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Abstract

Runaway electrons can be generated in tokamak plasmas if the accel-
erating force from the toroidal electric field exceeds the collisional drag
force owing to Coulomb collisions with the background plasma. In ITER,
disruptions are expected to generate runaway electrons mainly through
knock-on collisions [1], where enough momentum can be transferred via
relativistic to slow electrons to transport the latter beyond a critical mo-
mentum, setting off an avalanche of runaway electrons. This paper shows
that the avalanche effect is important even in non-disruptive scenarios.

The formation of runaway electrons generated from the combined effect
of Dreicer and avalanche is studied with the LUKE code, a solver of the 3-
D linearized bounce-averaged relativistic electron Fokker-Planck equation
[2], through the calculation of the response of the electron distribution
function to a constant parallel electric field. The model, which has been
successfully benchmarked against the standard Dreicer runaway theory
now describes the runaway generation by knock-on collisions as proposed
by Rosenbluth [3]. Since such knock-on electrons are principally scattered
off with a perpendicular component of the momentum with respect to the
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local magnetic field direction, these particles are highly magnetized. Con-
sequently, the momentum dynamics require a full 2-D kinetic description,
since they are highly sensitive to the magnetic non-uniformity of a toroidal
configuration. For this purpose, a bounce-averaged knock-on source term
is implemented. Runaway formation through knock-on collisions is found
to reduce strongly when taking place off the magnetic axis, since trapped
electrons can not contribute to the runaway electron population.

Finally, the relative importance of the avalanche mechanism is investi-
gated as a function of key parameters for runaway electron formation; the
plasma temperature and the electric field strength. In agreement with the-
oretical predictions, the LUKE simulations show that in low temperature
and electric field the knock-on collisions rapidly becomes the dominant
source of runaway electrons and can play a significant role for runaway
electron generation in non-disruptive tokamak scenarios.

1 Introduction
Runaway electrons have been observed in magnetic confinement fusion experi-
ments during the operation of tokamaks [4]. They are also encountered in nature
in solar flares and electric discharges associated with thunderstorms [5]. The dy-
namics of electrons in a plasma is governed by the balance between acceleration
in an electric field and collisions with the plasma particles. Collisional friction
forces acting on the electrons reach a global maximum at the thermal velocity
(vth) and decrease for higher velocities. In the presence of a strong toroidal
electric field (E) collisional drag may consequently be too weak to counteract
the acceleration of electrons, which may result in continuously accelerated elec-
trons, known as runaway electrons. If the electric field exceeds the critical field
[6]

Ec =
nee

3 ln Λ

4πε20mc
2
, (1)

where ne is the electron density and ln Λ the Coloumb logarithm, runaway elec-
trons may be generated if no other loss mechanisms than the collisional drag are
present [7]. The acceleration of electrons in a DC field that are initially above
the critical momentum (pc), defined as the minimum momentum for which col-
lisions are too weak to prevent acceleration of the electrons by the electric field
to even higher energies, is referred to as the Dreicer mechanism [6]. In addi-
tion, these relativistic electrons can undergo close collisions with bulk electrons
and transfer part of their momentum so that also the target electrons may get
kicked into the runaway momentum region, while the momentum of the primary
electrons remains above the critical momentum. These knock-on collisions can
therefore lead to multiplication of the number of runaway electrons, commonly
referred to as runaway avalanche [3].

Methods to mitigate the formation of runaway electrons in tokamak plasmas
are based on either increasing the plasma density and thereby Ec by so called

2



massive gas injection (MGI) [8] or by deconfining the runaway electrons before
they can reach too high energy by the means of resonant magnetic perturbations
(RMP) [9]. Even though such mitigation methods have been demonstrated
in present tokamak experiments, they might not provide a solution for large
tokamaks like ITER [10]. Therefore the formation of the runaway electron
population is a topic in urgent need of investigation.

Intense beams of highly energetic runaway electrons can form in tokamaks
during plasma disruptions, fast unstable events that lead to a sudden loss of
plasma confinement. If runaway electrons strike the first wall of the tokamak
vacuum vessel the local energy deposition can cause significant damage [1]. Re-
gardless of the mechanisms that lead to the onset of a major disruption, the
post-disruption phases usually have similar time evolution [11]. They start with
a fast cooling of the plasma typically associated with ergodisation of the mag-
netic flux surfaces [12], referred to as the thermal quench, which occurs on a
time scale on the order of a millisecond. Consequently the plasma resistivity
ρ, that scales with the temperature as T−3/2, increases rapidly. The toroidal
electric field is proportional to the resistivity and increases dramatically in order
to maintain the local current density. Since the resistive current diffusion is en-
hanced by the reduction of the plasma conductivity, the plasma current decays
progressively, but on a much longer time scale. In this process, a fraction of the
pre-disruptive plasma current is carried by runaway electrons.

Disruptions are interesting but complex processes for studying the birth of
runaway electrons, since they include magnetohydrodynamic (MHD) instabili-
ties, anomalous transport and complex evolution of the magnetic field topology
[13]. However, the generation of runaway electrons does not necessarily require
the extreme conditions found in disruptions. In low density plasmas, the elec-
tric field can exceed the critical electric field also during the current flattop in
a quiescent plasma, free of equilibrium transients, or during current ramp up
or ramp down. An advantage of studying runaway formation in these so called
non-disruptive scenarios is that the key parameters for the runaway electron
mechanisms, mainly the electric field strength, electron density and temperat-
ure, can be better diagnosed than in disruptions. Runaway electrons have been
detected in non-disruptive scenarios in several of the existing tokamaks [14].
Quiescent plasmas with nested magnetic flux surfaces is therefore more suitable
for studying the formation of runaway electrons. In this work the formation of
runaway electrons generated from the combined effect of Dreicer and avalanche
is studied with the LUKE code, a solver of the 3-D (one spatial and two veloc-
ity dimensions) linearized bounce-averaged relativistic electron Fokker-Planck
equation [2]. The LUKE code handles arbitrary shapes of the flux surfaces,
but in this work the magnetic flux surfaces are assumed to remain circular and
concentric like in the Tore Supra tokamak. They are assumed to remain intact
throughout the runaway formation process, an assumption that is too restrictive
for the thermal quench in disruptive scenarios.

