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Abstract:
Nonlinear dynamics, such as saturation and frequency chirping of Alfvénic fluctuations
driven by energetic particles are investigated by means of the nonlinear hybrid magnetohy-
drodynamics gyrokinetic code (XHMGC). Saturation mechanism due to resonance detuning
and/or radial decoupling are discussed. It will be shown that saturation field level exhibits
a quadratic scaling with the growth rate, in the former case; a linear scaling, in the lat-
ter case. The dominance of one or the other mechanism depends on the linear properties
of the mode (in particular, the growth rate, the spatial structure and the radial depen-
dence of the resonance frequency). For the frequency chirping of EPMs, phase locking has
been proposed, within “fishbone” paradigm, to describe such chirping: the resonance con-
dition with linearly resonant particles is maintained, while particles are radially displaced,
through a continuous modification of the mode frequency. Meanwhile an additional sce-
nario is possible: mode radial localization and frequency appear to be locked to the shear
Alfvén continuum; once the linear resonance population has exhausted its driving capability
(because of local flattening of the phase-space distribution function), the mode is shifted to
non-exhausted regions of the phase space. The e↵ect is a succession of resonant excitations
from di↵erent phase-space regions (each characterized by its own nonlinear evolution time),
rather than mode adjustment to the evolution of the linearly-resonant particles. Both mech-
anisms demonstrate that the frequency chirping is due to the procedure of maximising the
wave-particle power exchange.

1 Introduction

Shear-Alfvén modes can be driven unstable by energetic particles (EPs) produced by
additional heating or nuclear fusion reactions. Alfvénic fluctuations can, in turn, be
derimental to EP confinement and lead large EP losses. Understanding the properties of
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EP confinement largely depends on the insights into Alfvén mode dynamics, with regard
to both the linear stability properties [1]; and the nonlinear dynamics, which have recently
attracted significant interest both on theoretical and numerical analysis sides. In general,
the nonlinear dynamics of Alfvén eigenmodes (AEs) can be classified into two major
categories: mode-mode coupling and nonlinear wave-particle interactions. Although the
former can play a crucial role in multi-scale dynamics of burning plasmas [2], we will focus,
in the current work, on the latter category, motivated by the relevance of the resonant drive
on the Alfvénic fluctuation spectrum in fusion devices. Two opposite limits of nonlinear
wave-particle dynamics have been widely investigated: weakly driven AEs (e.g. Toroidal
Alfvén eigenmodes (TAEs) [3]) close to marginal stability, for which mode saturation is
due to phase mixing of resonant particles trapped in the potential well of the wave and the
radial excursion of EPs is very limited with formation of phase-space holes and clumps
and adiabatic frequency chirping due to resonant frequencies following hole and clump
propagation [4]; strongly driven Energetic Particle Modes (EPMs) [5], for which saturation
is due to macroscopic distortion of the EP pressure profile and the interplay between mode
structure and resonant particles is crucial, since the radial excursion of resonant particles
is comparable with the length scale of equilibrium or fluctuation induced non-uniformities
[6]. The analysis of the intermediate situation (moderately unstable modes) has not yet
been analyzed in proper detail. In our work, nonlinear dynamics, such as amplitude
saturation and frequency chirping, in such intermediate regime are investigated by means
of the nonlinear hybrid magnetohydrodynamics gyrokinetic code (XHMGC) [7, 8].

2 Saturation mechanism

Saturation mechanism due to resonance detuning and/or radial decoupling are discussed.
The saturation field level exhibits a quadratic scaling with the growth rate, in the former
case; a linear scaling, in the latter case. How the dominance of one or the other mechanism
depends on the linear properties of the mode (in particular, the growth rate, the spatial
structure and the radial dependence of the resonance frequency). These fundamental
results/scaling are crucial for any reduced/simplified EP transport model which is needed
for fast and flexible predictive tools to be developed in the future.

Resonance detuning and radial decoupling – The importance of plasma non-uniformity
has been pointed out by Refs. [1, 6], in the frame of the so-called “fishbone” paradigm.
The basic point is that, for increasing drive and, hence, mode amplitude, particle orbits
become able to explore the finite radial-width of the fields. At the same time, the reso-
nance condition is satisfied, in this limit, in a wider radial region (whose width scales with
the mode growth rate). The spatial region where the mode-particle power exchange can
take place becomes than limited by the mode width rather than the resonance width. Sat-
uration occurs when the flattening region of the resonant particle density profile extends
by the whole region in which the mode-particle power exchange can occur. Such region
will be limited both by the finite mode width and the finite resonance width. This is
represented in Fig.1. The resonance width is determined by the condition |!�!

res

|  �L;
it then increases with the linear growth rate �L. Two opposite regimes are represented



3 TH/W

in Fig.1(left) and (right), respectively. In the former (“resonance detuning” regime), the
most stringent constraint on power exchange is set by the resonance width; in the lat-
ter (“radial decoupling” regime), it is set by the mode width. The transition from the
resonance detuning regime to the radial decoupling one occurs, ceteris paribus, as larger
drive, narrower modes and/or flatter resonance frequency profiles are considered.

