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Abstract

The present work uses the results of a fluid full-turbulence 3D simulation of the tokamak periphery

to present the first self-consistent analysis of the radial velocity scaling of plasma blobs in a diverted

geometry. A diverted double-null configuration is considered, and the blob motion is studied using

a pattern recognition algorithm. The velocity obtained from the simulation results is compared to an

analytical scaling accounting for the presence of the X-point. Agreement is found between numerical

and analytical results.

1 Introduction

The dynamics in the periphery of magnetic fusion devices is characterised by the presence
of blobs. These are coherent structures of enhanced plasma density with respect to the back-
ground, spatially localised in the plane perpendicular to the magnetic field and elongated in
the parallel direction [1]. Because of their shape, blobs are also known as filaments. Blobs
detach from the main plasma and move radially outwards, making turbulence at the edge of
fusion devices intermittent and significantly contributing to the radial transport mechanisms
in the SOL. Blobs have been observed in tokamaks (e.g., in the Caltech Research Tokamak [2],
Alcator C-Mod [3], JET [4], JT-60U [5], Tore Supra [6], TCV [7]), stallarators (e.g., in the W7-AS
stellarator [8], and in TJ-K [9]), reversed field pinches [10], and basic plasma devices (e.g. in
LAPD [11] and in TORPEX [12]). They can lead to enhanced intermittent heat flux on the main
vessel wall, possibly damaging radio frequencies antennas, wall tiles, and causing sputtering
of impurities [13], [14], [15].

It is generally believed that blobs are the result of the non-linear saturation of interchange-
like instabilities in the edge, with the density fluctuation sheared apart by the E×B velocity
and detached from the main plasma, as observed in JET [16] and in TORPEX [12], and as de-
scribed by 2D fluid models, e.g. [17]. Once detached from the main plasma, blobs move ra-
dially outwards. An extensive review of the literature on blob motion can be found in Ref. [1].
The radial motion results from the vertical charge separation inside the blob stemming from
the effect of the magnetic gradient and curvature drifts. The charge separation leads to an
electric field and its associated E×B drift that causes the blob to move radially outwards.
This basic mechanism of radial motion is confirmed by a series of blob studies conducted on
the TORPEX device [18], [19], by experiments in limited and diverted plasmas on TCV [20],
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and by numerical simulations of seeded blobs (see, e.g., [21], [22], [23], [24]). Considering
a self-consistent simulation of a TCV discharge in limited configuration, in [25] a pattern-
recognition algorithm for blob tracking showed good agreement of the blob velocity with the
theoretical scalings.

In the present work we investigate for the first time the velocity scaling of blob self-
consistently generated in a simulation of SOL plamsa turbulence in diverted configuration.
In previous studies, the effect of the X-point on blob motion has been investigated using sim-
ulations of a single seeded blob [26], for this purpose with the BOUT++ code [27] was used, to
reproduce the experimental work of [19] on TORPEX. In addition, the magnetic shear effect of
blobs has been studied as a proxy for the X-point in Refs. [28] and [29]. Only very recently the
study of blob motion has been approached by using 3D full-turbulent self-consistent sim-
ulations in diverted configuration. Results of a full 3D turbulent simulation with the XGC1
gyrokinetic code of a DIII-D H-mode discharge have been used to carry out an initial inves-
tigation of the blob properties [30]. In the present work, we extend the use of the pattern
recognition algorithm introduced in [25] to analyse the blob motion in a full SOL turbulent
simulation in double-null configuration. The simulation is carried out with the GBS code.
GBS [31], [32], [33] is a 3D code that simulates the plasma turbulent dynamics in the tokamak
periphery by evolving the two-fluid drift reduced Braginskii’s equations [34]-[35]. In the past
years GBS has helped investigating plasma dynamics in limited tokamaks, for example, by
providing predictions of the SOL width [36]. Recently GBS capabilities have been extended
to the simulation of diverted scenarios [33], by abandoning the use of flux coordinates, that
present a singularity at the X-point.

The results from a GBS simulation in diverted double-null configuration are here com-
pared with a theoretical scaling developed to predict blob velocity in the presence of an X-
point ([37]). As pointed out also by a recent experimental work on ASDEX Upgrade [38] and
in simulations [39], collisionality can affect the blob velocity scaling. Our results focus on the
high collisionality regime and, depending on the blob size, we identify the polarization cur-
rent or the parallel current as balance mechanisms to the interchange drive. Our simulations
results are in good agreement with the theoretical scalings.

This paper is organised as follows. Leveraging previous derivations by Myra et al. [37], we
provide the analytical scaling to estimate the velocity of blobs in diverted configurations in
Sec. 2. Then, Sec. 3 presents the GBS simulation results obtained in double-null configura-
tion. Blobs are detected and tracked to determine their velocity, size, and collisionality, by
using the blob tracking technique presented in Sec. 4. Finally, the simulation results of the
blob radial velocity are compared with the analytical scaling in Sec. 5. Conclusions follow.

