 12)
where
_ 17 4 ~9 1 ~ —~
fo = =3k (VB — &) — ] [T + (v.b)} +5V- [n + b(v.b)].

Appendix E. Comparison with Previous Higher-order Guiding-center
Theories

In this Appendix, we compare our results with previous higher-order guiding-center
theories derived by Burby, Squire and Qin (Burby et al. 2013) and Parra and Calvo
((Parra & Calvo 2011) & (Parra et al. 2014)). In both cases, the polarization term IT;
is ignored and, consequently, these theories are incomplete as discussed in Sec. 10.

For the purpose of comparison, we summarize our results here for the second-order
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guiding-center Hamiltonian

2
1 P
Vaom) = 5795 A+ A — g dlieE ¢ v, (BY)
where
er_ Lo p 2 1 15 bx VInB E
0 = =37 =B VxR+(a}) +5b-Vx (bx VInB) - . (B2)
BT == 2(03) — 3k (VB = k) + V-k. (E3)

By using the identities (A 16)-(A 18), we obtain the following explicit expressions for the
Brizard-Tronko coefficients (E 2)-(E 3):

(BT) _ %B-VX (BlenB) - ‘vamBr—iv. [n ~ b (V-B)}
@Kvﬁ_mﬂ (B4
BT = -3 k- (va _ n)+%v- [n + B(V-B)} —i [(V-Bf + 72} (E5)

We will now compare these coefficients with those obtained by Burby, Squire, and Qin
(Burby et al. 2013) and Parra and Calvo ((Parra & Calvo 2011), (Parra et al. 2014)). We
note, however, that these previous results assume that I} = — 3 J 7 b (ie., Iy, =0)
and, thus, these guiding-center theories are incomplete since they fall to yield an accurate
guiding-center representation of the particle toroidal canonical momentum.

E.1. Burby, Squire, and Qin results

The second-order guiding-center Hamiltonian derived by Burby, Squire, and Qin (Burby
et al. 2013) is expressed as

2
_ 1 BSQ BSQ Pj
Vamsa) = 579 (5 850 + 4 50) - L gee @m0

with the second-order coefficients

1~ . . - N2
(B5Q) _ 1 bx VIn B2 + b-V x (belnB> - 3<|b><v1nB|2 + (v-b) )]

2
17 ~ N T N2
+[Vb:Vb—3Vb:(Vb> + 3k + 15 (V-b)}, (E7)
8
1T ~ ~ ~ ~ N 2
B = 1 [3Vb:Vb — Vb: (VB)T + (v-b) + |n|2]
~ 3k (VInB _ n) + B-V(V-B). (ES)
By using the identities (A 14)-(A 15), we readily find
(BSQ) _  ,(BT)
21 - 21
(E9)
IB(BSQ _ IB(BT

2|l 2|l

Since the Burby-Squire-Qin second-order guiding-center Hamiltonian is exactly equal to
ours, it can be concluded that its derivation is based on an identical set of guiding-center
coordinates.
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E.2. Parra-Calvo results
The second-order guiding-center Hamiltonian derived by Parra and Calvo ((Parra &

Calvo 2011), (Parra et al. 2014)) is expressed as
1 »i
PC PC
ypey = Qm( 5O+ o Ll >) ~ L i, (E10)

with the second-order coefficients
IV.B]? + Vlb (Vib) T

ko) _ 1 o _ 3
=(1 bb): VVB-b 232

21
1 ™2 2
w4, 1D
~ _~ 1_ =~ T
ﬂéﬁ’C) —3k-(VInB -kK) + (Vb:VbQVLbi(Vib)T>
(E12)

1 ~

-~ [3 (V-b)? — 72] .
4

In order to compare the Parra-Calvo second-order Hamiltonian (E 10) with our second-

order Hamiltonian, we will need the identities (A 14)-(A 15) and the following identities

B '(I1-bb): VVB-b=|bx VInB? + b-V x (vamB) - (v-b)
—Vb: (VD) + |k|?,

and
Vib:(Vib)T = Vb: (VDT — |2 = Vb: (Vb) + 72

By using these identities, we obtain the following explicit expressions for the Parra-Calvo
coefficients (E11)-(E 12):

1~ o N 2 1 —~ ~
(9 =369 x (bxVInB) ~[bx VB — 1 V- [x — b (V-b)]

21
(E13)

—% [7 (vB)Q + 372},

A0 — 3k (va - n) +%v- [;@ —b(Vv- B)} —% {(V-B)Q + 72](E14)
By comparing Eqs. (E 13)-(E 14) with Egs. (E4)-(E5), we obtain the differences
S - ale = (V-B)Z, (E15)
oY =8 = v b (v-b)] = (V-B)2 +5-v(v-b).

