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Abstract
The non-linear saturation dynamics of TAEs (toroidicity-induced Alfvén eigenmodes) is inves-

tigated numerically in tokamaks and stellarators. Special attention is given to the influence that
pitch-angle collisions among the fast ions have in the non-linear regime.

For this investigation a perturbative model is used. We employ the three-dimensional ideal
reduced MHD eigenvalue code CKA to obtain the mode frequency and mode structure. This
information is given to the non-linear gyro-kinetic particle-in-cell code EUTERPE, which calcu-
lates the growth rate of the mode and the temporal evolution of the mode amplitude. The mode
structure remains fixed for the entire calculation.

In the tokamak, analytical predictions regarding the transition from periodic non-linear be-
haviour to a steady-state solution and the scaling of the saturated amplitude are available. Both
are influenced by collisions. The numerical results are in agreement with the theoretical predic-
tions within the validity range of the theory [H. L. Berk et al., Phys. Rev. Lett. 68, 3563 (1992)].
Beyond the validity range of the theory different scaling laws are found numerically.

We show that using a momentum-conserving collision operator does not change the scaling
significantly for small ν, but is important for high collision frequencies.

The stellarator case, a Wendelstein 7-X high-mirror configuration, shows some differences
when compared with the tokamak. Most notably, the saturated perturbed magnetic field be-
comes a non-monotonic function of ν.

∗ E-mail address: christoph.slaby@ipp.mpg.de
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I. INTRODUCTION

In fusion devices, present-day experiments or future fusion reactors, there typically ex-
ists a supra-thermal population of fast ions. Today, these particles are created mainly by
heating methods, such as neutral beam injection (NBI) or ion cyclotron resonance heat-
ing (ICRH). In future fusion reactors also self-generated alpha particles (coming from
the fusion reaction) will be present. The fast ions are supposed to be confined for a time
of the order of the slowing-down time (the time it takes the fast particles to thermalize)
in order to heat the plasma. However, the resonant interaction of fast ions with shear
Alfvén modes can lead to their destabilization [11, 25] and to increased fast-ion transport
with potentially dangerous consequences for plasma-facing components [7, 33]. Typical
Alfvén modes excited in tokamaks are toroidicity-induced Alfvén eigenmodes (TAEs) or
energetic-particle modes (EPMs). Because of the more complex geometry of stellarators,
other classes of modes can be destabilized in these devices.
In order to predict transport-induced losses, the non-linear saturation levels of e.g. TAEs
need to be computed. For tokamaks, it has been shown analytically [2, 3] and numeri-
cally [20] that the saturation amplitude is influenced by particle collisions. Recently, the
influence of pitch-angle collisions on the saturation level of TAEs in NSTX [9] has been
investigated [34].
In TJ-II the non-linear dynamics of Alfvén modes, in particular the transition between
chirping and steady state, was recently investigated experimentally [22, 23]. It was
found that the magnetic configuration plays a larger role for the transition than colli-
sions. Large-scale numerical simulations, aimed at numerically reproducing bursts of
Alfvén eigenmodes (AEs) observed in the LHD experiment, have also been performed
recently [29]. There, collisions are needed to restore the fast-ion gradient after it has
been flattened by an AE burst. They are needed to accurately reproduce experimental
measurements.
This paper reports on a systematic numerical study of the non-linear dynamics of TAEs
in the saturated phase for various collision frequencies. The simulations are carried out
for a tokamak and for a stellarator case. We use a well-established benchmark case de-
vised for tokamaks to compare our numerical results to a theoretically predicted scaling
law. The purpose of the tokamak case is two-fold: Firstly, it will serve as a benchmark
for our numerical implementation in the parameter range where the analytical theory
can be applied. Secondly, the effect of pitch-angle collisions on the saturation dynamics
can be studied in other parameter regimes. We find, in particular, that the analytical the-
ory is only applicable in the so-called resonance detuning regime and for low enough
collision frequencies.
The numerical model can then be applied to stellarators. As an example, we use the
optimized stellarator Wendelstein 7-X (W7-X) – the largest and most sophisticated stel-
larator in the world [24]. One of the optimization goals of W7-X is good confinement of
fast particles, in particular at high beta (plasma pressure dived by magnetic pressure).
The NBI and ICRH systems are currently being installed at W7-X and will be ready for
future experimental campaigns. Thus, now is a natural time to confirm the predictive
capabilities of our numerical tools.
We use the CKA-EUTERPE code for our numerical simulations. It combines the eigen-
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value code CKA (Code for Kinetic Alfvén waves) with the gyro-kinetic particle-in-cell
(PIC) code EUTERPE. The coupling of the two codes is perturbative in the sense that
an MHD mode is calculated by CKA and then passed to EUTERPE which calculates
the motion of fast ions in the pre-calculated field and their power transfer to the mode.
Knowing this, the amplitude of the mode can be advanced in time. Being a PIC code,
EUTERPE is also very well suited to compute the collisions between the fast ions. The
implementation of collisions into the electromagnetic version of EUTERPE has been
benchmarked recently [27]. This reference also serves as a brief introduction to the
EUTERPE code. We use a pitch-angle scattering operator acting on the fast-ion distribu-
tion function to capture the influence of collisions on the non-linear dynamics (spatial
diffusion is neglected). Furthermore, we can choose whether or not the collision op-
erator should conserve momentum. The analytical scaling laws were derived without
taking momentum conservation into account. It will be investigated to what extent the
inclusion of a momentum-conserving collision operator affects the scaling laws.
This paper is organized as follows. In Sec. II we recapitulate the analytical theory avail-
able and briefly introduce the numerical scheme used by CKA-EUTERPE. Sec. III reports
on our results for the tokamak case and for the stellarator case, respectively. Finally, con-
clusions are drawn in Sec. IV.