2 Blob velocity analytical scaling in the presence of an X-point

Analytical predictions of the blob radial velocity can be obtained by using simplified 2D two-
fluid models, describing the plasma dynamics in the plane perpendicular to the magnetic
field. These models usually consider continuity equation, charge conservation, and a clo-
sure for the parallel current. Examples can be found Refs. in [40], [13], [18]. The most investi-
gated of such analytical 2D models to account for the effect of an X-point on blob transport,
is the two-region model [37]. The two-region model separates the upstream and the diver-
tor regions, labelled as region 1 and 2, respectively (see Fig. 1). In the upstream region, the
unfavourable curvature of the magnetic field leads to the formation of an electric dipole that
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φ1,n1

φ2,n2

Figure 1: Schematic illustration of the two region model. Region 1 (light gray) correspond to
the outboard low field side, where the curvature drive β is active, and extend from midplane
to the X-point region. Here the flux expansion is maximal and causes the blobs to elongate
and tilt due to field line mapping, disconnecting region 1 from the divertor, i.e. region 2 in
darker gray, characterised by the current to the sheath.

provides most of the drive for the blob radial motion. In the divertor region, the magnetic flux
expansion causes the blob to elongate in one direction and squeeze in the other (to guaran-
tee mass conservation). The stretching of the blob facilitates the damping of the blob charge
separation by cross-field currents.

By following the calculation in Ref. [37], we retain the corrections due to blob density,
blob ellipticity, and magnetic field line length difference between the two regions in the eval-
uation of the blob velocity. We derive the two-region model in the Appendix. In this section,
we present the final results of our calculation and leave the details to the Appendix.
The two-region model allows the identification of four different blob motion regimes [37],
which correspond to four different mechanisms to balance the curvature drive in region 1.
In the sheath connected regime, denoted as Cs , the curvature drive is balanced by the cur-
rent flowing to the sheath. In the ideal interchange mode regime, Ci , the ion polarisation
current in region 2, due to the fanning of the flux surfaces, balances the drive. In the resis-
tive ballooning regime, RB, the ion polarisation current in region 1 dominates. Finally, in the
resistive X-point regime, RX, the parallel current flowing between the two regions is the key
damping mechanism. Each regime is characterised by a different blob velocity to size scaling.
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Figure 2: Characterisation of blob regimes in the (Λ,Θ) plane and correspondent velocity to
size scaling, as derived in [37] from the two region model.

We find that the regimes are defined by the values of the following parameters:

Λ= νe/i L2
1

ρsΩe L2
(1)

Θ= â
5
2 =

( ab

a∗
) 5

2
(2)

The collisionality parameterΛ in eq. (1) can be interpreted as the ratio between the resistivity
in region 1 and the sheath resistivity. If Λ is high, region 1 is decoupled from the sheath. In
eq. (1), νe/i

1 is the electron to ion collision frequency in region 1, present in Ohm’s law, while
ρs = p

Te /mi /Ωi is the ion sound gyro-radius. The electron gyro-frequency Ωe is defined
as Ωe = eB/me ( e is the electron charge, me the electron mass, and B the magnetic field
strength at the blob location in region 1). We note that the two-region model is derived in the
isothermal limit, hence Te at the target is considered to be the same as Te in region 1, with no
distinction between blob and background temperature. In eq. (1) the parallel lengths of the
magnetic field line in regions 1 and 2 are L1 and L2, respectively.
The parameter Θ and blob normalised size â in eq. (2) are given by the ratio between the
physical blob size ab and the reference size a∗. The expressions in physical units for the
blob size ab and the reference size a∗ as derived in Appendix (removing the large aspect ratio
approximation), are:

ab =
(

2ay

π

) 4
5

a
1
5
x (3)

a∗ = ρs

(
2L2

2

ρsR

) 1
5 [
∆x n1

n0,1

] 1
5

(4)
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With respect to Myra et al. [37], eq. (3) provides an expression for ab , that differentiate the
radial (or poloidal) blob size ax (or ay ). More precisely, the radial direction x is, the ∇ψ di-
rection orthogonal to the flux surfaces and y indicates the binormal direction orthogonal to
both ∇ψ and magnetic field versor b. The term within square brackets in eq. (4), not appear-
ing in [37], accounts for the effect of blob density and blob ellipticity. The parameter n0,1 in
eqs. (4)-(6) corresponds to the mean between the maximal blob density value at midplane
and the background equilibrium density value. ∆X n1 and ax are introduced to approximate
the density gradient in the radial direction as a ratio between a density difference and a radial
length, i.e. ∂x n1 ∼∆x n1/ax . Ref. [37] introduced a practical way to visualise the four regimes
in terms ofΛ andΘ, as well as their transition thresholds (see Fig. 2). Each regime presents a
different velocity scaling in terms of the normalised velocity:

v̂ = vx

v∗ (5)

with

v∗ = cs,1

(
ρ2

s L2

R3

) 1
5
[

8
(δn1)5

(∆x n1)2n3
0,1

(
πax

2ay

)2
] 1

5

(6)

Here δn1 is the amplitude of the density fluctuation above n0,1 and ay is the Half Width Half
Maximum (HWHM) blob poloidal size, i.e. half of the poloidal blob size measured half way
between the blob density maximum and the background density value (corresponding to the
n0,1 threshold). The major radius R has to be taken at the blob location in region 1, around
midplane, as it results from approximating the magnetic field curvature at the origin of the
drive in region 1.

3 GBS simulation in double-null configuration

The present section presents the physical model behind the GBS code, as well as the results
of a simulation run in double-null configuration which will be used for our study. GBS im-
plements a two-fluid model based on the drift-reduced Braginskii’s set of equations [35]. The
interaction between plasma and wall is described by the magnetic pre-sheath boundary con-
ditions [41]. The code uses toroidal coordinates to allow for the simulation of diverted con-
figurations. Ref. [33] reports on the implementation and verification of the version of GBS
used for the present study.