Estimates of the time scale of the thermal quench, defined as the time scale
of the convective loss of the plasma along the field, is given in Ref. [13]
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τTQ = kaL2/3B2/3T−5/6e [ms], (2)

where L = πqR, B is the magnetic field strength, a is the minor radius, q is the
safety factor, k ≈ 6 , R the major radius and Te the temperature prior to the
thermal quench near the plasma edge. Equation 2 predicts the time scale of the
outflow of plasma from the core. The typical thermal quench time scale for a
prescribed temperature evolution (Fig. 1a) and Tore Supra like parameters is
compared with the collisional time scale

τ(v) =
4πε20m

2
ev

3

q4ene ln Λ
, (3)

where the velocity v = vth for thermal electrons and v = c for relativistic
electrons in Fig. 1b. The time scale of the thermal quench associated with
the departure of the plasma along the field lines is found to be comparable
with the thermal collision time but shorter than the collisional time scale for
relativistic electrons τ(c), making the possibility of self-consistent calculation
of the electron distribution function with the LUKE code in a rapid cooling
event highly questionable. As a consequence of the rapid loss of the plasma, a
well confined seed of runaway electrons near the magnetic axis may be all that
remains from the suprathermal electron population in the post thermal quench
phase. After the thermal quench the runaway electrons are in many cases well
confined for seconds, in the so called runaway electron current plateau [11]. The
high confinement in this phase likely implies recovery of the nested magnetic
flux surfaces and the runaway electrons in the current plateau could in principle
be modelled with the LUKE code until their final deconfinement at the end of
the current plateau. However, since the non-Maxwellian electron distribution
function after the thermal quench is unknown, the initial conditions necessary
for runaway calculations are undefined.

With the restrictions of disruption modelling in mind, the objective of this
work is to study the formation of runaway electrons in non-disruptive scenar-
ios owing to the combined effect of Dreicer and avalanche with a fast solver of
the electron distribution function in order to make predictions for the birth of
runaway electrons in tokamak experiments. The difficult task of modelling the
transient temperature and electric field found in disruptions, would require a
proper description of the thermal quench with implemented radiative or con-
vective loss mechanisms of the plasma energy including MHD instabilities. The
coupling of the kinetic LUKE code with a fluid code such as JOREK [15],
would be necessary for such a purpose, but is beyond the scope of this work.
The kinetic modelling of the formation of runaway electrons is therefore done for
non-disruptive scenarios as found in the current flattop with constant electric
field and plasma temperature.

The LUKE code has previously been used for current drive and Dreicer
runaway calculations. The model uses a relativistic collision operator for small
angle collisions and a recently added description of the large angle (knock-on)
collisions leading to the avalanche effect, which enables a description of the full
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Figure 1: A prescribed central temperature evolution in a thermal quench (a).
Comparison of typical time scale for thermal quench with the initial temperature
near the edge $T_e=400$ eV (Eq. 2) with thermal and relativistic collisional
time scales (b).

2-D momentum dynamics of the runaway population. Knock-on electrons are
principally scattered off with a perpendicular component of the momentum with
respect to the local magnetic field direction. In a non-uniform magnetic field
configuration highly magnetized electrons could be subject to magnetic trapping
effects resulting in a runaway electron growth rate off the magnetic axis that
differs from the estimates for a cylindric geometry. Such toroidicity effects are
studied by implementing a 2-D kinetic description of the knock-on momentum
dynamics, including the momentum dynamics both perpendicular and parallel
to the magnetic field lines.

The knock-on collisions are included in the kinetic equation through a source
term from Ref. [3], implemented along with a sink term to ensure a particle
conserving form of the process. The bounce-averaged knock-on source term is
presented in Sec. 2. In Sec. 3 the effect of magnetic trapping in a non-uniform
magnetic field configuration is investigated. The role played by the magnetic
mirror force on the runaway population off the magnetic axis, owing to a reduc-
tion in Dreicer growth rate as well as the high magnetization of the knock-on
electrons, is depicted. Finally, in Sec. 4, the relative importance of the avalanche
effect compared to the Dreicer mechanism is quantified as a function of plasma
temperature and toroidal electric field strength. The parametric dependencies
of the relative importance of the avalanche effect from the numerical modelling
is related both to analytic predictions and to data from runaway observations
in non-disruptive scenarios from several tokamak experiments including a low
density flattop pulse from the Tore Supra tokamak, during which suprather-
mal electrons are observed. The analysis of this scenario supports the recently
published results [14], showing that runaway electron formation requires lower
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density than expected from collisional theory, which suggests the existence of
additional runaway electron loss mechanisms.

2 Knock-on collisions
Knock-on collisions are considered between a relativistic electron characterized
by the Lorentz factor γ1 =

√
1 + p21, where p1 is its momentum normalized to

m0c where m0 is the electron rest mass and c the speed of light, and another
electron at rest. After the collision, the secondary electron that was initially
at rest has gained the momentum p2, and γ2 =

√
1 + p22 while the primary

electron is assumed to remain relativistic (p2 � p1). Since the total momentum
of the system formed by the two electrons is conserved, the secondary electron
is scattered with a pitch-angle with respect to the direction of the incoming
electron, whose cosine ξ∗ is given by the relation

ξ∗ =

√
γ1 + 1

√
γ2 − 1√

γ1 − 1
√
γ2 + 1

. (4)

The primary electron is assumed to be very energetic (γ1 →∞) and ξ∗ simplifies
to

ξ∗ =

√
γ2 − 1

γ2 + 1
. (5)

In this limit, most of the secondary electrons have a moderate kinetic energy
γ2 ∼ 1. As a result of momentum conservation and the assumption that the
primary electron has momentum entirely parallel to the magnetic field lines, the
pitch-angle of the scattered electron will be close to π/2 with respect to the mag-
netic field lines. Owing to the high magnetization the electrons will be sensitive
to the non-uniform magnetic field. Hence it is necessary to properly account
for the 2-D guiding-center momentum dynamics in non-uniform magnetic field
geometries, where the electrons are influenced by the magnetic trapping effect.
The description of knock-on collisions is by definition beyond the FP approxi-
mation, which is only valid for small angle deflections that weakly modify the
electron trajectories. Therefore, in order to introduce the knock-on collisions
in a FP solver, it is necessary to express this process as a source term [3], that
determines to where in momentum space secondary electrons are scattered, in
close collisions with relativistic electrons. This source term is proportional to
the relativistic electron electron differential cross section derived by Møller [16]

dσ

dΩ
= r2e

∑
(γ1, γ2)

p2γ2
δ(ξ − ξ∗(p2)), (6)

where
re = e2/(4πε0mec

2), (7)
is the classical electron radius and∑

(γ1, γ2) =
γ21

(γ21 − 1)(γ2 − 1)2(γ1 − γ2)2
× (8)
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×
{

(γ1 − 1)2 − (γ2 − 1)(γ1 − γ2)

γ21
·
[
2γ21 + 2γ1 − 1− (γ2 − 1)(γ1 − γ2)

]}
.