II. THEORY AND ALGORITHMS

To compute the various aspects of (collisional) fast particles interacting with TAEs, the
CKA-EUTERPE [10] code package is used. The eigenvalue code CKA [8] computes the
real frequency and eigenmode structure of the TAE in the framework of ideal (zero
resistivity) magneto-hydrodynamic (MHD) theory. This information is then given to
the EUTERPE code which follows numerical marker particles and computes the power
transfer from the fast ions to the mode. The wave-particle power transfer is used to
calculate a (time-dependent) growth rate γ, which determines the time evolution of
the electromagnetic potentials. Throughout the calculations, the spatial shape of the
mode structure remains fixed. Only the complex amplitude is affected by the resonant
interaction with the fast particles. In this sense, CKA-EUTERPE is a perturbative model
that cannot capture non-linear mode structure modifications. However, this also means
that no field equations for the potentials need to be solved, which accounts for the
higher speed and the enhanced robustness of CKA-EUTERPE compared with fluid or
fully gyro-kinetic approaches.
The individual codes are briefly described in the following sections. A more elabo-
rate discussion can be found in Refs. [8, 16] and [15, 19] for CKA and for EUTERPE,
respectively.

A. The CKA code

CKA (Code for Kinetic Alfvén waves) [8] is a three-dimensional eigenvalue code solving
the ideal and reduced MHD equations. It uses a B-spline discretization in all three direc-
tions (PEST coordinates), a phase factor to extract the dominant Fourier harmonic, and
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the electrostatic potential is expressed as φ (r, t) = φ (r) exp (iω0t) (ω0 is the frequency
of the mode). The code solves an eigenvalue equation

ω2
0D2φ = D1φ (1)

where D1 and D2 are linear differential operators defined as [10]

D2φ = ∇ ·
(

1
v2

A
∇⊥φ

)

+∇2
⊥

[
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v2

A

(
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(2)
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{
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+∇ ·
{
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}

−∇ ·







µ0 j
(0)
‖
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[∇× (b (b · ∇φ))]⊥







.

(3)

The notation is conventional: vA = B/
√

µ0nimi denotes the Alfvén speed of the back-
ground plasma (characterized by density ni and ion mass mi). B is the magnetic field
with magnitude B and direction b. The subscripts ‖ and ⊥ are used to denote vector
components parallel and perpendicular to the background magnetic field, respectively.
µ0 is the vacuum permeability. ρi =

√
kBTimi/(qiB) and ρs =

√
kBTemi/(qiB) denote

the ion gyro-radius and the sound gyro-radius, respectively. T and kB are the tempera-
ture and Boltzmann’s constant, respectively. The charge of a bulk-ion is denoted by qi.

The equilibrium pressure and current density are labeled as p(0) and j
(0)
‖ , respectively.

κ = (∇× b)× b denotes the curvature of the magnetic field lines.
After Eq. (1) has been solved for φ, the condition E‖ = 0 can be used to easily obtain the
parallel component of the vector potential

A‖ =
i

ω0
b · ∇φ. (4)

The solutions φ and A‖ together with ω0 are then passed to EUTERPE to calculate the
growth rate of the mode in the presence of energetic particles.

B. The EUTERPE code

EUTERPE, a global non-linear delta-f particle-in-cell code suited for three-dimensional
geometries, solves the gyro-kinetic equation

∂ fs

∂t
+ Ṙ · ∇ fs + v̇‖

∂ fs

∂v‖
+ µ̇

∂ fs

∂µ
= C ( fs) (5)

of a distribution function fs for species s. µ denotes the specific magnetic moment,
µ = v2

⊥/(2B) and C ( fs) is a collision operator that will be specified later. Eq. (5) is solved
together with field equations for the potentials, where particle and current density are
calculated by taking moments of the distribution function.
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In CKA-EUTERPE, however, typically only one fast-ion species is simulated (s = fast).
Therefore, the species index will be omitted for the remainder of the paper, except where
needed to avoid confusion.
The equations of motion (characteristics of Eq. (5)) are solved in the so-called v‖-
formulation in the absence of collisions:

Ṙ = v‖b +
m

q

[

µB + v2
‖

BB⋆

‖
b ×∇B +

v2
‖

BB⋆

‖
(∇× B)⊥

]

+
v‖

BB⋆

‖
[b ×∇B + (∇× B)⊥]

〈

A‖
〉

+
1

B⋆

‖
b ×∇ 〈ψ〉

(6)

v̇‖ = − µ∇B ·
[

b +
m

q

v‖
BB⋆

‖
(∇× B)⊥

]

−
v‖

BB⋆

‖
[b ×∇B + (∇× B)⊥] · ∇ 〈φ〉

− µ

B⋆

‖

[

b ×∇B · ∇
〈

A‖
〉

+
1
B
∇B · (∇× B)⊥

〈

A‖
〉

]

(7)

µ̇ = 0 (8)

with

ψ = φ − v‖A‖ (9)

B⋆

‖ = B +

[

m

q
v‖ +

〈

A‖
〉

]

b · ∇ × b. (10)

〈. . .〉 denotes the gyro-average. The ideal Ohm’s law

∂
〈

A‖
〉

∂t
+ b · ∇ 〈φ〉 = 0 (11)

has been used to eliminate the partial time derivative of the vector potential in the
equation for v̇‖. Eqs. (6) - (8) are the full equations of motion with all non-linearities
retained. Note that the structure of the potentials (φ and A‖) is pre-calculated by CKA.
Therefore, no field equations need to be solved. Instead, the amplitude equations

∂φ̂ (t)

∂t
= iω0

(

Â‖ − φ̂
)

+ 2 (γ (t)− γd) φ̂ (12)

∂Â‖ (t)
∂t

= iω0

(

φ̂ − Â‖
)

(13)

describe the temporal evolution of the potentials. φ̂ denotes a complex amplitude. The
amplitude equations come from taking the time derivative of the quasi-neutrality con-
dition, where the bulk plasma is described using the ideal and reduced MHD equa-
tions. The fast ions are treated gyro-kinetically. Furthermore, the ansatz φ (r, t) =
φ̂ (t) φ0 (r) exp (iω0t) (and similar for A‖ and the pressure) has been used. Averaging
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over the fast oscillation of the mode (with frequency ω0) yields Eqs. (12) and (13) for
the complex amplitudes that evolve on a much longer time scale. The details of the
derivation are described in Ref. [8, 16]. Note that the amplitude equation for φ̂ includes
an ad-hoc damping rate γd used to summarize the various damping mechanisms that
would be present in a fully gyro-kinetic simulation. The time-dependent growth rate
γ (t) = T (t) /(2W) is calculated from the wave-particle power transfer ( f (1) denotes the
perturbed part of the distribution function.)