3.1 Physical model

Zeiler et al. [35] drift-reduced approximation of the Braginskii’s equations [34] relies on the
assumption that turbulence in the periphery of a tokamak device occurs on a time scale con-
siderably longer than the gyro-motion (∂t ¿Ωi = eB/(mi c)) and on a length scale larger than
the ion gyro-radius ρi . As a result, the velocity perpendicular to the magnetic field line can
be described as the sums of the E×B, diamagnetic velocity, and ion-polarisation drifts. The
cold-ion version of the drift-reduced Braginskii’s set of equations used for this work can be
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written as

∂n

∂t
= −ρ

−1
?

B
[φ,n]+ 2

B

[
C (pe )−nC (φ)

]−∇‖(nv‖e )+Sn +Dn∇2
⊥n (7)

∂v‖e

∂t
= −ρ

−1
?

B
[φ, v‖e ]− v‖e∇‖v‖e + mi

me

(
νJ‖+∇‖φ− 1

n
∇‖pe −0.71∇‖Te

)
(8)

+ 4

3n

mi

me
η0,e∇2

‖v‖e +Dv‖e∇2
⊥v‖e

∂v‖i

∂t
= −ρ

−1
?

B
[φ, v‖i ]− v‖i∇‖v‖i − 1

n
∇‖(pe )+ 4

3n
η0,i∇2

‖v‖i +Dv‖i ∇2
⊥v‖i (9)

∂Te

∂t
= −ρ

−1
?

B
[φ,Te ]− v‖e∇‖Te + 4

3

Te

B

[
1

n
C (pe )+ 5

2
C (Te )−C (φ)

]
(10)

+2

3
Te

[
0.71∇‖v‖i −1.71∇‖v‖e +0.71(v‖i − v‖e )

∇‖n

n

]
+STe +χ⊥,e∇2

⊥Te +χ‖,e∇2
∥Te

∂ω

∂t
= −ρ

−1
?

B
[φ,ω]− v‖i∇‖ω+ B 2

n
∇‖ J‖+ 2B

n
C (pe )+Dω∇2

⊥ω (11)

∇2
⊥φ = ω (12)

In eqs. (7)-(12) all variables are dimensionless and, in the following, we use a tilde to de-
note physical variables, unless specified otherwise. We define the plasma density n = ñ/n0,
the electron temperature Te = T̃e /Te0, the electrostatic potential φ = eφ̃/Te0, the electron
parallel velocity v‖e = ṽ‖e /cs0, the ion parallel velocity v‖i = ṽ‖i /cs0 and the vorticity ω =
ω̃ eρ2

s0/Te0 with n0,Te0, cs0 = p
Te0/mi and ρs0 = cs0/Ωci reference density, temperatures,

sound velocity and ion sonic Larmor radius expressed in physical units. Time is defined as
t = t̃ cs0/R0, where R0 is the major radius at magnetic axis, in physical units. The electron
pressure is pe = nTe . The current is J‖ = n(v‖i − v‖e ). In our simulation, the values of the di-
mensionless parameters appearing in Eqs. (7)-(11) are: ρ∗ = ρs0/R0 = 1/500 (normalised ion
sonic Larmor radius), ν = en0R0/(mi cs0σi ) = 1 (normalised Spitzer resistivity), η0,e = 5e −3,
η0,e,i = 1, χ‖e = 1 and χ⊥,e = 2. To reduce the computational cost of the simulation we use
mi /me = 200. The minor radius is a = 127ρs0. Additionally, small numerical diffusion terms
of the type D f ∇2

⊥ f are added for numerical stability (in this simulation D f = 2 for all fields).
In the density and temperature equations Sn and STe denote source terms that mimic the
outflow of plasma and heat from the core.

The dimensionless spatial operators appearing in Eqs. (7)-(12) are the parallel gradient
∇∥ f = R0b · ∇̃ f , the parallel diffusion operator ∇2

∥ f = ∇∥(∇∥ f ), the Poisson brackets [φ, f ] =
ρ2

s0b·(∇̃φ×∇̃ f ), the curvature operator C ( f ) = R0ρs0B̃/2(∇̃×(b/B̃))·∇̃, and the perpendicular
diffusion operator ∇2

⊥ = ρ2
s0∇̃ · ((b×∇̃ f )×b). Here, f indicates one of the dimensionless fluid

quantities (n,Te,i , v‖e,i ,ω,φ) while B̃ and b = B̃/B̃ are the norm and the versor of the magnetic
field. In (r,θ,ϕ) toroidal coordinates we assume an axisymmetric magnetic field of the form:

B̃ = R0B0∇ϕ+∇ϕ×∇ψ̃(r̃ ,θ) (13)

with B0 magnetic field at the magnetic axis, ψ̃ magnetic poloidal flux. Under the assump-
tion of small inverse aspect ratio ε = a/R0 and large safety factor q , and using eq. (13), the
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Figure 3: Visualisation of GBS computational domain and toroidal coordinates (r,θ,ϕ) used
to implement the double-null configuration in eq. (18).

differential operator expressions in (r,θ,ϕ) toroidal coordinates are:

∇∥ f = B0

|B0|
∂ f

∂ϕ
+ a

ρs0
∂r̂ψ

1

r

∂ f

∂θ
− a

ρs0

1

r̂
∂θψ

∂ f

∂r
(14)

[φ, f ] = 1

r

B0

|B0|
[φ, f ]r,θ (15)

C ( f ) = B0

|B0|
(
sinθ

∂ f

∂r
+ cosθ

r

∂ f

∂θ

)
(16)