In the limit of a primary electron (with index ’1’) at velocity near the speed of
light, the expression simplifies to∑

γ1→∞

(γ1, γ2) ≈ 1

(γ2 − 1)2
,

and the differential cross section becomes

dσ

dΩ
= r2e

1

pγ(γ − 1)2
δ(ξ − ξ∗(p)), (9)

where the index ’2’ on γ has been dropped, since the expression is now inde-
pendent of γ1 and p1. The source term S, originally formulated in Ref. [3], is
proportional to the target population, i.e. the bulk electron density ne. For
knock-on collisions to occur, a runaway electron population nr must exist. In
the model from Ref. [3], the runaway electrons are assumed to have the speed
of light (c). In this case, the source term has the form

S(p, ψ, ξ, θ) = ne(ψ)nr(ψ)c
dσ

dΩ
(p, ξ, θ) =

= nenrcr
2
e

1

pγ(γ − 1)2
δ(ξ − ξ∗(p)) =

=
nr

4πτ ln Λ

1

p2
d

dp
(

1

1−
√

1 + p2
)δ(ξ − ξ∗(p)) (10)

where ψ is the poloidal magnetic flux surface coordinate and θ is the poloidal
angle [3]. In the above expression, the collision time for relativistic electrons

τ =
4πε20m

2
ec

3

nee4 ln Λ
, (11)

has been introduced and necr2e = 1/(4πτ ln Λ) according to Eq. 7.

2.1 Implementation of knock-on collisions in the LUKE
code

An analytic estimate of the avalanche growth rate is obtained from integration
of the knock-on source term in Eq. 10 over the runaway region p > pc in
momentum space, as done in the work by Rosenbluth [3]

1

nr

∂nr
∂t

=
1

nr

ˆ ∞
pc

S d3p = (12)

=
1

nr
2π

ˆ ∞
pc

ˆ 1

−1
S p2dp dξ =

1

2τ ln Λ

[
1

1−
√

1 + p2

]∞
pc

. (13)

7



Figure 2: The knock-on process in LUKE (crosses) benchmarked against an-
alytic growth rate in Ref. [3] (dashed line), when using the same momentum
space offsets.

If E/Ec � 1 and pc is small

1

nr

∂nr
∂t

=
1

2τ ln Λ

(
1√

1 + p2c − 1

)
≈ 1

2τ ln Λ

(
2

p2c

)
. (14)

With the critical momentum p2c(ξ = 0) = 2Ec/E and adding the term −1 in
the numerator to ensure that no runaway generation occurs for E/Ec = 1, Eq.
14 gives an analytic estimate of the growth rate [3]

1

nr

∂nr
∂t

=
1

2τ ln Λ
(E/Ec − 1) . (15)

The runaway generation through knock-on collisions in LUKE is bench-
marked against the growth rate in Eq. 15 in the case of cylindrical geometry in
Fig. 2, by using the same momentum offsets.

The Rosenbluth model [3] assumes that existing runaway electrons have
infinite momentum, but in the numerical calculations a limit pmax > pc for
the momentum grid must be defined. The growth rate is evaluated by LUKE
as the flux of electrons through pre when an electron gains enough energy to
diffuse through the momentum space boundary. This value is set to pre =
max(pc; p(Ek = 1MeV) ≈ 2

√
2pth) to account for the primary runaway electrons

with kinetic energy above 1MeV. With v/c ≥ 0.94, corresponding to Ek ≥ 1
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MeV, this criterion is close to the assumptions in Ref. [3] and is further justified
by the weak dependence of the knock-on source term upon the incident electron
energy in the energy range 1− 100MeV [17].

The bulk electron density is defined as the integral of the bulk electron
distribution in momentum space:

ˆ pre

0

f(r, p)d3p = ne(r) (16)

The bulk and the runaway region, corresponding to p < pre and p > pre re-
spectively, are shown in Fig. 3. The runaway electron population is defined
as

nr(t) =

ˆ t

0

(
γD +

ˆ pmax

pre

S d3p

)
dt,

where γD =
˜

Sp(ψ, p, ξ) · dS is the integral of the particle flux through the
surface element dS = p2redξdϕϕ̂. In order to ensure conservation of number of
particles in LUKE, as electrons enter the runaway momentum region, i.e. diffuse
through pre either from the Dreicer mechanism or by knock-on collisions, the
same amount of electrons are removed from the bulk. A sink term accounting
for the electrons transported from bulk to runaway momentum region is added
along with the source term. The particle conserving knock-on process takes the
form:

S = S+− < S+ >
fM

< fM >
, (17)

where fM is the bulk distribution, assumed to be Maxwellian and < ... >=´ pmax
0

... d3p. The source and sink terms conserve the number of electrons ne +
nr = ntot = const..

2.2 Runaway electron growth rate
The runaway electron model implemented in LUKE captures the combined ef-
fect of Dreicer and avalanche generation. The evolution of the runaway electron
population under the influence of a constant electric field is calculated, includ-
ing the effect of the avalanche mechanism due to knock-on collisions. Figure 4
shows the evolution of a runaway electron fraction with and without the knock-
on driven avalanche effect. At first, there are very few runaway electrons, the
avalanche contribution becomes significant only when a runaway electron pop-
ulation has been built up by the Dreicer effect. Then, the avalanche due to
knock-on collisions leads to exponential growth of the runaway electron popu-
lation and quickly becomes dominant over the Dreicer generation.