In more recent work, Parra and Calvo (Parra et al. 2014) showed that the second-order

(E16)

Hamiltonian difference

L (v-6) -2 v [b (5)]

Yyrpo) — Yomsq) = ~ 5
o do |J ™~ d0<03>
-2 [ o (V~b)} =2 (E17)

could be explained, using our notation, by adding the gyroangle-independent gauge func-
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tion
1 ~  do (]
{os) = §JQ”( 'b) = dt (2(2) (B18)

in Eq. (6.22). Hence, according to Eq. (6.2), this new gauge term introduces the following
change in G’z‘”, according to Eq. (6.11):

x AR x a<03> x J N
so that Eq. (6.23) yields the change
_x J(V-b) ~
G, =Gf — ————b E 20
2 2 21, Q ’ ( )
and, thus, the new first-order gyroradius is now given as
_ J(V-b) ~
= ————= b. E21
pl pl + 2mQ ( )

We note that, according to Eq. (10.3), we now find b- (p1) =0.
Lastly, the gyroangle-independent gauge function (E 18) also yields the following change
in G5, according to Eq. (6.26):

_ - 1 S (0.0
Gy = G =G+ bV = G + 5o V- [b(VeB)|, (B2

while G is unchanged, according to Eq. (6.2), because d{(03)/00 = 0. With Uy = Vopoy,
we immediately note that GJ remains unchanged according to Eq. (6.29), and that the
Jacobian constraint (8.8) is still satisfied since
oG, 1 oGy

= —V-(G3) B 2
e AR

% v- (<§;‘> B) +

Hence, by extending the class of Lie-transform perturbation theories with the inclusion
of gyroangle-independent gauge functions (i.e., {¢,,) # 0) in Sec. 3, we introduce an addi-
tional degree of freedom in the equivalence between guiding-center Hamiltonian theories.

Appendix F. Physical Interpretation of ¥,

In this Appendix, we provide a physical interpretation of the second-order guiding-
center Hamiltonian ¥5. We begin with the definition of the guiding-center Hamiltonian
through the guiding-center push-forward

2 T-1pl2 p2
HngT*('m) = [T P - g0+ 2w, (F1)

&\ 2m 2m 2m

While the definition does not require a gyroangle average, we shall use one here in order
to remove terms that will cancel out anyway. Using the identity (9.3), we therefore obtain

m 2
chz2< >

_m IacPyc
2

dgc X dgC P gc
dt dt

dt

2
dee X/ dgcPye
>>+m gdt < gdtg>. (F2)
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where the guiding-center kinetic energy

2 2
D m ov

=L ¢ (2 [Vec? + 2) (F3)

m
= P ——=
m I ap

2

dyeX
dt

includes the second-order guiding-center kinetic energy associated with the guiding-center
drift velocity and the term p; 0W2/0p, while

dgeX [/ dgcPye ~ d
m gdt < gpg>€2pb_ 0<P1>.

Lastly, the “gyration” kinetic energy is

(el ) (e (0201 + 42)) -
%)
+e <’Qaa’;1 + d(zlf:o 2>,
where
() -8
and

9p, dopy _ P N 1 N 1 9pg
Q 20 + i —m (po- k)b + 2V b — az)p, a;

+%(a1g—2a1-V1nB>, (F'5)

Here, it is a simple task to show that the first-order terms vanish

<pL‘ (Qaa’;l + dfi’t’o>> = =70 (o o)) = 0.

Hence, we see that the higher-order terms associated with magnetic nonuniformity enter
at the second order.