∇2
⊥ f = ∂2 f

∂r 2 + 1

r 2

∂2 f

∂θ2 (17)

where two different dimensionless form of the radial coordinate appear: r̂ = r̃ /a is used in re-
lation to ψ derivatives, and r = r̃ /ρs0 in relation to f derivatives. The dimensionless poloidal
flux ψ is defined as ψ = ψ̃/(a2B0). The details of the derivation of the differential operators
can be found in Ref. [33]. Since the physical model in Eqs. (7)-(12) considers the electro-
static case, the equilibrium magnetic field is unperturbed throughout the simulation and
∂r̂ψ, ∂θψ/r̂ are given as input to the simulation. For this study ψ is chosen to describe a
double-null configuration:

ψ(r̂ ,θ) = S(log(r̂ − c)+1

2
I log((r̂ − c)2 +4−4(r̂ − c)sinθ)

+1

2
I log((r̂ − c)2 +4+4(r̂ − c)sinθ)) (18)

with S = 0.03, I = 10, and c = 0.9.
The GBS domain corresponds to a torus with a hollow poloidal cross section (as the toka-

mak core is not simulated), as it is represented in Fig. 3. At the numerical wall r = rmax the
magnetic pre-sheath boundary conditions developed by [41] are considered (neglecting cor-
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rection terms linked to f derivatives along the wall):

v∥,i =±
√

Te

v∥,e =±
√

Te max{exp

(
λ− φ

Te

)
,exp(λ)}

∂rφ=∓
√

Te ∂r v∥,i

∂r n =∓ np
Te

∂r v∥,i (19)

ω=−(∂r v∥,i )2 ∓
√

Te ∂
2
r r v∥,i

∂r Te = 0

Where λ= 3. The plus/minus indicates whether the magnetic field points towards (top sign)
or out from the wall (bottom sign) and coincides with the sign of Br ,the radial component
of B. At the wall location where Br = 0 the boundary condition for v‖i jumps from −pTe to
+pTe (or vice-versa), a similar discontinuity arises for v‖e . A smoothing function is applied
in the vicinity of Br to avoid such discontinuity (see Ref. [33]). At the inner radial boundary,
r = rmin, we use an ad hoc set of boundary conditions, i.e. ∂r f = 0 for all fields f , except for
ω and φ, for which we impose ω= 0 and φ= λTe . The presence of the source of plasma and
temperature at r > rmin helps decouple the inner ad hoc boundary conditions to the edge and
SOL dynamics.

We note that a more complete version of the equations implemented in GBS for diverted
magnetic configurations is presented in Ref. [33]. The GBS version for limited configuration
additionally solves neutral dynamics and can be run without the Boussinesq approximation
for the vorticity and with electromagnetic effects [32].
We finally remark that the drift-reduced Braginskii’s equations are solved using a numerical
scheme based on a fourth order finite difference algorithm with explicit Rounge-Kutta fourth
order method for the time stepping [33].

3.2 Simulation results

The simulation is run on a numerical grid Nr ×Nθ×Nϕ = 156×450×80, with time step ∆t =
2×10−5.

After an initial transient, the simulation reaches a quasi-steady state where a strong blob
activity is present on the low-field side (LFS) of the device, leading to transport of the plasma
out-flowing from the tokamak closed flux surface region to the far SOL. Typical snapshots in
this turbulent regime for different plasma quantities appearing in the drift-reduced Bragin-
skii’s equations are shown in Fig. 4. The density n (top-left plot) peaks in the closed flux sur-
face region, around the plasma source location. The blobs at the equatorial midplane of the
LFS present a mushroom shape typical of high collisionality regimes [37]. At the blob loca-
tions, fluctuations in the electric potentialφ (top-right plot) reveal the presence of the dipolar
structure responsible for the blob motion. The GBS physical model allows Te to vary (bottom-
left plot in Fig. 4). A temperature difference between blobs and background increases the
drive for the blob radial motion through the enhancement of the C (pe ) term in the vorticity
equation, and causes the blob to rotate due to E×B drift [13] because φ∝ Te in the SOL in
the sheath-limited regime. The rotation of the blob dipole can reduce its outwards radial mo-
tion. We assume that these effects are negligible (or balance) and use the two-region model,
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which is isothermal, to analyse the results. The parallel current J‖ in Fig. 4) exhibits turbulent
behaviour at the LFS where the blobs are located.

Figure 4: From left to right, top to bottom, typical snapshots of plasma density, electric poten-
tial, electron temperature and plasma current, in the GBS double-null simulation considered
for our blob analysis (the separatrix is traced by the white line).

4 Blob tracking technique and evaluation of blob parameters

The analysis of blob motion is performed on a time window of 73 R0/cs0 time units during
the quasi-steady state. To detect blobs in the GBS simulation we use a pattern recognition
algorithm similar to the one presented in Ref. [25]. The analysis is carried out in the poloidal
plane since the large inverse aspect ratio and large safety factor assumptions allow us to ap-
proximate the plane perpendicular to b with the poloidal plane. We define as blob a structure
of enhanced density (at least 2.5 times the fluctuation level) that moves coherently (i.e., it ex-
ists for ∆t > 0.2). More precisely, blobs are detected from the simulation results as follows.
We first identify the regions Ωb,high with density larger than the average density, nbg , by 2.5
times the fluctuation level, σn , that is:

n(r,θ, t ) > nbg +2.5σn , (20)
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We remark that the average background density is computed by time and toroidally averag-
ing the density during the quasi-steady state, nbg (r,θ) = 〈n〉t ,ϕ, and the standard deviation

is defined as σn(r,θ) =
√
〈(n(r,θ,ϕk , tm)−nbg (r,θ))2〉t ,ϕ. Once the regionsΩb,high where eq.