Both the Dreicer and avalanche mechanisms are proportional to the bulk
density ne = ntot−nr, such that the runaway production rate can be expressed
in the generic form

9



pc pre pth pmax,av  

rn

secondary 

primary 

p||  

p⊥  

re nn 

Figure 3: The LUKE momentum space is divided into two separate populations:
the bulk electrons with momentum p < pre and the runaway electrons p > pre.
The knock-on collisions between the populations nr and ne can lead to secondary
runaway electrons. Electrons that escape the domain p < pre either by electrons
diffusing through pre or by getting directly knocked into the runaway region at
p > pre contribute to the runaway electron population nr.
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∂nr
∂t

= ne (γD + γA) → 1

(ntot − nr)
∂nr
∂t

= γD + γA. (18)

To quantify the avalanche growth rate, the avalanche term may be expressed
as γA = nrγ̄A, where γ̄A is an avalanche multiplication factor. Thus, Eq. 18
becomes:

1

(ntot − nr)
∂nr
∂t

= γD + nrγ̄A. (19)

Equation 19 is a function of nr(t), where the constant term is the Dreicer
growth rate and the avalanche multiplication factor is given by the slope. In
Fig. 5 the growth rate given by Eq. 18 is illustrated for E/Ec = 40 and 60
and Te = 0.5 keV. The growth rates from the LUKE calculations are evaluated
numerically, the Dreicer as a constant value (γD) and the avalanche multiplica-
tion factor (γ̄A) from the slope of the curve. The Dreicer growth rate calculated
by LUKE agrees well with predictions of the Kulsrud model (Ref. [18]) where
the Fokker Planck equation is solved numerically. The Dreicer growth rate γD
is not directly comparable to the avalanche factor γ̄A, as the latter is normal-
ized to the runaway electron density and it is rather a factor depending on the
electric field and the plasma density. The avalanche multiplication factor γ̄A
characterizes the tendency of a runaway avalanche to develop, for a given mag-
netic equilibrium and parallel electric field. The actual runaway production due
to avalanche is however time dependent since it is a product of the avalanche
multiplication factor γ̄A and the time dependent runaway electron density nr.
For example, γ̄A can be non-zero, even though the number of runaway electrons
born from knock-on collisions is negligible, if no seed of primary electrons is
formed first.

The avalanche theory in Ref. [3] assumes that all electrons with momen-
tum larger than pc will run away. With the LUKE code, it is possible to go
beyond this estimate, for a more realistic description of the runaway electron
distribution function by also including the treatment of secondary electrons with
momentum in the collisional momentum region p < pc. Indeed these electrons
that are not in the momentum space runaway region could contribute to the
hot tail formation. Since the knock-on collisions also accelerate electrons to
intermediate energies pth < p < pc, it is in principle important to include all
electrons with p > pth. However, it is found that the inclusion of the knock-on
electrons in the suprathermal region has a negligible effect on the growth rate in
the simulations done in this work, as is shown in Fig. 6, where the contribution
to the avalanche growth rate in the momentum region pth < p < pc is negligible.
It should however be pointed out that these calculations are done for constant
electric field and the treatment of the knock-on born electrons near the runaway
region could be crucial in a transient electric field where the boundary between
the runaway momentum region and the collisional region varies in time.

The avalanche theory by Rosenbluth’s model accounts for runaway electrons
born due to knock-on collisions in momentum space in the interval [pc,∞]. In
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Figure 4: The fraction of runaway electrons (E/Ec = 30 and Te = 0.5 keV) as
a function of time normalized to thermal collision time, with and without the
avalanche effect due to the knock-on collisions. .

Figure 5: The growth rate in constant electric field and Te = 0.5 keV for E/Ec =
40 (the curves with lower growth rate) and E/Ec = 60 (curves with higher
growth rate) as a function of the runaway electron density, with and without the
avalanche effect. The Dreicer contribution is in good agreement with Kulsrud’s
theory [18]. The growth rates are normalized to the thermal collision frequency
(νth = 1/τ(vth))
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Figure 6: Avalanche multiplication factor as a function of the lower momentum
cut off pmin/pth for Te = 5 keV, normalized to the avalanche factor at pmin = pc.

the treatment of the secondary runaway electrons due to knock-on collisions in
LUKE, a finite upper limit pmax must be chosen above which the contribution
to the runaway population is neglected (see Fig. 3). The knock-on production
decreases with momentum, with the knock-on source term (Eq. 10) S → 0
for p → ∞ . In LUKE pmax has to be defined at large enough momentum
to account for the dominant part of the knock-on collision contribution. The
avalanche multiplication factor (γ̄A) as a function of a lower cutoff (pmin) for
the population of secondary electrons has been computed in order to quantify
at what value the avalanche production gets negligible. It is found that most
contribution to the avalanche factor originates from the knock-on electrons born
near the critical momentum pc. In Fig. 6 the avalanche factor for different
momentum intervals is shown, for electric field E/Ec = 2 and E/Ec = 5 (Te = 5
keV). The calculations provide an estimate of the minimum momentum interval
needed to include the dominant part of the avalanche production. To capture
80% of the avalanche physics, the source term must be accounted for up to at
least pmax,av = 4 · pc.

2.3 Bounce-averaged knock-on source term
Since knock-on accelerated electrons emerge with high perpendicular momentum
[3], it is necessary to properly account for the guiding-center dynamics in non-
uniform magnetic field geometry and treat the full 2-D momentum electron
dynamics. The knock-on source term presented in Eq. 10 is 4-dimensional
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(p, ψ, ξ, θ) but by averaging over the poloidal motion the dimensionality gets
reduced to 3-D (p, ψ, ξ0) such that the dynamics is projected onto the poloidal
position θ0 of the minimum magnetic field B0(ψ) on a magnetic flux surface.
Bounce-average is valid when the collisional time is longer than the bounce
period [2]. The bounce-averaged knock-on source term is

{S}(ψ, p, ξ0) =
1

λq̃

[
1

2

∑
σ

]
T

ˆ θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp

ξ0
ξ

S(ψ, p, ξ). (20)

where Rp is the major radius, θmin and θmax are the poloidal turning points for
the trapped electrons, Bp is the poloidal component of the magnetic field B and
the sum over σ applies to trapped particles (T ) only. The normalized bounce
time is

λ(ψ) =
1

q̃(ψ)

ˆ θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

ξ0
ξ

B

Bp
,

and

q̃(ψ) ≡
ˆ 2π

0

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp
.