By combining the remaining components, we now obtain the second-order equation

+ 2J —

m oV, AP
Uy = — |vge|? -—
2 5 [Vgel™ + (pl 3pH o7 )

+ [‘1’2(,4) + Wy + VYa) + ¥ap) + ‘I’z(E)}, (F6)
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where we defined

\Ilg(A)EE Q— +

m <’ op, dopy

2>, (F7)

00 dt
Wy =p) b- %, (F8)
ooy = <pl . dgt)o> ; (F9)
Vy(p) = <p¢- dfgl > (F10)
b= (o (22)), -

First, using Eq. (F5), we find

J? 1 1 ~
Vo) = 5~ ((0@ + |VllnB|2) + 5 J0 of {|H2 + (of) + Q(V'b)ﬂ (F12)

Second, using Eq. (10.3), we find

2
Py~ ~
Vs(p) = % {b-V (<p1>-b) - Fc-<p1>}
2
——Liag {v-[p(vB)] - 3x-VmB} + P 212
-9 ol m Y
N 2
b Dj|
T <mg *”~>~ (F13)
Third, using
dlp * 3p 1 /\apo
dto = vgc.VOpoz—JVgc.VInBa—Jo + ing.be%
0 N
— Vg (Clpai)o—i—cppp()) b,
we find
1 ~\ /0 ~
Yooy = <2ng.be> <3p€0'pL> = (Jbe) Vge = —2T0; - vy (F14)

Hence, both Egs. (F 13)-(F 14) contain direct contributions of the polarization term IT; |
to the second-order guiding-center Hamiltonian.
Fourth, we find

v _do dop 1 B dop L
2(D)—a<PJ_‘P1> - 7‘[’1 = - 7‘[’1

~ 0 1 opy 0O
- (m 525) - (5]

0
(PL-p1) = — mQ <Po'ap€1> = 2J g (a2) = 0,

where we used
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and
doPL _ PIp o Pl o on 1 Opy ~
Here,
dp
-9 <(n Po) b- 891> = —2JQgj s
and
1 9py 9py 1 2 2
— ., - — — Q
2 Pl <ae o0 o T
Hence, we find
1
Uyp) = — JQ of (2"5|2 + 272>~ (F15)
Lastly, we write
1 2 3
Uapy =mQ? (py- py) = Wiy + Wi + US| (F16)

where

'I’él(g) = —mQ*(p, - G¥) :—PQ<(H‘800> 2| =T (PO‘G2)>
9py 2
+ (5 [D3(P3) + Vo3| ), (F17)

which makes use of Gg(,

V) = —me? <p0- (Gg- dp0)> S m;)g <G2 d (i‘é>> (F18)

=-0(GY) + JQ(GZ)-VInB,

which makes use of the components of Go, and

(3)
L)

ma? <p0- [Gl - d(G -de)D (F19)

BQ<Gl.d[B*1 (G{ + JpO-VlnB)]> - %mﬂ2<\cl.dp0|2>.

| = | =

In Eq. (F17), we find

o) 3
—p|9<(n.8”00) T (pO.G§)> = —JQgj <2|n2 - 272). (F 20)

Using Eq. (6.22), we also find
9Py _v. (%P0, - 9Py
<89 V03>—V <69 g3 g3 (9(9 (F21)
1 8pO X x 8pO
== 3P [V' <39 G2|> - < 2 <v°ag

2 510 K 1 =~
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Next, we need

(200 i) - 22 v x o) + (et 2 (omy-22)

(et [ (orm- ) - i £5])

+ <Gf {889 <D1(P3)'88[;0) + Dl(PS)‘P0}>v

where

D(P)%—}J 27— )+1 QJBXR—FLﬁ
NS g T g AnET A T g m ")
1 2. 0
Di(P3)-py = 3 Di(p1)po = — 37 Gf
First, we find
2J - 7 (4 2
mb-VX<D1(P3)>—3mQ <4b°VXR+ T)
2
2] - -~ Pi
T LA lbx (JVlnB + an)] (F22)
Next, we find
) ap
P _Y | p.(p.). 2P0 = (G |—— (2r — 3
<G1 8p|< 1(P3) 80)> <G1 {3 Q(T ai) + 3QII (Po n)]>
J2 2
bt o) - gk e

and

(et (e 22) e 2]
B <Gi] Em(%—al)*éaapeoﬁb
- lrg (e - ) .

2
2J ~ Ll
“Y bxR- InB —
+ 3mS % (JV nE mi R)
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(4o %) - o]

and

0
2 dpy
Lo, 2
= < of (<a1> - QK-VlnB) (F25)
2J?

5 VnB- (V1HB+B>< R)

Hence, by combining Egs. (F 20)-(F 25) into Eq. (F 17), we obtain

2

o _ I
\I}2(E) - 3Im

2

1 7
- 379 of {4V-n — 4k-VInB + 12|k]* — 572 — {(a?)