T (t) = −
∫

d3r
∫

dΓ B⋆

‖
[ m

ZeB
b ×

(

v2
‖κ + µ∇B

)

·
(

Ze∇⊥φ∗ (r, t) f (1)
)]

(14)

and divided by the wave energy

W =
∫

d3r
ρi+f

B2 |∇⊥φ|2 . (15)

C. Treatment of collisions

EUTERPE offers the possibility of including a collision operator on the right-hand side
of the kinetic equation (5). Here, we study the influence of pitch-angle collisions on the
saturation dynamics. Therefore, the (test-particle) collision operator is given as

Ctp =
ν

2
∂

∂ξ

(

1 − ξ2
) ∂

∂ξ
(16)

with ξ = v‖/v being the pitch-angle variable. This collision operator is obtained by
transforming the full Fokker-Planck operator to guiding-center coordinates and neglect-
ing energy and guiding-center diffusion, as illustrated in e.g. Ref. [13]. The collision
frequency ν is the self-collision frequency of the fast ions defined as [12]

ν = ν0
Φ (x)− G (x)

x3 , (17)

where x = v/(
√

2vth) and vth =
√

kBT/m. Φ and G denote the error function and
the Chandrasekhar function, respectively. ν0 is not calculated self-consistently from the
temperature and density profile of the fast ions, but rather set as a constant.
The collisional process itself is easily implemented into a PIC code. After the ‘non-
collisional’ part of the trajectories (the characteristics of the kinetic equation in the ab-
sence of a collision operator) are advanced in time using a fourth-order Runge-Kutta
method, a Monte-Carlo collision step is performed. EUTERPE uses a scheme that was
(first) reported in Refs. [5, 30] (an earlier version was published in Ref. [28]). The scheme
employs a (random) rotation of the velocity vector on a spherical shell. This is done by
changing the pitch-angle variable of a particle according to

ξout = sin χ sin λ
√

1 − ξ2
in + ξin cos χ. (18)

Here, ξin and ξout denote the pitch-angle variable before and after the collision and
χ = R

√
2ν∆t. λ is a random number drawn from a uniform distribution between 0
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and 2π, whereas R is drawn from a Gaussian distribution with expectation value 0 and
variance 1 [14]. After the collision, the new values for v‖ and µ are calculated from ξout
using the fact that the energy remains unchanged.
A (linearized) collision operator constructed in such a fashion has the obvious drawback
that it does not conserve linear momentum. Also the conservation of particle number
and kinetic energy (guaranteed analytically) may be lost numerically due to rounding
errors. The reason is that the test-particle term has been retained, but the field-particle
term Cfp, describing the reaction of the background particles, was neglected

C ( f ) = Ctp ( f ) + Cfp ( f ) ∼= Ctp ( f ) . (19)

In EUTERPE a scheme, presented in detail in Refs. [1, 26, 31], that ensures the conser-
vation of particle number, linear momentum, and kinetic energy to machine precision
is implemented. The idea is that an appropriate ansatz for the field-particle term can
be made such that the contribution of this term cancels exactly the errors made in the
conservation laws. The field-particle term is written as

Cfp

(

f (1)
)

= [N (v)N + P (v)P + E (v) E ] F (20)

with coefficients N , P , and E that have to be determined. F is the Maxwellian back-
ground and

N (v) = ν − 3

√

π

8
νEx2 (21)

P (v) = νs
v‖
v2

th
(22)

E (v) = νEx2. (23)

For self-collisions, with an externally prescribed collision frequency ν0, the slowing-
down frequency and the energy-diffusion frequency are defined as

νs = 4ν0
G (x)

x
(24)

νE = −2ν +

(

2 +
1

2x2

)

νs. (25)

The deflection frequency ν is given by Eq. (17).
Writing the field-particle operator in this form, the numerical conservation of the desired
quantities can be ensured while keeping the self-adjointness of the collision operator. To
determine the coefficients N , P , and E the 3 × 3 linear system

−




∆N
∆P
∆E



 =
∫

d3v



F





N (v) P (v) E (v)
v‖N (v) v‖P (v) v‖E (v)
v2N (v) v2P (v) v2E (v)













N
P
E



 (26)

needs to be solved in each spatial bin. The size of one spatial bin is given naturally by
the resolution in radial, poloidal, and toroidal direction needed for the representation of
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the potentials. The quantity ∆P, for example, denotes the ‘amount of non-conservation’
of momentum P, ∆P = Pafter collision − Pbefore collision summed over all particles in the
spatial bin (similar for particle number N and kinetic energy E). Note that in order for
the matrix in Eq. (26) to be regular and thus invertible at least two particles are needed
in a spatial bin. The scheme can only be applied if this condition is satisfied. Since
inverting the 3 × 3-matrix is very fast, nearly no increase in runtime is noticeable when
the conservation scheme is used.

III. RESULTS

Here, we present the results of our non-linear simulations. First, results for a simple
circular tokamak are presented. In the second part of this section we show results for a
more realistic and more complex W7-X scenario.

A. A tokamak case

First, the influence of pitch-angle collisions on the saturation dynamics of a TAE in
tokamak geometry is presented. We use the well-established ITPA benchmark case [17]
for simplicity and because it has become a well-established source for comparison within
the fast-particle community. This case therefore provides a link both to recent numerical
work [4, 20, 32] as well as to analytical theory [2, 3], which we also use to benchmark
our code. For this test, only pitch-angle collisions of the fast-ions with each other are
kept. The collision frequency (meaning ν0 in Eq. (17)) is considered a parameter and
varied over several orders of magnitude in order to clearly show all the various non-
linear scenarios that may emerge. The non-linear dynamics and eventual saturation will
be illustrated based on the temporal behaviour of the perturbed magnetic field of the
mode δB (more precisely its poloidal component). The value of δB at saturation (first
maximum) is denoted by δBsat.
The magnetic equilibrium is that of a circular, large-aspect-ratio tokamak with concentric
circular flux surfaces. The q-profile is given by q (s) = 1.71+ 0.16s, with s being the flux-
surface label (normalized toroidal flux). In this geometry we investigate a TAE located
near the avoided crossing of the m = 10, n = −6 and m = 11, n = −6 continuum
branches. The mode amplitude is zero at s = 0 and s = 1. The TAE mode is driven
unstable by the interaction with a Maxwellian population of fast ions (hydrogen) with a
non-uniform density profile given by (see Appendix A for the coefficients)