In the LUKE code, the terms in the Fokker-Planck equation are normalized
to a reference density n†e and the reference thermal collision frequency ν†coll =
1/τ(vth), so that the implemented source term is S̄ = S/S† where S is from Eq.
10 and S† = n†eν

†
coll and the momentum is normalized to the thermal momentum

p̄ = p/pth. The knock-on source term is decomposed as S̄(p, ψ, ξ, θ) = S̄∗δ(ξ −
ξ∗(p̄)) where

S̄∗ =
1

4π

β†2th
ln Λ†

n̄en̄r
1

p̄γ(γ − 1)2
, (21)

is independent of θ, so that {S̄} = S̄∗{δ (ξ − ξ∗(p̄))} where ξ is the pitch angle
cosine at the poloidal angle position θ

ξ = σ
√

1−Ψ(ψ, θ)(1− ξ20). (22)

Here Ψ(ψ, θ) = B(ψ, θ)/B0(ψ) and σ = sign(v||) = sign(ξ0) indicates the
direction of the electrons along the magnetic field line. Using the general relation
for Dirac’s delta function δ(g(x)) =

∑
k δ(x−xk)/|g′(xk)| where xk are the zeros

of the function g(x) and g′(x) = dg/dx provided that g(x) is a continuously
differentiable function and g′(x) is non-zero:

δ(ξ − ξ∗) =
∑
k

2δ(θ − θ∗k)|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ20)

, (23)

where θ∗k is the poloidal angle at which the secondary electron emerges. From
Eq. 22 θ∗k is given by,
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σ
√

1−Ψ(ψ, θ∗k)(1− ξ20)− ξ∗ = 0 (24)

or

Ψ(ψ, θ∗k) =
Bθ∗k
B0

=
1− ξ∗2

1− ξ20
=

2

(1− ξ20)(γ + 1)
. (25)

Using Eq. 23, the delta function can be expressed as

{δ(ξ − ξ∗)} =
1

λq̃

1

π

∑
k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

Bθ∗k
Bp,θ∗k

ξ0
ξθ∗k

|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ20)

.

and since Bθ∗k = (1− ξ∗2)/(1− ξ20)B0 with ξθ∗k = ξ∗

{δ(ξ − ξ∗)} =
1

λq̃

1

π

∑
k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k
|ξ0|

(1− ξ∗2)

|Ψ′(ψ, θ∗k)|(1− ξ20)2
, (26)

and the normalized, bounce-averaged avalanche operator becomes

{S̄} = =
1

2π2

β†2th
ln Λ†Rp

n̄en̄r ·

1

p̄γ(γ − 1)2(γ + 1)

B0

λq̃

|ξ0|
(1− ξ20)2

∑
k

[ 1

|ψ̂ · r̂|θ∗k

rθ∗k
Bp,θ∗k

1

|Ψ′(ψ, θ∗k)|

]
,(27)

which can be expressed as:

{S̄(p, ψ, ξ0)} =
1

2π2

1

ln Λ†Rp
n̄en̄r ·

1

p̄3γ(γ − 1)

B0

λq̃

|ξ0|
(1− ξ20)2

∑
k

[ 1

|ψ̂ · r̂|
r

Bp

1

|Ψ′|

]
θ∗k

, (28)

using the relation p2 = (γ2 − 1) = (γ − 1)(γ + 1) and p = p̄βth,

3 Effect of toroidicity
The bounce-averaged treatment of the calculations in LUKE, including the
bounce-averaged knock-on source term in Eq. 28, allows for investigation of
the effect of a toroidal magnetic field configuration on the evolution of the run-
away electron population. Owing to magnetic mirror effects off the magnetic
axis, the generation of runaway electrons may be expected to reduce, since the
velocity of a trapped electron is bounded as it goes to zero at its turning points in
the banana orbit. Such a radial dependence is not included in Kulsrud’s model
[18]. However, the effect has previously been identified numerically for Dreicer
runaway generation [2, 19]. The growth rate presented in Sec. 2.2 obtained
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Figure 7: The evolution of the runaway electron population, including the
avalanche effect owing to knock-on collisions, depends strongly on the radial
position in a non-uniform magnetic field configuration, where ε = r/R is the
inverse aspect ratio coordinate. E/Ec = 40, Te = 0.5 keV and the time t is
normalized to the thermal collision time τth.

with the knock-on source term in Eq. 10 is valid in the cylindrical limit as well
as on the magnetic axis, where magnetic trapping is negligible. The trapping
effect is considered as a correction to the growth rate in Eq. 15, for which the
significance increases away from the magnetic axis as the fraction of trapped
electrons becomes larger. As discussed in Sec. 2, secondary electrons emerging
from the knock-on collisions are highly magnetized. Since the trapping effect
increases off the magnetic axis in a non-uniform magnetic field configuration,
the further away from the magnetic axis the electrons appear, the more they
tend to be born trapped [3]. These trapped electrons may eventually untrap due
to pitch angle scattering, but the growth rate could at least momentaneously
get reduced.

To quantify the tendency of magnetic trapping, the bounce-averaged cal-
culations of the runaway electron population are performed in a scenario with
circular plasma cross section and high magnetic non-uniformity, with inverse
aspect ratio ranging from ε = 0 to ε = a/R = 1. The inverse aspect ratio
of the Tore Supra tokamak is ε ≈ 0.3. The calculations in Fig. 7 reveal that
the runaway electron population grows significantly slower off the magnetic axis
than in the center. This result suggest that runaway electrons appear near the
magnetic axis rather than near the edge.

In order to study the trapping effects on the runaway population, the Dre-
icer growth rate γD and the avalanche multiplication factor γ̄A are quantified
separately. The Dreicer growth rate is found to be strongly affected by the non-
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uniformity of the magnetic field, as shown in Fig. 8. A fit of the numerical results
gives an analytic expression of the Dreicer growth rate γD = 1 −

√
2ε/(1 + ε).

The results indicate that for ε > 0.5 runaway generation from Dreicer accelera-
tion is nearly canceled.

For the runaway electrons generated from knock-on collisions, the avalanche
multiplication factor γ̄A may be expected to be reduced by magnetic trapping
due to a non-uniform magnetic configuration since the knock-on electrons are
highly magnetized and therefore sensitive to magnetic field variations. The
avalanche runaway production, being directly proportional to the existing run-
away electron population, will in addition be suppressed from the particle trap-
ping effect on Dreicer generation that leads to a reduced seed nr, as presented
in Fig. 8. The reduction of γ̄A obtained from bounce-averaged calculations with
LUKE off the magnetic axis is shown in Fig. 9, with an avalanche multiplica-
tion factor that decreases with the inverse aspect ratio. This means that there
is a reduction, independent of the seed term itself, of the avalanche runaway
rate off the magnetic axis. In order to validate the radial dependence of the
avalanche factor obtained from the LUKE simulations, an analytical estimate
for avalanche growth rate including the effect of magnetic trapping due to a non
uniform magnetic configuration is derived. It is based on the assumption that
all electrons with momentum p > pc will contribute to the runaway population
(as in Ref. [3]), except the secondary electrons that appear in the trapped mo-
mentum region p < pT . The magnetic trapping criterion is obtained from the
condition

B(θ)