(20) is satisfied are detected, a pattern recognition algorithm groups the points that are con-
nected and therefore belong to and form the same blob. A blob is then tracked from one time
frame to the next by checking whether there is spatial overlapping between Ωb,high belonging
to two subsequent time frames. Splitting and merging of blobs is also allowed by checking if
two blobs end up corresponding to one single blob in the following time frame or vice-versa.
The blob detection is carried out in one poloidal plane and we analyse only the blobs de-
tected around the outboard midplane. This also avoids counting the same blob twice, when
the blob extends over the magnetic field by more than one toroidal turn.

Having detected the blobs, we determine their size and velocity. The algorithm described
above is efficient in tracking blobs, but it often underestimates the blob size, as it only detects
the high density peak of a blob, which is shown by the striped region in Fig. 9. In order to
determine the blob size in a way consistent with the analytical two-region model, one needs
to detect the region corresponding to the density fluctuation above the half maximum, n0.
This corresponds to the colored region that we will referred to as Ωb in Fig. 9. To determine
Ωb , we take an area Ωb,ext larger than Ωb,high by ∼ 30ρs0 in every direction, and re-define the
blob as the set of connected (r,θ) points inΩb,ext for which:

n(r,θ, t ) > n0 = nbg +δn = nbg + max
Ωb.high(t )

n −nbg

2
(21)

We note that the poloidal radius of Ωb is the half-width half-maximum (HWHM) of the blob
density perturbation, corresponding to ay of the two-region model (see Fig. 9). The blob
HWHM is commonly used to indicate the blob size in blob studies [25], [42].

The blob detection algorithm also verifies the presence of sufficient overlapping in the
subsequent time frames

||Ωb(tm)∩Ωb(tm+1)||
||Ωb(tm)|| > 0.8 (22)

as well as∣∣∣∣ ||Ωb(tm)||− ||Ωb(tm+1)||
||Ωb(tm)||

∣∣∣∣< 0.2 (23)

to assess that the the blob size does not change abruptly. If the blob domain Ωb changes
considerably from one time frame to the next, we consider them as two different blobs. The
threshold coefficients 0.8 and 0.2 in the double-null case are chosen so that the blobs have
size and shape that are continuous enough, without incurring excessive splitting.

In order to compare the two-region model in Sec. 2 with the simulation results, we esti-
mate ax , ay , Λ, Θ = â5/2 = (ab/a∗)5/2, and v̂ = vx /v∗ from the blob parameter in region 1.
We focus on blobs detected in the proximity of the midplane, therefore we require the blob
center of mass to be at most 50ρs0 away from midplane, −50 < ZC M < 50, with the center of
mass location (RC M , ZC M ) defined as

RC M = 〈R n(R, Z )〉Ωb

〈n〉Ωb

, ZC M = 〈Z n(R, Z )〉Ωb

〈n〉Ωb

(24)
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In the proximity of the midplane x and y directions correspond approximately to the radial
and vertical directions, R and Z . Therefore we approximate the blob radii ax = aR and ay =
aZ to correspond to half of the extension ofΩb along the R and Z directions.
To have a better estimate of the blob size, we use the average between the top 10% of the ∆Z
and ∆R values for each blob, where ∆Z (∆R) is the vertical (radial) extension of the blob area
at a given R (Z ).

To estimate the quantity n0,1 in Eqs. (4) and (6), we take the minimum value of n inΩb , as
suggested by figure 9, averaging over the lowest 10% density values. To compute the density
perturbation ∆x n1 that we use to approximate ∂x n1, we look at the maximal blob density
difference along R, for every fixed Z with (R, Z ) ∈Ωb , that we denote ∆nb |Z and we take the
average of the top 10% values. Analogously, to compute δn1 in eq. (6) we consider the largest
blob density difference along Z . Note that if the background density value is constant in the
radial direction (across the blob domain) then δn1 = ∆x n1 and the two estimates coincide.
Finally, we compute the Larmor radius ρs which in GBS dimensionless units corresponds top

Te , using a similar technique to the one used to evaluate n0,1.
The radial velocity vx = vR (in cs0 units) is computed by tracking the radial center of mass

location RC M during a blob lifetime:

vR (ti ) = RC M (ti+1)−RC M (ti )

ti+1 − ti
ρ−1
∗ (25)

where ti is the snapshot time (in the present study ti+1 − ti = 0.05).
In the considered double-null configuration the magnetic field line length in the up-

stream region 1, L1, is approximately 2/3 of the magnetic field line length from target to the
midplane L‖ (in the proximity of the LCFS). This can be computed numerically as:

L‖ = 1

2

∫
dl‖ = 1

2

∫
ρ∗

√
B 2

pol +B 2
tor

Bpol
d s (26)

where B 2
tor = BϕBϕ = 1, B 2

pol = BθBθ+Br B r = ε2((∂r̂ψ)2 + (∂θψ/r̂ )2), with ε being the inverse
aspect ratio, and the integral from the lower to the upper strike point is performed along a
flux surface.