Nfast (s) = c1 · Nfast,0 exp
[

− c2

c3
tanh

(√
s − c4

c2

)]

. (27)

The density gradient is the source of free energy to drive the mode unstable. The tem-
perature of the fast ions is uniform with Tfast = 400 keV. Numerical simulations are
performed for three different values of the fast-ion peak density

Nfast,0 = {0.720655, 1.44131, 7.20655} · 1017 m−3. (28)
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Varying the fast-ion density corresponds to changing the linear growth rate γL, which
is constant for a given case.
Without collisions we compute

γL
∼= {0.280, 1.52, 9.53} · 104 s−1. (29)

Thus, both the resonance detuning and the radial decoupling regime [4, 32] are covered
(see Fig. 1) in the simulations. It will be investigated if the change of the saturation
mechanism (δBsat

∝ γ2
L transitions to δBsat

∝ γL) also changes the scaling of the saturated
amplitude with respect to ν0.
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Figure 1: Transition from the resonance detuning regime to the radial decoupling regime without
collisions as described in e.g. Refs. [4, 32]. The saturation levels indicated by the black dots have
been taken from Ref. [16]. The green dots indicate the cases investigated in the present paper
for various collision frequencies. We will refer to them as low-density, medium-density, and
high-density case, respectively. Both the resonance detuning and the radial decoupling regime
are covered.

Since the saturation mechanisms are different in the resonance detuning regime versus
the radial decoupling regime, it cannot necessarily be expected that collisions will have
the same influence on the saturation dynamics in both regimes. We expect that collisions
have a stronger impact on the saturation amplitude in the resonance detuning regime,
because this is the regime in which the individual particle properties (their respective
resonances) are important. These properties are directly influenced by collisions. On the
other hand, in the radial decoupling regime, saturation is reached because the resonance
region becomes wider than the mode-localization region. This is a mechanism that is
less sensitive to the individual particles and it should therefore be less influenced by
collisions.
Fig. 2 shows the perturbed component of the poloidal magnetic field for various colli-
sion frequencies and for the three different fast-ion densities investigated. (The fast-ion
density, and therefore also the linear growth rate, increases from top to bottom.)
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Figure 2: Time trace of the poloidal component of the perturbed magnetic field for the low-
density (top), medium-density (middle), and high-density case (bottom) for various collision
frequencies. Depending on the linear drive and collisionality either a steady-state or a peri-
odic non-linear dynamics develops. The saturation levels (i.e. the first maxima of δB) increase
monotonically with ν0.

All sub-figures clearly show that the non-linear dynamics is influenced by collisions.
This includes not only the saturation level itself, but also the dynamics in the saturated
phase (saturated phase refers to all times after the first maximum of δB). While the
first and the second diagram of Fig. 2 show a similar non-linear dynamics, the high-
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density case on the bottom is different because any periodic non-linear behaviour is
completely absent. Between the first two plots and the last one of Fig. 2 the saturation
mechanism changes from resonance detuning to radial decoupling. In the high-density
case the damping rate (a free input parameter in CKA-EUTERPE, γd = 1.05 · 104 s−1 for
all cases) is much smaller than the linear growth rate. Therefore a steady-state solution
develops after saturation. It was shown in Ref. [3] that a sufficiently high γd is required
for a periodic scenario to develop.
For the two cases with lower Nfast,0 that show periodic solutions in the non-linear phase,
the transition to a more steady-state dynamics happens for a collision frequency ν0
that is consistent with analytical theory [3]. Note that only for those two cases the
analytical theory is valid in the first place. The transition from the periodic regime
to the steady-state regime is determined by the relative strength of damping effects
compared with the rate at which the distribution function is rebuilt, νeff,0 = νω2/γ2

L,
[3]. Thus, a good indication of whether a steady-state or a periodic saturation should
be expected is to compare νeff,0 with the damping rate γd. For νeff,0 > γd a steady state
is expected, whereas the saturation should be periodic for νeff,0 < γd [3]. For the ITPA
case investigated here, the damping rate equals νeff,0 for ν0 ≈ 3.35 · 10−7ωA (low-density
case) and for ν0 ≈ 9.89 · 10−6ωA (medium-density case). Hence, these are the collision
frequencies for which the transition between the two regimes should be happening. Re-
examining Fig. 2, this is exactly what is found by CKA-EUTERPE. For the low-density
case the periodic solution is predicted to disappear for very low collision frequencies.
Hence, even for the lowest frequency shown in the plot, ν0/ωA = 2.0 · 10−6 (i.e. the
red line), the oscillations have already vanished. For the medium-density case (middle
plot of Fig. 2), the transition is nicely visible for ν0/ωA = 9.8 · 10−6 (see the yellow line)
which is close to the theoretically predicted value.

1. The scaling law

In order to extract a scaling law, δBsat (ν0), from the simulation data, we take the first
maximum in the time-trace of the perturbed magnetic field (Note that, to account for the
noisiness of the simulation and to calculate error bars, an average around the presumed
location of the maximum is taken.). The analytical theory [3] has been derived for the
value of the first maximum. The value δBsat (ν0 = 0) without collisions is subtracted,
and the resulting quantity is plotted over the collision frequency. This has been done in
Fig. 3 for the three different fast-ion densities under investigation.
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Figure 3: Scaling laws δBsat (ν0) extracted from the simulation data for the low-density (top),
medium-density (middle), and high-density case (bottom). The theoretically predicted ν2/3-
scaling is confirmed in the resonance detuning regime (top two plots) for low enough collision
frequencies (red curves) within the validity range of the theory. For higher collision frequencies
different scaling laws are found numerically. The plot on the bottom (radial decoupling regime)
shows a characteristic plateau for small ν0 where the saturation level scales very weakly with
collisionality.