Bmax
>

2√
1 + p2 + 1

, (29)

where Bmax/B(θ) = (1 + ε cos θ)/(1− ε) in a circular concentric magnetic con-
figuration. Electrons will run away if their momentum exceeds both the critical
momentum and the trapping condition in Eq. 29 and the lower integration
limit pmin for the analytical estimate of the avalanche growth rate is given by
max(pc, pT ). An analytical expression for the inverse aspect ratio dependent
avalanche growth rate is obtained by integrating the source term from over
momentum space from pmin = max(pc(E/Ec), pT (θ)) to pmax =∞ where

p2T = (2Bmax/B(θ)− 1)
2 − 1 =

≈ 4ε(1 + cosθ)/(1− ε)2 (30)

and

p2c = 2Ec/E

This results in a locally modified, inverse aspect ratio dependent avalanche
growth rate

dnr
dtn

(θ, ε) =
1

2

1

ln Λ†
n̄en̄r

1√
1 + p2min − 1

=
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=
1

2

1

ln Λ†
n̄en̄r min

(
E

Ec
,

(1− ε)2

2ε(1 + cosθ)

)
. (31)

The flux surface averaged growth rate is derived in Appendix A. For εE/Ec �
1, θb → π , the growth rate is reduced by a factor (1−ε)2/

(
π
√
εE/Ec

)
. The in-

verse aspect ratio dependence of the estimated avalanche growth rate obtained
from Eq. 31 is compared to numerical results. Numerical integration of the
source term is also performed, with the same criterion on the lower integration
boundary in momentum space pmin as the analytic estimate in Eq. 36 . The
analytic result is also compared to avalanche growth rate from Fokker-Planck
calculations with the LUKE code. In that case, the trapping conditions are the
same as in the analytic result, except for that the critical momentum is pitch
angle dependent p2c = Ec/ (Eξ). The LUKE calculated avalanche multiplication
factor and the analytical estimate show good agreement (Fig. 9).

Figure 9 shows the reduced growth rate for E/Ec = 5, relative to a cylindric
plasma, equivalent to the growth rate on the magnetic axis (ε = 0). Numerical
integration of the source term shows good agreement with the analytic result
(Eq. 36). Close to the center, at low inverse aspect ratio, the effect of trapping is
not visible, since the critical momentum is higher than the trapped momentum
over the whole flux surface. This effect decreases with increasing E/Ec as the
critical momentum pc decreases and becomes less restrictive compared to the
trapping condition pT , which explains the flat top seen in Fig. 9. However, for
the FP calculations the magnetic trapping effect influences the growth rate also
close to the magnetic axis. A possible explanation is pitch angle collisions that
couple the dynamics between the trapped and the passing region.

The growth rate obtained from bounce-averaged calculations suggest that
the formation of runaway electrons is slower the further away from the magnetic
axis they appear. In other words, the time scale of the local growth rate could be
longer than suggested by collisional theory [18, 3]. Potential loss mechanisms,
such as transport of fast electrons due to magnetic field perturbations [20] could
therefore act more efficiently on the runaway electrons formed off the magnetic
axis than the ones formed on axis which could lead to well confined runaway
electrons at the center of the plasma.

4 The relative importance of the avalanche effect
The results presented in Sec. 2.2 (see Fig. 4) have shown that the runaway
electron distribution can be significantly modified by including the effect of
knock-on collisions. In order to understand the mechanisms that govern the
runaway electron generation processes a parametric study is performed with
the aim to investigate which runaway formation process; Dreicer or avalanche,
that dominates in non-disruptive tokamak experiments.

The relative importance of the avalanche mechanism to the Dreicer mecha-
nism can be estimated by comparing the analytic avalanche growth rate in Eq.
15 and the Dreicer generation that is derived in Ref. [7]:
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Figure 8: Radial dependence of Dreicer growth rate, normalized to the growth
rate for cylindrical case ε = 0 and a fit γD/γD,cyl = 1− 1.2

√
2ε/(1 + ε).

Figure 9: Radial dependence of the avalanche multiplication factor from bounce-
averaged LUKE calculations (circles), normalized to to the avalanche multipli-
cation factor for the cylindrical case ε = 0. The numerical integration over the
knock-on source term in Eq. 10 with the toroidal dependence in the momentum
integration boundary from Eq. 30 is plotted in squares. The solid line shows
the analytic estimate of the growth rate off the magnetic axis from Eq. 36.
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(
∂nr
∂t

)
D

∼ 2√
π
neν(vth)

(
E

ED

)1/2

exp

(
−ED

4E
−
(

2ED
E

)1/2
)
,

where ED = (c/vth)
2
Ec is the electric field at which even thermal electrons will

run away, known as the Dreicer field. The ratio of the two growth rates is

( ∂nr
∂t )

A/( ∂nr
∂t )

D
=
γA
γD
∼

∼
√
π

4

nr
ne

1

ln Λ

(vth
c

)3( E

Ec
− 1

)(
E

ED

)−1/2
exp

(
ED
4ED

+

√
2ED
E

)
.(32)

By letting a small fraction of electrons run away in LUKE, the relative impor-
tance of the avalanche effect as a function of plasma temperature and electric
field strength can be evaluated numerically from the fraction of the runaway
electrons that originate from Dreicer and knock-on collisions. In Fig. 10 the
fraction of runaway electrons born from knock-on collisions is shown, when 1%
of the initial electron population has run away in a cylindrical magnetic con-
figuration with constant electric field, density and temperature. The fraction
of runaway electrons has to be small enough for the equilibrium parameters to
remain constant and to consider the current as driven by two separate popu-
lations; the bulk and the runaway tail. The relative importance of secondary
runaway electrons grows at lower temperature and electric field, as the slower
primary generation in high collisionality (low temperature) allows for runaway
avalanches to take off. The duration of the electric field required to reach the
runaway fraction varies strongly in the parameter space presented in Fig. 10.
The time required for 1% of the electrons to run away is illustrated for various
electron temperatures (Te = 0.05, 0.5, 2 and 5 keV) in Fig. 11. The formation
of runaway electrons slows down as the collisionality increases at lower bulk
temperature.

The numerical results are compared with the analytical estimate from Eq.
32 with nr/ne = 0.01. The condition for the dominance of the avalanche effect
γA/γD > 1 is plotted in Fig. 10 along with the boundaries for which nA/nr =
5% and 90%.