[4B-V><R + 372 — (o?) — 2[bxVInB[® — 2b-V x (BlenB)}

] , (F 26)

where the gyrogauge-dependent terms cancel out. Next, using the definition (6.31),
Eq. (F18) can be expressed as

m 1
\1,<2(>E) =V, + 5\ng\2 — 0, - Ve — JQ of (2 2 - <a§>> (F27)
b J
+JQVInB- —Hlx—+ VLlnB—l—QH
msd mQ

Lastly, the two terms in Eq. (F 19) are

éBQ<G1.d {3*1 (G{ + JP()*VIHB)]> (F28)

% {PO‘VIHB + (V'Po)} (GIJ + JPO'VIHB>>

—%v. <p0 (G{ + JpO-VlnB)> % <G’1’" aa, (G{ + Jpo.v1nB)>
‘g <G{ ;J (G{ + Jpo-va) + Glaae(G{ + Jpo-VlnB)>

-7 ( VInB -k — be) <2JV1nB+ !2 )

T 6m
e L (2svimB ¢ Pi

6 mQ) L ma "
+ L (svmB + Ll 3/VInB + L +1J992(T2+<a2>)
6m ma " 2 mQ 6 I !
J

2 2
piK ~ p 1
(VlnB b4 be) : <2JV1nB + ln) + 5 I ad),

J2
+ e (72+<a%>) + 2J92||m|2}

2J mS2 mS)
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and
_ %mQQ <|G1.dp0\2> S é]% <(V-B—4a2)2> - é JQ<(G§ + pO.R)2><F29)
1§J<(G" + J py- v1nB) >

_ T [(v b) +4<a§>}121m

C6m

H
2JVInB+ Q) ‘

2

J? e
2 |V, mB+ !
m

1
202 (24 202 -
27 (T + <a1>) 97 mQ

Hence, combining Eqgs. (F 28)-(F 29) into Eq. (F 19), we obtain

2 ~
v =< [bXxVInBP - k-VIB ~ BV (B! V.InB)
3m

1 2 2 ™2 1 2
2<5<a1> + 72 4+ (V-b) )} + 34| k- VInB

L oo K 1 2 L 5 2
L v-(ﬁ) —2<3n| - 57 = (e, (F 30)
and the gyrogauge-dependent terms have once again cancelled each other.
We now combine Egs. (F 12)-(F 15), (F 26)-(F 27), and (F 30), so that we obtain

oW, oy J?
v, Ivgcl P gy 2 57 + - (<a§> + \VllnBF)

1
+ 579 of [|m|2 + <a§> + (v-b)z}
pf
2 N N 2 2

190t {v- [b (V-B)] - 3x-ViB} + Lot

N 2

b Pj 2 2, 1 o
—Hl‘ax (m K;) - 2H1'Vgc - JQQH <2|K:| +§7—

2 o~
+3‘]—[4b VxR+37%—(a)—2bxVInB|2—2b-V x (bxva)]

7
—gJQgﬁ {4V-n — 4k-VInB + 12]s|* — 572 — {af)

m 1
+ Wy + E‘VgCP — I vge — JQ Qﬁ <272 - <a%>>

+JQVhB- >

b 1/ J )
_H1Xm + (WVLIHB + Q” R)]

2 ~
v [|b><V1nB|2 -~ k-VInB — BV- (B™' V. InB)
m

.- (5 (&) + 7% + (V-B)Q)}

2
1 2 1 K 1 2 L, 2
—|—§JQ o] {n-VInB - §B V. (ﬁ) - 2(31<;| — 57~ (o) | |,
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which can be simplified to the final expression

U,y oV, b
P gy —20Gr =2 alel - 4T (F31)
J? , , - - ~
+oe [5|VL1nB| — 2(a?) + 4b-VxR — 2b-V x (beInB)

V. InB 1/, .,
—BV-( = )—K,-VIHB-FZ(E)T —(v-b))}

1 9 B? K 9
+3700f [17n-v1n3 -5V <?) —18|k]> — 4V-k

+%(T2 + (VD)) + 6(ad) - gV' [B(V‘B)H

Here, using Eq. (11.6), we find

2

A B »i

D M

o J2 b
_2J72:_2752J_—2H1 Vge — 2II;- | = xJVhB|,
oJ m

so that

AN J%72PH

J2
2 _ 2
—D| a7 8]?“ 97 9 |F-3| + 411 - v = —2JQ 9 62” — 2 ™ Bol .