Finally, we rewrite the expression for Λ, Θ (or â), and v̂ , in Eqs. (1)-(5) using quantities
appearing in in the drift-reduced Braginskii model (Eqs. (7)-(12)) units, with x → R and y →
Z :

Λ= νn1L2
1

L2ρs
(27)

Θ= â
5
2 =

( ab

a∗
) 5

2 =


(

2aZ
π

)4/5
a1/5

R(
2ρ−1∗

∆R n1
n0,1

ρ4
s L2

2

)1/5


5/2

(28)

v̂ = vR

v∗ = vR(
ρ2∗ρ7

s L2
) 1

5

[
8

δn5
1

∆R n2
1n3

0,1

(
πaR

2aZ

)2
]−1/5

(29)
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5 Comparison between simulation results and analytical predictions

Figure 5 (left) locates the detected blobs in the (Θ,Λ) plane. The normalised velocity v̂ of
each blob as a function of its size â is shown in Fig. 5 (right). The detected blobs belong to
the RB and RX regimes, with the threshold between the two regimes being at Θ/Λ = 1. The
analytical scalings of the two-region model for the blob velocity in the RB and RX regimes,
traced by continuous blue and red lines respectively, are shown to be upper bounds of the
measured blob velocities. The log(θ/Λ) colormap indicates wheather a blob belongs to the
RB or to the RX regime (the RB blobs are blue and the RX blobs are red/yellow). The transition
in color/regime agrees with the change in velocity trend. We also plot the velocity scaling of
the sheath connected, Cs , regime (black dashed line), whose velocity to size trend is â−2 (see
Fig. 5 left), which differs from the RX scaling only by the multiplying factor Λ∼ 10. In the RX
regime, the high collisionality causes the blob to partially disconnect from the sheath and,
as a consequence, the blob sustains its self-induced electric field more efficiently, resulting
in a faster outwards motion. The simulation results show that the sheath connected scaling
significantly underestimates the blob velocity, confirming that the large â blobs belong to the
RX regime. To our knowledge this is the first time that RX behaviour is observed and studied
in blob simulations or experiments.

log(Θ/Λ)

Λ̄â−2

â−2

â1/2

Figure 5: Characterisation of blob regimes in the (Θ,Λ) plane (left panel). The blobs belong
to the resistive ballooning (RB) and resistive X (RX) regimes. The normalised blob velocity
v̂ = vZ /v∗ as a function of the normalised size â = ab/a∗ (right panel). Good agreement with
the analytical scalings of RB and RX regime (in blue and red solid lines), and very different
behaviour with respect to Cs sheath connected regime (in black dashed line) is shown. The
color-scheme indicates log(Θ/Λ), with the transition between the RB and the RX regimes
being atΘ=Λ.
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Figure 6: Effect of various approximation of blob scaling. From left to right, top to bottom,
impact of: excluding δn/n effects, approximating magnetic field line length in region 1 with
L‖ = (L1+L2), considering ab to be the average between the radial blob radius aR and the ver-
tical size aZ , and removing the 2/π factor in ab and v∗. The qualitative behaviour is similar,
but quantitatively the agreement with the analytical scaling is worse than in Fig. 5.

The two-region scaling presented in Sec. 2 differs to some extents from the one in Myra
et al.[37] as it retains density effects, difference between magnetic field line lengths in the
upstream and divertor regions, as well as blob ellipticity and the way blob size is measured.
In Fig. 6 we test the influence of these effects on the velocity scaling. The top-left panel of
Fig. 6 shows that removing the density perturbation effects shifts the blobs distribution to
the left and the normalised velocity is reduced. This is due to an increase in both refer-
ence size a∗ and reference velocity v∗, since we are dropping the terms (∆x n1/n0,1)1/5 < 1
and (δn5

1/(∆x n2
1n3

0,1))1/5 < 1 in eqs. (4) and (6), respectively. Considering the total magnetic
field line length from target to midplane, L‖, rather than the field line length in region 1,
L1, (top-right panel of Fig. 6) reduces â and impacts the value of Λ, resulting in a slightly
worse agreement between the RB/RX regime transition, as indicated by the color code and
as suggested by the velocity to size dependence. Finally, taking ab to be the average between
aR and aZ instead of eq. (3) (bottom left panel of Fig. 6) significantly impacts the two-region
prediction since most blobs are now estimated to belong to the RX regime, with the blobs dis-
tribution moving to the right, and the normalised size â being overestimated. This is partly
due, in this case, to the fact that we drop the (2/π)4/5 term in ab , introduced when relating the
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wavenumber k1 in region 1 to aZ (i.e. k1 = 2aZ /π). Removing the (2/π)4/5 factor contributes
to overestimate the blob size, as shown in the bottom-right panel of Fig. 6.

In Figs. 7 and 8 investigate further the difference between RB blobs and RX blobs by look-
ing at the density, potential and parallel current of typical blobs belonging to the two regimes.
Typically, RB blobs are localised closer to the separatrix and they do not extend to the divertor
region. On the other hand, RX blobs are localised in the far SOL and develop parallel dynam-
ics, reaching the wall. Nonetheless the associated potential perturbation is relatively small in
region 2. A typical blob contoured by a solid black line in the RX regime is shown in Fig. 7.
As it can be seen from the top panels, the blob structure extends to the wall and reappears
periodically in the poloidal plane, at the locations (identified by red circles) where the mag-
netic field line that passes through the center-of-mass of the detected blob comes back on
the poloidal plane. The blob gets stretched as it approaches the X-points, because of the flux
expansion present in these regions. The blob elongation along the magnetic field is also con-
firmed by the bottom panels that show the plasma density and parallel current on the flux
surface of the center-of-mass of the blob in the (s,ϕ) plane, where s is the poloidal distance
from midplane, along the magnetic flux surface of the blob, and ϕ is the toroidal angle (the
square identifies the blob center-of-mass at ϕ = 0, which is also shown in the top panels).
We remark that the presence of the parallel current in region 1 and region 2 is not negligible.
Furthermore, even though the structure can be traced up to the wall, the fluctuations in den-
sity and potential decrease moving from midplane to wall, indicating partial disconnection
of the blob between the sheath and the midplane.
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Figure 7: A resistive-X (RX) blob. From left to right, top to bottom: density fluctuation n−nbg

in (R, Z ), potential fluctuationφ−φbg in (R, Z ) (blob perimeter traced with continuous black
line), density fluctuation along the flux surface, and parallel current J‖ = n(v‖,i − v‖,e ) along
the flux surface (square indicating blob center of mass location). The ϕ = 0 poloidal plane
represented in the top panels.