The figure show the simulation results (black dots and diamonds) and numerical fits to
the data (coloured lines). Note that numerical simulations for more collision frequencies
than shown in Fig. 2 have been performed. The cases already presented in Fig. 2 are
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indicated as diamonds in Fig. 3. For all fits a function of the type

y = a · x + b (30)

with y = log [(δBsat (ν0)− δBsat (0)) /B0] and x = log (ν0/ωA) is used. The parameters
a and b are determined by the fitting routine. The complete results for all fit parameters
(showing also their uncertainties) are given in Appendix B.
In all three cases different scaling laws emerge. The general trend is that small collision
frequencies influence the saturation level more strongly if the linear growth rate is small
(i.e. if the fast-ion density is small). In the opposite limit, for high growth rates, a
‘plateau’ forms for small ν0 indicating that in this regime the saturation level is almost
independent of the collision frequency. This fact strengthens our initial assumption that
the scaling δBsat (ν0) should be stronger in the resonance detuning regime. Note that if
δBsat (ν0)− δBsat (0) became negative, we took the absolute value in order to calculate
the logarithm. Furthermore, the error bars are large if δBsat (ν0) and δBsat (0) are close
together.
Analytical theory [3] predicts a ν2/3-scaling of the saturated amplitude. Here, the term
‘saturated amplitude’ is used to refer to the first maximum after the linear phase. This
scaling is valid for γL ≫ γd, νeff. νeff is the rate of reconstruction of the distribution
function after it has been flattened by particle trapping in the wave [3]. Fig. 2 confirmed
that, depending on the value of νeff,0, either a steady state or a periodic scenario emerges.
This, however, has no influence on the scaling law, since up until the first maximum of δB
(corresponds to the first flattening of the distribution function) the physical processes
in both regimes are similar and they only differ in the rate of reconstruction of the
distribution function after the initial flattening.
Looking at the medium-density case, for which the saturation mechanism is resonance
detuning (cf. Fig. 1), the analytically predicted scaling can be confirmed very well for
low enough collision frequencies. For large collision frequencies, on the other hand, a
different scaling is obvious. We speculate that the condition γL ≫ νeff is violated before
the mode reaches saturation in this cases and, therefore, the theory breaks down. It
is intuitively clear that if ν0 is arbitrarily high this is the case. A precise prediction of
the collision frequency for which the scaling changes, hinges on a good estimate of ωb,
which is necessary to calculate νeff = νω2/ω2

b [3].
An instructive estimate for ωb can be found in a cylindrical plasma. In the absence of a
mode a particle just follows the magnetic field lines. On the other hand, if a mode with
a high enough amplitude is present, the resulting E × B-drift may be of the same order
as the parallel motion significantly influencing the particle trajectory. A calculation,
detailed in Appendix C, provides the estimate

ω2
b
∼= −m2

R0

v‖
rB0

∂ι

∂r
φ0 (31)

for the bounce frequency of a particle trapped in the wave. (ι = 1/q is the rotational
transform.) Substituting the parameters of the ITPA benchmark case (medium density)
yields a critical collision frequency νcrit/ωA ≈ 1.3 · 10−4 above which the analytical
theory can no longer be valid. This critical collision frequency is close to the frequency
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for which the scaling changes in Fig. 3 (middle). For the low-density case we estimate
νcrit/ωA ≈ 1.2 · 10−6.
For the low-density case the estimated value for νcrit is less successful in describing
the numerical findings. The trend remains, however, that the region of validity of the
analytical theory is much smaller since the linear growth rate is significantly reduced.
Therefore, the transition from one scaling law to another happens on the very left of the
curve for low collision frequencies. The scaling found numerically for small collision
frequencies is still close to the analytical prediction albeit the large uncertainties in the
numerical simulations.
Compared with the first two diagrams, the last plot in Fig. 3 is qualitatively different.
Since the growth rate is high, the saturation mechanism is radial decoupling and is not
described by the analytical theory. Therefore, the estimate for νcrit is not applicable to
that case. For these reasons, it is not surprising that the scaling laws found numerically
deviate significantly from theoretical predictions. As was shown in Ref. [4], the saturated
amplitude of the perturbed magnetic field scales linearly with the growth rate in the
radial decoupling regime. It remains to be investigated if this is the reason why also the
scaling law for δBsat changes.

2. The influence of the conservation scheme

So far, all results presented in this section were obtained without the use of the parallel-
momentum conservation scheme. Such a scheme is also absent in Refs. [3, 20, 34]. With
the predicted ν2/3-scaling confirmed for the medium-density case, it is worthwhile to
investigate how the non-linear dynamics and the scaling law change when the con-
servation of momentum is properly taken into account. Fig. 4 shows the scaling of
the saturated amplitudes for the same collision frequencies investigated before for the
medium-density case.
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Figure 4: Same as Fig. 3 (middle plot), but taking into account also momentum conservation
for the collision operator. Again, two regions with different scaling laws are observed. Momen-
tum conservation is mainly important for the large collision frequencies. The lowest collision
frequency was excluded from the numerical fit.
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For small values of ν0, the saturated amplitudes are very similar with and without the
conservation scheme. Consequently, also the scaling is only influenced slightly. On the
other hand, for large ν0 the conservation of momentum by the collision operator be-
comes important. The scaling changes in the sense that if the momentum correction is
included in the collision operator, the saturation levels depend less on ν0. Neglecting
the momentum correction leads to an overestimation of collisional effects just as it does
in other areas of tokamak physics, such as neoclassical transport and micro-instability
theory [14]. We find that conservation of momentum only changes the saturation lev-
els, but does not affect the non-linear dynamics. For example, the transition from the
periodic non-linear behaviour to the steady-state solution remains unchanged.

3. Saturation mechanism - density flattening

All the numerical simulations share the feature that the mode amplitude saturates be-
cause the density profile of the fast ions flattens in the region of interest. The cases with
non-vanishing collision frequency exhibit a stronger flattening of the density profile. We
attribute this only to a ‘secondary’ effect of collisions. As has been shown, collisions
lead to a higher saturation level, i.e. a larger mode amplitude, which in turn leads to
enhanced fast-particle transport.
The high-density case with the highest ν0-value is taken as an example in Fig. 5, since
this case has the highest saturation level of all cases investigated.
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Figure 5: Flattening of the fast-ion density profile at various times in the simulation for the
high-density case with the highest collision frequency. Since the saturation mechanism is radial
decoupling flattening of the profile occurs in broad region comparable to the mode width. The
flattening is significant because the saturation level is enhanced due to collisions.