Hence, we finally obtain
6B =5|V.iInB? — 2(a?) + 4b-VXR — 2b-V x (belnB)

_BV- <VL1DB> — k-VInB +

5 :
= {—T2 ~b-VxR + (a2 + %B-VX (bxVmB) - ‘vamﬂf?)})

where we used

_BV- <VL;B) - b-Vx (Bx 1nB) 4 VInB- (n n vlmB)
1] 5 ~\ 2
—4(a?)=—-2b-VxR — 2{7 + (v-b) }
and
— 6By =17K-VInB — B;v- (%) 18 k[2 — 4V-k
+%(T2 + (V-B)Q) + 6 (a?) — gv- [B(V-B)]

=-6{-2(}) - 3r- (VB - k) + V-r}, (F33)
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where we used

——v~(”):—%v-n+n.vm3

3
2

6 (a?) V. [n - B(Vg)] + %{72 + (VB)Q]

Appendix G. Constraint due to the Guiding-center Toroidal
Canonical Momentum
The definition of the guiding-center toroidal canonical momentum Pye, = Tgclpw as

the guiding-center push-forward of the particle toroidal canonical momentum yields the
expression

€ dg.X d cP, Oge X 0 cP
Pc _ _7T_1 gc gcHgc . gc gcHge G1
gew ec gc¢+m( a T dt D * dp )’ (G1)
where the guiding-center push-forward of 1 is expressed as
_ 1
Tgc17// =9+ epy- VU + € {Prvd’ =+ 5 (Popo)5vv¢} + (G2)

the guiding-center push-forward of the particle velocity is

dgCX dgcpgc doX (’)po d1X dopo 6p1
- o ZPo f1i %P1\ ...
i T T a a T9%% ) el T TR )t (G

and the guiding-center push-forward of 9x/9d¢p is

O0gc X OgePye 1 (0% oX apy
=T E) = &= 4 2P0y G4
op " oy ¥ \0p o " “op T G
When Egs. (G2)-(G4) are inserted in Eq. (G 1), we obtain the expression (up to second
order in €)

_ dp, 0X e
—_ 1 OGPy 9dA € .
chgo—<Tgc P,) + <mQ 20 9y = Po Vw) (G5)
5. 9”0 5. 9X 9p 0X
Vo | jan 0X  ~ 0X
+€J|:2(320v1nB)0B+2B.vvd)2(al.v1nB).agp+al b.&p:|’

where gyroangle-dependent terms are shown explicitly up to first order in ep. Since we
have the identity
_ /-1
chsa = <Tgc P¢>’ (G6)
we must, therefore, show that all gyroangle-dependent terms must vanish identically.
At zeroth order in eg, we use the magnetic identity

oxX
B x % = Vv, (GT7)
and obtain
e - o~ 3X o 3p0 aX
EpO'Vw—meO bX8<p = mf) 90 95

and thus the gyroangle-dependent zeroth-order terms in Eq. (G 5) cancel each other out.
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At first order in ep, we discuss the terms proportional to p; and J in Eq. (G
separately. First, for the p)-terms, using the definitions (A 4), we find

~

P R N -
C’J.pﬂ-l-cpppo = (I B bb) *Vb-py = Vb-p, — (k-py) b,
o0
so that

A] X X _~ db

Ip
|:Clp890+cppp0 + (k-po) b g = ErR b-py = %‘Po,

which combines with the remaining pj-term in Eq. (G5) to yield

b ~ Op, o s~
€p| <&p-po + b'3¢0> = €p| @(b-po) = 0.

Next, for the J-terms in Eq. (G5), we use the identity

Vi Tr/~~ ~ 00X 0X
2(22-VInB)- — = 3 [(J_J_—pp) -vmzﬂ bx G = (@ VB
to obtain
a \Y ~ 09X \v4 ~ 0X
2§;vv¢ - 2(a2-v1nB).%’ + alb-% = 2a2;v<B¢> + alb-%.
Here, we find
Vi) ~ 00X 0X 1 0X
2322V(B> :QaQ:V(bX&p> = 311V<a<p) + 5 (CJ_p + CPJ_)b‘%
0X ~ 0X
31V(&p) 70[1'3'%.

which combines with the remaining J-term in Eq. (G 5) to yield

6J31:V<6X) = 0,
dp

45
5)

since a; is a symmetric matrix and V(90X /0yp) is an antisymmetric matrix so that their

trace vanishes.
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