In order to relate the study to experimental tokamak scenarios, it must be
noted that the simulations are performed for constant electric field and tem-
perature. Consequently, the study is restricted to non-disruptive scenarios with
well-diagnosed and quiescent conditions from several tokamaks, where runaway
electrons have been observed in the current flattop with the relevant plasma
parameters maintained essentially constant. Results from scenarios with repro-
ducible measurements of electron density, loop voltage and plasma temperature
at the runaway electron onset from DIII-D, FTU, TEXTOR, Alcator C-Mod and
KSTAR were recently published in Ref. [14]. From this study the threshold elec-
tric field normalized to the critical field is found to be significantly higher than
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predicted by collisional theory where the birth of runaway electrons is predicted
at E/Ec > 1, provided that no additional runaway electron loss mechanisms
are present [18]. However, the condition for runaway onset in collisional theory
does not take the time required to generate runaway electrons into account. Es-
timations from LUKE calculations in Fig. 11 shows that this time scale can be
unrealistically large as compared to the tokamak discharge duration. The time
to generate a small fraction of runaway electrons from a Maxwellian distribution
is finite for E/Ec > 1 but as E/Ec → 1, the required time to generate runaway
electrons t→∞. However, it is not the only explanation since the study in Ref.
[14] found that the E/Ec threshold for suppression was also well above unity.

Runaway electrons have been generated in the Tore Supra (TS) tokamak in
low density discharges (ne < 1019 m−3). The TS pulses #40719 and #40721 are
performed after a boronization and suprathermal electrons are observed in the
former discharge but not in the latter. Both are Ohmic discharges at Ip = 0.6
MA in the current flattop. Suprathermal electrons are observed in #40719 by
the ECE edge chords at current ramp-up and ramp-down, when the density is
low (< ne >= 0.4 · 1019 m−3), see Fig. 12a. The uniform E-field, estimated
as the time derivative of the resistive flux [21], is E‖ = 0.038 ± 0.003 V/m
and the core temperature is 3.8 keV. The determination of the magnetic flux at
the plasma boundary is described in Ref. [22]. No suprathermal electrons are
detected by electron cyclotron emission (ECE) in the following pulse #40721
at a higher electron density, see Fig. 12b. Similar result is found from HXR
measurements from the vertical camera detecting emission of 20−200 keV (Fig.
13). A peak of photo-neutrons is observed at the plasma termination for the
lower density shot (#40719) but not for the higher density shot (#40721). From
the combined observations on ECE, HXR and photo-neutron measurements, the
presence of relativistic electrons during the ramp-down of #40719 is identified.
During the current flattop of #40719, the electron density is < ne >= 0.64 ·1019

m−3, corresponding to E/Ec ≈ 8, but there is no sign of suprathermals until
E/Ec ≈ 11. The suprathermal generation in #40719 is added to the (E/Ec, Te)
scan (see Fig. 10) and lands in the region where Dreicer generation is dominant.
In the higher density pulse (#40721) E/Ec ≈ 4 during the current flattop and
no suprathermal electrons are detected. These results are in line with those of
Ref. [14] where E/Ec ∼ 3− 12 is required to generate a detectable population
of runaway electrons in the various tokamaks.

Relating the data from the experiments in Ref. [14] and the TS discharge
#40719 to the parameter scan done in LUKE (Fig. 10) reveals that the scenarios
fall in or close to the region where the avalanche mechanism becomes significant
for the runaway electron growth rate (Fig. 10). Data from two COMPASS
discharges where runaways were observed (#8555 and #8630) fall in the region
where the Dreicer effect is dominant[23]. Runaway electrons are commonly
produced in the current ramp-up phase of the COMPASS tokamak, due to the
relatively high E/Ec ratio (20 − 200). The circular 130 kA discharge #8555
was part of the electron density < ne > scan from 1 − 4 · 1019 m−3, where
< ne > for this particular shot was 2 · 1019 m−3 during the flattop. The raise of
runaway activity was observed with HXR NaI(Tl) scintillator and photoneutron
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detector as the < ne > decreased from discharge to discharge, while Parail-
Pogutse instability appeared for all discharges with <ne> lower than in the
discharge #8555. D-shaped 160kA discharge #8630 was done for the purpose
of the sawteeth-runaway correlation studies with the electron density < ne >=
9 · 1019 m−3. Even though, the discharge had relatively high < ne >, the
runaway activity correlated with the sawteeth instability was visible in HXR
and photoneutron signals. These two COMPASS discharges #8555 and #8630
are plotted on Fig. 10, where E/Ec at the ramp-up phase were 85 and 94,
respectively. The electron density at the time of the runaway detection is ne =
1.1 and 0.80 m−3. In COMPASS, interferometry is used for the line averaged
electron density < ne > measurements, while Thomson scattering is used for
electron temperature Te and electron density ne profile measurements.

These observations suggest that knock-on collisions are crucial in the forma-
tion of runaway electron generation in tokamak plasmas, even in non-disruptive
scenarios. The study predicts that avalanches play an important role during
current flattop. A self consistent electric field and equilibrium solver would be
necessary to study avalanches with LUKE in disruptions, but is beyond the
scope of the current work.

5 Conclusion
In this work the birth of runaway electrons through the combined effect of
Dreicer and avalanche mechanisms is studied. Runaway avalanches are described
with a knock-on source term from the work of Rosenbluth [3], implemented as
a bounce-averaged conservative source/sink term within the kinetic equation in
the 3-D Fokker-Planck solver LUKE. Dependencies of key parameters such as
electric field strength, electron temperature and density are investigated. In
addition magnetic trapping effects are quantified in a non-uniform magnetic
equilibrium, resulting in a reduced runaway population off the magnetic axis for
both the Dreicer and the avalanche mechanism.

The kinetic modelling of the formation of runaway electrons is restricted
to non-disruptive scenarios as found in the current flattop with non-transient
electric field and plasma temperature. In the LUKE code the magnetic flux
surfaces are assumed to remain circular and concentric throughout the runaway
formation process. The difficult task of modelling the transient temperature
and electric field found in disruptions would require a proper description of the
thermal quench with implemented radiative or convective loss mechanisms of
the plasma energy including MHD instabilities. The coupling of the kinetic
LUKE code with a fluid code such as JOREK [15] would be necessary for such
a purpose, but is beyond the scope of this work. At the present, the model
in which the flux surfaces are assumed to remain intact during the runaway
formation can be considered as an upper estimate of the runaway formation,
since possible additional losses from magnetic field stochastization that may
reduce the confinement of the electrons are neglected.