FIG. 1: Model comparison between the radial mode structure (black line) and the radial
resonance profile (blue line). The green solid line indicates the mode frequency !, while
dashed lines correspond to ! ± �L. The resonance width �rres is approximately defined
as the width of the region where the condition |! � !

res

|  �L is satisfied. Frame (a)
represents a situation in which the mode structure is larger than the resonance width;
frame (b), the opposite situation.

XHMGC simulation results – In our work, the simulations of BAE modes driven
unstable by purely circulating EPs are performed for analysing the saturation mechanism.
A tokamak equilibrium is considered, characterized by aspect ratio R

0

/a = 10 and safety
factor q = q

0

+ (qa � q
0

)(r/a)2, with q
0

= 1.9 and qa = 2.3. The results of simulations
related to modes characterised, respectively, by toroidal numbers n = 2, 3 and 4, are
reported. Di↵erent toroidal numbers correspond to di↵erent shapes of the shear-Alfvén
continuum; then, both mode structure and mode frequency change. The normalized mode
structure of the scalar potential and the mode frequency spectrum are shown in Fig. 2 for
each n. The unstable modes are all located near the shear-Alfvén continuum accumulation
point for each n. Mode frequencies are very similar for co-passing fast ion driven modes
and counter-passing ones for all n values. They increase as the toroidal mode number
increases. The mode structure is narrower for larger toroidal mode number n.

The results of the mode saturation amplitude varying as the growth rate obtained
at di↵erent values of nH/ni or di↵erent toroidal mode numbers are reported in Fig. 3,
for modes driven by co-passing fast ions (left) and counter-passing ones (right). A clear
transition from quadratic to linear scaling is observed in the counter-passing fast ion case,
for all the values of the toroidal mode number n. The growth rate value at which the
transition occurs slightly increases with increasing n. At the same time, the corresponding
mode saturation amplitude decreases. The situation is less defined in the co-passing fast
ion case. In particular, no transition is observed for n = 2, with the mode saturation
amplitude scaling linearly over the whole considered range of nH/ni. For n = 3, although
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FIG. 2: Energy spectrum for the scalar potential, in the (r,!) plane, for the BAE driven
by fast ions, as obtained from XHMGC simulations for di↵erent choices of the toroidal
mode number n. The normalised radial structure of the dominant harmonic for the scalar
potential is also reported for each case (dashed lines). Top frames refer to modes driven
by co-passing fast ions; bottom frames, to modes driven by counter-passing fast ions. Here
!A0

is the one-axis Alfvén speed.

a quadratic scaling can not be revealed, a deviation from the linear scaling is observed
when moving from the stronger to the weaker cases. It is still true that the transition
growth rate value increases with n (for n = 2 and n = 3 we can only set upper limits
to such value, with the limit relative to the n = 2 case being surely lower than that
pertaining to the n = 3 case). Nothing can be said, instead, about the variation of the
transition values of the mode saturation amplitude.

It has been demonstrated [9] that mode saturation occurs as the flattening of the
resonant particle distribution function profile (which represent the free-energy source for
mode instability) extends over the whole region where the mode-particle interaction can
take place. This region is limited both by the finite radial structure of the mode (�r

mode

)
and the finite radial extension where the resonance condition, |!�!

res

(r)| . �L, is satisfied
(�r

res

). Saturation will be reached as

Asat/�L ⇠ min[�L/|S|,�r
mode

]. (1)

Taking into account that the mode width exhibits a negligible dependence on the growth
rate, we see that the quadratic scaling for the mode saturation amplitude is obtained when
the most stringent constraint is represented by the resonance width (resonance detuning
regime); the linear scaling, when it is given by the finite mode width (radial decoupling
regime). Transition from the former to the latter regime is expected for

�L tr

⇠ |S|�r
mode

, (2)

with a saturation amplitude
Asat

tr

⇠ |S|�r2
mode

. (3)
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FIG. 3: Scaling of saturation amplitude of scalar potential versus normalized linear growth
rate for di↵erent toroidal numbers, for co-passing (left) and counter-passing (right) fast
ions. The reference quadratic and linear �L scaling are also shown.