Flattening of the density profile over the region where the mode is localized (character-
istic for the radial decoupling regime) is very obvious for later times in the simulation.
Note that due to numerical inaccuracies, about 4 % of the fast-ion density is lost over
the course of the simulation.
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For the medium-density case without collisions the initial profile and the saturated pro-
file at the end of the simulation (in the time-asymptotic limit) are compared in Fig. 6 on
the left-hand side.
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Figure 6: Left: Flattening of the fast-ion density profile for the medium-density case without
collisions at a late time in the simulation. Since the saturation mechanism is resonance detuning
flattening of the profile occurs in a narrow region.
Right: Instantaneous fast-ion density at s = 0.25. Overall, particles are transported away from the
mode-localization region. The particle density oscillates in time with the maxima and minima
being correlated to the amplitude of the perturbed magnetic field as shown in Fig. 2 in the
middle.

Since the saturation level is low, transport is low and no significant changes can be seen
in the saturated density profile. Note that in the resonance detuning regime the flatten-
ing of the density profile can be restricted to a very narrow region, which is challenging
to resolve numerically. It is, however, possible to investigate the instantaneous change
in the fast-ion density profile, as shown in Fig. 6 on the right-hand side, caused by the
presence of the TAE. The change in particle density is investigated at the radial position
s = 0.25 where the mode is peaked. Clearly, particles are transported away from the
mode-localization region. By the end of the simulation, the particle density at s = 0.25
has decreased by approximately 0.6 %. This is why the change is not visible by look-
ing directly at the profile. The fast-ion density is oscillating in time in such a way that
the fast-ion density is minimal (local minima in time) whenever the mode amplitude is
largest (cf. the middle plot of Fig. 2). This corresponds to a flattening of the density
gradient, followed by a phase of mode decay. In this phase, the density gradient can
recover and the whole process starts anew.

B. Convergence scan

A convergence test with respect to time step and marker number has been performed
for the medium-density case at the highest collision frequency. Fig. 7 shows the results
in terms of the perturbed magnetic field as calculated by the code. Both diagrams (time
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step halved on the left-hand side and numerical marker number doubled on the right-
hand side) confirm that the standard resolution was chosen well. The standard time
step for all tokamak calculations is ∆tωA = 0.1. We used Np = 106 numerical marker
particles in the standard runs.
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Figure 7: Convergence scan with respect to time step (left) and maker number (right). Since the
deviations between the curves are below 1 % (measuring γL), the standard resolution was chosen
well.

It has been reported before that for the particular collisional scheme used in EUTERPE
the time step is more critical than the number of markers [27]. Nevertheless, the relative
deviations in the linear growth rate (compared with the standard resolution) are well
below 1%, which is very acceptable.

C. A stellarator case

Having confirmed the theoretically predicted scaling law in tokamaks (in the resonance
detuning regime and for low enough collision frequencies), we now apply the CKA-
EUTERPE code to a Wendelstein 7-X (W7-X) high-mirror equilibrium with an on-axis
magnetic field B0 = 2.44 T. Due to favourable properties regarding the confinement,
the so-called high-mirror case (characterized by a large B1,−1 Fourier component of the
magnetic field) has become standard for performing numerical simulations. It is char-
acterized by an ι-profile close to unity as can be seen in Fig. 8, which also shows the
density profile of the fast ions used in the numerical simulations. The on-axis fast-ion
density is Nfast,0 = 5 · 1018 m−3. The fast-particle temperature profile is flat with a value
Tfast = 55 keV. Since stellarators are numerically more challenging than tokamaks, the
time step is chosen as ∆tωA = 0.08 and marker number is increased to Np = 5 · 106.
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Figure 8: ι-profile and fast-ion density profile (normalized to on-axis value) for the Wendelstein
7-X (W7-X) high-mirror configuration.

The continuous Alfvén spectrum (neglecting sound modes) as well as the MHD mode
structure are shown in Fig. 9.
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Figure 9: Left: Shear Alfvén wave continuum for the W7-X high-mirror configuration. The
relevant continuum branches (6,−6, red) and (7,−6, blue) are coloured. The TAE frequency is
indicated as a solid black line.
Right: Radial TAE mode structure (electrostatic potential) as calculated by CKA. The mode
extends over a broad radial region.

In the continuum, which was calculated by the CONTI code [18] for a flat bulk-ion den-
sity profile (Nbulk = 1020 m−3), only the relevant continuum branches (m = 6, n = −6
and m = 7, n = −6) are coloured. The TAE (frequency indicated by a black horizontal
line) resides in the TAE gap.
The real frequency and linear growth rate of the mode in the absence of collisions are
ω = 3.36 · 105 s−1 and γL = 1.76 · 104 s−1, respectively. We now increase the collision
frequency as we did before for the ITPA case and investigate the non-linear dynamics of
the mode in stellarator geometry. The results are presented in Fig. 10.
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Figure 10: Left: Time trace of the poloidal component of the perturbed magnetic field for the
W7-X case. Simulations are performed for various collision frequencies. Any periodic non-linear
solutions are absent. The linear growth rate is influenced for high ν0. Unlike in the tokamak
case, the saturation level is a non-monotonic function of ν0. Note that the very high fast-ion
density accounts for the unrealistically large saturation amplitude.
Right: Scaling law δBsat (ν0) extracted from the simulation data. For low collision frequencies
the saturation level only scales weakly with ν0 which could mean that the saturation mechanism
is radial decoupling.

The left-hand side of the figure shows the time trace of the poloidal component of the
perturbed magnetic field for a few selected collision frequencies. It can be observed
that any periodic behaviour in the non-linear phase is completely absent. (Note that the
medium-density tokamak case, which showed periodic behaviour, has a similar growth
rate as the stellarator case.) The reason could be that the external damping rate is only
γd = 1.05 · 103 s−1 and that therefore the case is too far away from marginality. We
speculate that the saturation mechanism is radial decoupling. This assessment is also
supported by the fact that the flattening of the density profile happens over an area of
large radial extent comparable to the mode width, see Fig. 11. Shown is the case without
collisions. Including collisions makes no qualitative difference.
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Figure 11: Flattening of the fast-ion density profile at various times in the simulation for the W7-
X high-mirror case without collisions. The saturation mechanism resembles radial decoupling
and a flattening of the profile over the whole mode-localization region is observed.