Since knock-on accelerated electrons emerge with high perpendicular mo-
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Figure 10: The fraction of runaways originating from knock-on collisions
(nA/nr) as modelled in LUKE. The analytic estimate of when 5% (cyan line),
50% (yellow line) and 90% (red line) of the runaways come from avalanche is
obtained from Eq. 32. Relation to non-disruptive scenarios where runaway
electrons where generated in several tokamaks. All data points are taken from
Ref. [14] except for the Tore Supra (TS) point and COMPASS points (discharge
#8555 and #8630).
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Figure 11: The time required for 1% of the Maxwellian electrons to run away,
for the electron temperature Te = 0.5 keV (dashed line), 2 keV (solid line and
squares) and 5 keV (solid line and circles) .

(a) (b)

Figure 12: Signature of suprathermal electrons on the edge ECE chord at around
t = 14.5 s are seen in the Tore Supra discharge 47019 (a). When the density is
higher (b), there is no sign of supra thermal electrons.
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Figure 13: HXR data from the vertical camera (channels 1-21) in the energy
range EHXR = 20− 200 keV. The HXR emission produced in the current ramp
down in 40719 is a signature of suprathermal electrons, whereas in the higher
density discharge 40721 no HXR emission is detected.

mentum, the full 2-D guiding-center momentum dynamics is taken into account,
numerically manageable through a bounce-averaged description. The effect of
magnetic trapping of the electrons in a non-uniform magnetic field configuration,
known as the magnetic mirror effect, has been investigated, revealing reduction
of both Dreicer and avalanche mechanisms off the magnetic axis. An analyt-
ical expression for avalanche growth rate accounting for magnetic trapping is
derived. It is in agreement with numerical simulations and shows that a signif-
icant proportion of secondary electrons are knocked into the trapped region off
the magnetic axis. The reduction of the off axis growth rate implies that the
time scale of runaway formation is longer at the edge than close to the center,
which means that potential loss mechanisms such as radial electron transport
could compete with the acceleration of runaway electrons at the edge.

Moreover, quantifying the relative importance of avalanche generation as
a function of plasma temperature and electric field strength, the simulations
reveal that runaway electrons originating from knock-on collisions completely
dominate at low temperature and electric field strength and likely play a signif-
icant role in runaway generation processes in several tokamaks with data from
non-disruptive scenarios that are presented in Ref. [14]. The onset of runaway
electrons found in these experiments are related to LUKE simulations of corre-
sponding electric field and temperature in order to gauge the importance of the
avalanche effect, revealing that knock-on collisions play a significant role also
in non-disruptive scenarios. The LUKE calculations predict runaway electron
generation also in a near critical field, in agreement with collisional theory if no
other runaway electron loss mechanisms than collisional damping are present.
However, the time to generate runaway electrons can be significantly large com-
pared to the duration of the phase in which E/Ec > 1 in experiments. In
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addition, the required time for runaway electron formation is very sensitive to
the bulk electron temperature. The lack of runaway electron signatures near the
critical electric field could therefore be explained by the long time scale required
for their formation. To understand this discrepancy between observations and
theory, the existence of additional loss mechanisms that dominate during the
current flattop must be addressed. One possible candidate is transport of fast
electrons due to magnetic field perturbations [20]. Once such additional run-
away electron loss mechanisms have been identified, the LUKE code may form
an excellent test bed for quantifying such effects, which will be the objective of
future work.
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A Appendix

Derivation of toroidicity dependent avalanche growth
rate
As described in Sec. 3, the avalanche growth rate is evaluated by the flux surface
averaged knock-on source term in Eq. 10 where the lower integration boundary
is set by the maximum of the critical momentum pc and the momentum defining
the boundary of a passing and a trapped electron pT , given by the trapping
condition in Eq. 29. For finite E/Ec, the critical momentum pc > 0 . As the
growth rate is averaged over the poloidal angle, pmin → pc as the high field side
is approached (pT → 0 as θ → π). The growth rate becomes:

dnr
dtn

(θ, ε) =
1

2

1

ln Λ†
n̄en̄r

1√
1 + p2min − 1

= (33)

=
1

2

1

ln Λ†
n̄en̄r min

(
E

Ec
,

(1− ε)2

2ε(1 + cosθ)

)
. (34)

The poloidal angle θbound where pc = pT constitutes the boundary between the
region where the avalanche rate is limited either by the drag force or by the
magnetic trapping effect. This angle is obtained from the condition pc = pT :

1 + cosθbound = (1− ε)2/(2ε E
Ec

)→

θbound = ± arccos((1− ε)2/(2ε E
Ec

)− 1).
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If εE/(Ec(1−ε)2) < 1/4, pc is the lower integration limit pmin and if εE/(Ec(1−
ε)2) > 1/4, pmin = pT (θ). Averaged over the flux surface according to volumic
flux surface average the growth rate is:

<
dnr
dtn

>V (ε) = (35)

=
1

q̂

(
1

π

ˆ θbound

0

ε
B0(ε)

BP

dnr
dtn

(pT (θ))dθ +
1

π

ˆ π

θbound

ε
B0(ε)

BP

dnr
dtn

(pc)dθ

)
=

=
1

2

1

ln Λ†
n̄en̄r ×

×

(
(1 + ε)

Bp
B

1

π

ˆ θbound

0

B0(ε)

BP

(1− ε)2

2ε(1 + cosθ)
dθ + (1 + ε)

E

Ec

1

π

ˆ π

θbound

(1 + ε cos(θ))

1 + ε
dθ

)
.

In the above calculation circular concentric flux surfaces are considered so that
|ψ̂·r̂|=1, r/Rp = ε and

q̂ =

2πˆ

0

dθ

2π
ε
B0

Bp
=

2πˆ

0

dθ

2π
ε
(1 + ε cos(θ))

(1 + ε)

B

Bp
=

ε

(1 + ε)

B

Bp
.

The flux surface averaged growth rate takes the form:

<
dnr
dtn

(θ, ε) >V =
1

2 ln Λ†
n̄en̄r

E

Ec
×
(

1− θbound
π
− ε

π
sin(θbound)

)
+(1− ε)2 1

2επ
((1− ε) tan (θbound/2) + εθbound) (36)

=
1

2 ln Λ†
n̄en̄r

E

Ec
×

×
(

1− θbound
π
− ε

π
sin(θbound) +

(1− ε)2Ec
2επE

(√
1− ε

√
4εE/Ec − (1− ε) + εθbound

))
,

where

tan (θbound/2) =
sin(θbound)

1 + cos(θbound)
=

√
4εE/Ec − (1− ε)√

1− ε
.

For εE/Ec � 1, θb → π and the growth rate is reduced by a factor (1 −
ε)2/

(
π
√
εE/Ec

)
.
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