In the present case, the mode structure has been inspected in Fig. 2. The corresponding
resonance profiles for di↵erent toroidal numbers are shown in Fig. 4, showing that, co-
passing fast ions have flatter resonance than counter-passing ones. For n = 2 case,
co-passing fast ions have an extremely flat profile for inner values of the radius, so that
the resonance width is much larger than the mode width for all the considered growth
rate. For the counter-passing fast ions, the radial resonance profile is steeper, so that the
resonance width for low growth rate is smaller than the mode width. As the growth rate
increases, a transition from resonance detuning to radial decoupling is expected. For the
n = 3 and n = 4 cases, the resonance frequency radial profile has a larger gradient in the
region around the mode localisation.
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FIG. 4: Radial profiles of di↵erent terms contributing to the resonance frequency, for
co-passing (top) and counter-passing (centre) fast ions, at di↵erent values of the toroidal
mode number. Bottom frames show the resulting resonance frequency for both species.
The mode frequency is also shown in each frame (solid line).

Figure 5 compares the values of the resonance width obtained from Eq. 4 as the
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following:
|! � !

res

(r
res

±�r
res

/2)| ' �L, (4)

with the measured values of the mode width at di↵erent toroidal numbers. We observe
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FIG. 5: Resonance width computed by Eq. 4, compared with the measured mode radial
width, at di↵erent toroidal numbers, for co-passing (left) and counter-passing (right) fast
ions.

that, while no relevant di↵erence is obtained for the transition saturation amplitude,
the transition growth rate for the counter-passing fast ion case exhibits a weak positive n
dependence. Both these results appear to be in better agreement with the results reported
in Fig. 3.

3 Energetic particle modes.

We analyse EPM saturation and the corresponding frequency chirping observed both in
experiments and simulations (e.g. chirping electron-fishbone by XHMGC simulation [11]).
Phase locking has been proposed, within fishbone paradigm [1,6], to describe such chirp-
ing: the resonance condition with linearly resonant particles is maintained, while particles
are radially displaced, through a continuous modification of the mode frequency. We show
that an additional scenario is possible: mode radial localization and frequency appear to
be locked to the shear Alfvén continuum; once the linear resonance population has ex-
hausted its driving capability (because of local flattening of the phase-space distribution
function), the mode is shifted to non-exhausted regions of the phase space. The e↵ect is a
succession of resonant excitations from di↵erent phase-space regions (each characterized
by its own nonlinear evolution time), rather than mode adjustment to the evolution of
the linearly-resonant particles.

The mode is driven unstable on the SAW continuum as shown in Fig. 6. The mode
is excited at !

0

/!A0

' 0.19 where !A0

= VA0

/R is the Alfvén frequency, and the linear
growth rate is �L/!A0

' 0.0097. As the mode is nonlinearly evolved, the mode saturates
at |e�/TH | ⇠ 10�3, where � is the perturbed electrostatic potential. After saturation at
around t!A0

' 650, the mode amplitude exhibits oscillations. The mode frequency mainly
chirps down by about 20% of the birth frequency in around a thousand Alfvén time scale.



7 TH/W

In the linear phase, the mode frequency matches the slice of test particles with higher
resonance frequency as shown in Fig. 6(a). In the later nonlinear phase, the particle
orbits are perturbed, however, the particles are still essentially moving along the line of
the perturbed resonance frequency. When the particles lose energy, they move out along
the radial direction and their resonace frequencies increase, as shown in the Fig. 6 (b).
Meanwhile, the mode frequency chirps down, matching another slice of test particles with
lower resonance frequency. In this case, the mode lose contact with the particles driving
the mode initially and starts gaining energy from di↵erent portion of particles.

ω
/ω

A
0

r/a

tω
A0

=400

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

(a)
tω

A0
=1000

ω
/ω

A
0

r/a
0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

(b)

FIG. 6: Two slices of test particle samples are taken with comparison of mode frequency.
The line is corresponding to the instantaneous resonance frequency radial profile at (a)
t!A0

= 400 and (b) t!A0

= 1000 respectively.

On the other hand, we investigate the power exchange between particles and the mode
for each slice of test particle samples, as shown in Fig. 7. When the mode is born, the
slice of test particles with higher frequencies are expected to interact with the mode. The
power exchange is dominant by those particles. When the mode frequency chirps down,
another slice of test particles take part in and start interacting with the mode, the power
exchange becomes dominant in the later nonlinear phase.
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FIG. 7: Time evolution of the power exchange (as shown in the right figure) for each
slice of test particles. The color is corresponding to the test particle samples with the same
color as shown in the left figure.
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