Fig. 8 shows the density poloidal snapshot of a RB blob. With respect to the RX blob, it
is smaller in size and it is located just outside the separatrix. The electric potential shows
the presence of a dipole, which extends outside of the blob perimeter (top right). We note
that the blob structure does not reappear periodically on the poloidal plane. Focusing on the
flux surface passing through the blob center of mass, we observe that the blob extends along
the magnetic field line on the flux surface, without reaching region 2 that starts at |s| ≥ 150.
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Finally, the bottom right plot shows that the parallel current, J‖ = n(v‖,i − v‖,e ), is almost
negligible for a RB blob, in agreement with the model that predicts for a RB blob that the cur-
vature drive is compensated by the perpendicular ion-polarisation current, with the parallel
dynamics playing a minor role.

Figure 8: An resistive ballooning RB blob. From left to right, top to bottom: density fluc-
tuation n − nbg in (R, Z ), potential fluctuation φ − φbg in (R, Z ) (blob perimeter traced
with continuous black line), density fluctuation along the flux surface, and parallel current
J‖ = n(v‖,i − v‖,e ) along the flux surface (square indicating blob center of mass location). The
ϕ= 0 poloidal plane is represented in the top panels.
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6 Conclusions

The GBS code is used to investigate blob dynamics in the presence of an X-point. An ana-
lytical scaling for the blob velocity as a function of the blob size and plasma collisionality is
derived in a diverted geometry following closely the two-region model presented in Ref. [37].
This model accounts for the differences in the physical mechanisms and in the magnetic field
geometry that characterise the outboard mid-plane and the divertor regions. The scaling is
re-derived starting from a simplified version of the drift-reduced Braginskii’s equations for
density and vorticity and providing a closure for the parallel dynamics, using Ohm’s law and
the magnetic pre-sheath physics. The scaling retains the effects of blob plasma density, blob
ellipticity, as well as the difference in magnetic field line length in region 1 and 2.
A simulation is run in a double-null configuration, and a blob detection/tracking algorithm
is developed and used to compute blob velocity, size and other physical parameters needed
to perform a comparison between simulation results and the analytical scaling. The blobs
appear to be in the high-collisionality Resistive Ballooning and Resistive X regimes of the
two-region model, where the curvature drive is balanced by the perpendicular ion polarisa-
tion current and parallel current flow between the two regions, respectively. The analytical
scaling constitute an upper bound for the detected blob velocities as a function of their sizes.
The effect of blob density and ellipticity are shown to be quantitatively important, although
the qualitative trends are unchanged. A detailed analysis of two blobs, one in Resistive X and
one in Resistive Ballooning, show density and electric potential fluctuations as well as par-
allel current profiles that are in agreement with the theoretical expectations. This is the first
time that a blob velocity scaling is investigated using full-3D turbulent simulation in diverted
geometry.
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A Re-derivation of the two region model

The drift-reduced Braginskii’s equations for density (eq. (7)) and vorticity (eq. (11)) can be
simplified around the equatorial midplane as

∂ω1

∂t
+ρ−1

∗ [φ1,ω1] = 1

n1
∇‖ J‖,1 + 2Te

n1
C (n1)

∂n1

∂t1
+ρ−1

∗ [φ1,n1] = 0 (30)
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and in the divertor region as

∂ω2

∂t
+ρ−1

∗ [φ2,ω2] = 1

n2
∇‖ J‖,2

∂n2

∂t
+ρ−1

∗ [φ2,n2] = 0 (31)

With respect to the drift-reduced Braginskii density equation (eq. (7)), the parallel streaming
and magnetic curvature terms are neglected, as they are smaller than the dominant E×B
drift. In the vorticity equations, the parallel terms associated with the polarisation current are
neglected and, in the divertor region, the interchange drive is also discarded. The large aspect
ratio approximation is used, allowing us to drop the normalised magnetic field strength B
that appears in [37].

By balancing the divergence of J‖ with the resistive term in Ohm’s law J‖ =−∇‖φ/ν in the
electron velocity equation (8) in the upstream region, we approximate

∇‖ J‖,1 = φ1 −φ2

νL2
1

(32)

where L1 is length of the magnetic field line from the equatorial midplane to the entrance of
the divertor region (normalised to R0). In the divertor region, a closure for the parallel current
can be obtained by integrating ∇‖ J‖ along the parallel direction from the interface with the
upstream region to the sheath entrance, i.e.∫ sh

2
∇‖ J‖,2 dl = J‖

∣∣∣sh

2
=−φ1 −φ2

νL1
+ n2cs

Te
(φ2 −φ f ) (33)

where the sheath current J‖ = ncs
(
1−exp

(
λ−φ/Te

))
is linearised aroundφ∼φ f =λTe /e. By

applying the current closures and evaluating the curvature terms at the outboard midplane
(using eq. (16)), the two-region model becomes:(