About 5 % of the fast-ion density is lost due to numerical errors.
Since the ι-profile of this specific W7-X configuration is very flat (low shear), there is
very little variation in ωres (as defined in Ref. [4]). Thus, even for very small growth
rates, the resonance width can be of the same order as the mode width which then leads
to radial decoupling.
It was found in the tokamak case that if the saturation mechanism is radial decoupling,
the saturation level scales very weakly with collisionality for low values of ν0. Examining
the right-hand side of Fig. 10, a similar observation can be made for W7-X. However,
a striking difference between tokamak and stellarator is that δBsat is a non-monotonic
function of ν0. Large collision frequencies clearly lead to a reduction of the saturation
level. It even drops below the the collision-less value.
Unlike in the tokamak cases, the linear growth rate is reduced substantially by colli-
sions (reduction of approx. 42 % for the highest collision frequency compared with the
collision-less case). In the tokamak cases, γL only changes by 20 %, 7 %, and 3 % for the
low-density, medium-density, and high-density cases, respectively.
The saturated amplitude of the magnetic field is a function of many parameters with γd,
γL, and ν0 being the most important ones. Disentangling the various contributions of
the individual parameters to the overall scaling law proved to be successful for the ITPA
case, since γd is an external parameter and γL was found to not depend significantly on
ν0.
In the stellarator, γL and ν0 cannot be varied independently (at least for high collision
frequencies). This may be the reason why δBsat is a non-monotonic function of ν0. This
issue remains to be investigated.

IV. SUMMARY AND CONCLUSIONS

We have studied the non-linear saturation of TAEs in tokamaks and stellarators. Spe-
cial emphasis is given to the role of pitch-angle collisions of the fast ions and how the

20



collisions influence the saturation level and the subsequent non-linear dynamics in the
saturated phase. As a tokamak representative, the ITPA benchmark case was chosen. We
performed numerical simulations for the standard case as well as with half of the stan-
dard density and a five-times increased value. In doing so, we cover both the resonance
detuning and the radial decoupling regime by the simulations.
It is seen that features predicted by analytical theory are recovered by the simulations,
if they are performed in the validity range of the theory. We showed that the transition
from a periodic dynamics in the non-linear phase to a steady-state solution occurs for
a collision frequency that is consistent with analytical predictions. In the resonance
detuning regime (i.e. for cases that are closer to marginal stability) the theoretically
predicted ν2/3-scaling of the saturation level is confirmed numerically. In this sense, this
case also serves as a benchmark of the implementation of collisions into the non-linear
and electromagnetic version of CKA-EUTERPE.
Outside the validity range of the theory (for γL . νeff) scaling laws deviating from the
ν2/3-prediction are found numerically. The critical collision frequency νcrit for which
the scaling is supposed to change can (roughly) be estimated by calculating the bounce
frequency ωb of particles trapped in the potential of the wave. A simple cylindrical
calculation for ωb leads to an estimate for νcrit that qualitatively matches the numerical
findings.
Analytical theory and previous numerical simulations did not include a momentum-
conserving collision operator. We investigated the implications that conserving linear
momentum in the collision step has on the scaling law. It turns out that neglecting
momentum conservation leads to an overestimation of collisional effects. However, this
only becomes important for large collision frequencies. As expected, for small values
of ν0 the scaling laws found numerically with and without the momentum-conservation
scheme are the same.
After having confirmed the analytical predictions in tokamaks, the code was applied to
a Wendelstein 7-X (W7-X) high-mirror equilibrium. Similarly to the ITPA case a TAE,
now with a broader radial structure, is investigated in stellarator geometry. Several
differences become apparent when comparing the tokamak and the stellarator case. The
stellarator case shows no periodic non-linear behaviour, which might be a consequence
of the relative values of γL and γd used for this simulation. The second difference is
that the scaling of the saturation level with ν0 is now non-monotonic. Again, this might
be related to a closer entanglement of the various factors influencing the non-linear
dynamics in stellarators. The weak scaling of δBsat (ν0) coupled with a flattening of
the fast-ion density profile over the whole mode-localization region suggests that the
saturation regime in W7-X is radial decoupling. Notwithstanding the above, the mode
is found to saturate due to profile flattening in the tokamak and stellarator alike.
Finally, it must be pointed out that it is too soon to draw any final conclusions about the
non-linear dynamics of shear Alfvén modes in W7-X. Many more gap modes existing in
stellarator geometry (HAEs, EAEs, MAEs, but also EPMs) with different mode numbers
and radial profiles need to be studied to determine if the findings reported here prevail
in general. Especially with neutral beam injection becoming available at W7-X for the
next operation phase, also the effect of using a slowing-down distribution function for
the fast-ions and a proper slowing-down collision operator should be studied. As has
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been pointed out in [6, 21] experimentally diagnosed properties of chirping solutions
can provide information on plasma parameters when compared to models or numerical
predictions. More difficult to measure quantities thus become accessible. Hence, a next
step should be to investigate stellarator cases that are closer to marginality and thus
allow for chirping behaviour.
As has been pointed out in [6, 21], when compared to models or numerical predictions,
experimentally diagnosed properties of chirping solutions can provide information on
plasma parameters which are otherwise difficult to diagnose. Hence, a next step should
be to investigate stellarator cases that are closer to marginality and thus allow for chirp-
ing behaviour.
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Appendix A: Parameters of the ITPA density profile

The coefficients of the density profile are listed in Tab. I.

Table I: Parameters of the ITPA fast-ion density profile

coefficient c1 c2 c3 c4

value 0.521298 0.198739 0.298228 0.49123

Appendix B: Parameters of the numerical fits

Tabs. II-IV list all resulting parameters of the numerical fits shown in Fig. 3 in Sec. III.
For all fits a function of the type

y = a · x + b (B1)

with y = log [(δBsat (ν0)− δBsat (0)) /B0] and x = log (ν0/ωA) is used.
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Table II: Parameters of the numerical fits for the low-density case

a b

small ν0 (red curve) 0.59 ± 0.15 −3.60 ± 2.20
large ν0 (blue curve) 0.36 ± 0.01 −6.63 ± 0.05

Table III: Parameters of the numerical fits for the medium-density case

without conservation scheme with conservation scheme
a b a b

small ν0 (red curve) 0.61 ± 0.03 −3.41 ± 0.30 0.60 ± 0.01 −3.53 ± 0.08
large ν0 (blue curve) 0.30 ± 0.01 −5.82 ± 0.04 0.23 ± 0.02 −6.26 ± 0.06

Table IV: Parameters of the numerical fits for the high-density case

a b

small ν0 (red curve) 0.19 ± 0.36 −9.54 ± 4.17
large ν0 (blue curve) 0.46 ± 0.03 −4.72 ± 0.14

In the case of W7-X (see Fig. 10) the data are fitted to

y = b · xa + c (B2)

with y = δBsat (ν0) /B0 and x = ν0/ωA. Tab. V lists the results.

Table V: Parameters of the numerical fits for the W7-X case

a b c

small ν0 (red curve) 0.28 ± 0.03 0.013 ± 0.002 0.009 ± 7.7 · 10−5

large ν0 (blue curve) 0.49 ± 0.16 −0.008 ± 8.0 · 10−4 0.012 ± 6.0 · 10−4
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Appendix C: An analytical estimate for ωb

Consider a particle moving in a cylindrical plasma. The magnetic field is given by

B = B1eΘ + B0ez, (C1)

where eΘ and ez are unit vectors in cylindrical coordinates. The equations of motion are

Ṙ = v‖b +
B ×∇φ

B2 (C2)

v̇‖ = 0 (C3)

if all ∇B terms are ignored. For the spatial coordinates of the particle one thus finds

ṙ =
1

B2

(

B1φ,z −
B0

r
φ,Θ

)

(C4)

Θ̇ =
v‖B1

Br
+

B0φ,r

B2r
(C5)

ż =
v‖B0

B
− B1φ,r

B2 (C6)

Suppose that B ≈ B0 and introduce the rotational transform as

ι =
R0B1

rB0
. (C7)

The equations of motion then reduce to (terms that scale with the inverse aspect ratio
can be neglected)

ṙ =
r

R0
ιφ,z −

1
rB0

φ,Θ
∼= − 1

rB0
φ,Θ (C8)

Θ̇ =
ιv‖
R0

+
1

rB0
φ,r (C9)

ż = v‖ −
r

R0
ιφ,r ∼= v‖. (C10)

The ż-equation is easily integrated. When transforming to a new coordinate p = B0r2/2
it can be seen that the remaining system can be cast into Hamiltonian form

ṗ = −∂H

∂Θ
(C11)

Θ̇ =
∂H

∂p
(C12)

with H = v‖ψ/R0 + φ and ∂ψ/∂p = ι. Obviously, the Hamiltonian of the co-moving
frame,

H =

(

v‖
R0

n − ω

)

p + mH, (C13)
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is an invariant of the (perturbed) motion. Suppose that the potential varies as φ =
φ0 cos (mΘ + n/R0z − ωt). Then, a phase

χ = mΘ +
n

R0
z0 +

(

n

R0
v‖ − ω

)

t (C14)

can be defined in the co-moving frame of the wave. The equations of motion in the
reference frame of the wave are thus

ṗ = −∂H

∂χ
= mφ0 sin χ (C15)

χ̇ =
∂H

∂p
=

n

R0
v‖ − ω +

m

R0
ιv‖ + m cos χ

∂φ0

∂p
. (C16)

Calculating the second time derivative of the phase and Taylor-expanding around χ = 0
yields

χ̈ =

[

m

R0

∂ι

∂p
v‖ + m cos χ

∂2φ0

∂p2

]

mφ0 sin χ − m sin χ
∂φ0

∂p

[

n

R0
v‖ − ω +

m

R0
ιv‖ + m cos χ

∂φ0

∂p

]

(C17)

∼=
[

m2

R0

∂ι

∂p
v‖φ0 + m2φ0

∂2φ0

∂p2 − m
∂φ0

∂p

(

v‖k‖ − ω
)

− m2
(

∂φ0

∂p

)2
]

χ (C18)

≡ −ω2
bχ. (C19)

Using the resonance condition v‖k‖ = ω, the square of the bounce frequency is defined
as

ω2
b ≡ −

[

m2

R0

∂ι

∂p
v‖φ0 + m2φ0

∂2φ0

∂p2 − m2
(

∂φ0

∂p

)2
]

(C20)

and includes terms both linear and quadratic in the field amplitude. This is contrary to
conventional Berk-Breizman theory and could hint on the transition from the resonance
detuning regime (terms linear in φ0) to the radial decoupling regime (quadratic terms).
The estimate for ωb presented in the main text (see Eq. (31)) is obtained by keeping only
the linear term and transforming back to the radial coordinate r.
We can use that equation to try to estimate the validity range of the analytical theory
[3]. In order to compare with the numerical simulations, we substitute the parameters
of the ITPA benchmark and use v‖ = vA/3. The results of this simple estimate for ωb
are shown in Fig. 12 in blue for the various collision frequencies using the value for φ0
at saturation. Given the value for ωb it is then possible to calculate νeff (red curve in
Fig. 12). Two regimes are visible. For νeff ≪ γL the assumptions of Ref. [3] are valid. In
this regime the theoretically predicted scaling is confirmed numerically (in the resonance
detuning regime). For νeff ≫ γL, on the other hand, the initial assumptions are violated
and a new scaling law is found numerically. This simple cylindrical estimate is able to
qualitatively predict the transition from one regime to the other. It fits fairly well with
our simulation results.
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νeff << γL νeff >> γL
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Figure 12: Resulting values of the cylindrical ωb estimates (blue) for the low-density (left) and
medium-density cases (right). The calculated values for νeff are shown in red. The primary
assumptions of the analytical theory [3] exclude the gray region.
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