∂

∂t
+ R0

ρs0
vE ,1 ·∇

)
∇2
⊥φ1 =σ1

φ1 −φ2

n1
− β

n1

1

r

∂n1

∂θ
(34)(

∂

∂t
+ R0

ρs0
vE ,1 ·∇

)
n1 = 0 (35)(

∂

∂t
+ R0

ρs0
vE ,2 ·∇

)
∇2
⊥φ2 =−σ2

φ1 −φ2

n2
+α(φ2 −φ f ) (36)(

∂

∂t
+ R0

ρs0
vE ,2 ·∇

)
n2 = 0 (37)

having defined

σ1 = 1

νL2
1

, σ2 = 1

νL1L2
, β= 2ρ2

s , α= 1

ρsL2
(38)

with L2 in the magnetic field line length from X-point to wall (in R0 units). In addition, in
Eqs. (34)-(37), the Poisson brackets terms are rewritten as advective terms due to the E×B
velocity vE , for example

[φ,ω] = b ·∇φ×∇ω= vE ·∇ω (39)
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Figure 9: Blob cut along the vertical direction, y , showing potential and density wavelike
profiles as expressed in Eqs. (40)-(41) and their relation to the blob density peak npeak and
the density background value nbg . We also show the link between wavenumber k1 and the
half width ay taken at the half maximum location (corresponding to n = n0), i.e. k1 =π/(2ay ).

where vE is adimensionalised over cs0 and ∇ over ρs0.
In order to make analytical progress in the analysis of the blob velocity, we linearise the

two-region model. We indicate the radial ψ and binormal χ directions (eχ = b× eψ) with x
and y , respectively (they are normalised to ρs0 units) and Fourier decompose φ1,2 and n1,2

along the y direction, allowing for different wavenumbers in the two regions, i.e.

φ1 = δφ1(x)e−iωt+i k1 y , n1 = n0,1(x)+δn1(x)e−iωt+i k1 y (40)

φ2 = δφ2(x)e−iωt+i k2 y , n2 = n0,2(x)+δn2(x)e−iωt+i k2 y (41)

The background density is given by nbg = n0 −δn and the peak blob density by npeak =
n0 +δn (see Fig. 9). We then approximate ∇2

⊥δφ1 ' −k2
1δφ1 (assuming the blob electric po-

tential to vary along the x direction on longer scales than along y , consistently with the phys-
ical picture of a dipole generating in y), and we work in the E×B frame of reference, so that
the background equilibrium potentials φ0,1 and φ0,2 vanish (assuming they are constant and
equal to each other). The linearized two-region model obtained is the following:

iωk2
1δφ1 = σ1

n0,1

(
δφ1 −δφ2

)− iβk1
δn1

n0,1
(42)

−iωδn1 −ρ−1
∗ i k1δφ1

∂n1

∂x
= 0 (43)

iωk2
2δφ2 = σ2

n0,2

(
δφ2 −δφ1

)+αδφ2 (44)

−iωδn2 −ρ−1
∗ i k2δφ2

∂n2

∂x
= 0 (45)
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where we made use of Eqs. (39) to write vE , j ·∇ ≈ −i k jδφ j∂x ( j = 1 and 2). eq. (43) allows us
to express δn1 as a function of δφ1, that is

δn1 =− 1

ω
ρ−1
∗ k1

∂n1

∂x
δφ1 (46)

Note that the background density can vary in the radial direction, n0, j = n0, j (x) in Eqs. (40)-
(41). In the case of uniform background ∂x n j = ∂xδn j = δn j /ax , with ax half of the radial
blob size. eq. (46) can be substituted in eq. (42) to obtain:

ω2δφ1 =−i
σ1

n0,1k2
1

ω
(
δφ1 −δφ2

)+ β

ρ∗
1

n0,1

∂n1

∂x
δφ1 (47)

Introducing the characteristic frequencies ωσ, j =σ j /(n0, j k2
1) and γ2

mhd =−βρ∗∂x n1/n0,1, this
can be written as

ω2δφ1 =−iωσ,1ω
(
δφ1 −δφ2

)−γ2
mhdδφ1 (48)

and, using the same notation, eq. (44) becomes

ωδφ2 = iωσ,2
k2

1

k2
2

(
δφ1 −δφ2

)− iωα,2δφ2 (49)

where ωα,2 =α/k2
2 . From Eqs. (48) and (49), the following dispersion relation is derived:

ω2 +γ2
mhd +

(iωσ,1ω)(ω+ iωα,2)

ω+ iωσ,2k2
1/k2

2 + iωα,2
= 0 (50)

Since we can approximate k2 = k1/εχ, with εχ inversely proportional to the flux tube fanning,
eq. (50) becomes

ω2 +γ2
mhd +

(iωσ,1ω)(ω+ iε2
χωα,1)

ω+ iε2
χωσ,2 + iε2

χωα,1
= 0 (51)

In table 1 we compare the characteristic frequencies, γmhd,ωσ, j and ωα, j , with the ones
in Myra et al. [37], in physical units. For an easier comparison we express our results also
in physical units. We note that with the hypothesis of L̃1 = L̃2 and ñ1 = ñ2, our frequen-
cies expressions in physical units reduce to the large aspect ratio limit of the ones derived in
Ref. [37]. For ωσ, we use the relation ν= e2n0R0/(miσ‖cs0).

Dividing eq. (51) by γ2
mhd, we obtain

1+ ω̂2 +
i ω̂Θ(ω̂+ iε2

χΘ)

Λ(ω̂+ iε2
χΘ)+ iε2

χ
ωσ,2

ωσ,1
Θ

= 0 (52)

where the normalised frequency ω̂ = ω/γmhd is introduced, as well as the parameters that
mostly affect the blob motion, i.e. Θ=ωα,1/γmhd and Λ=ωα,1/ωσ,1. The Θ and Λ parameters
describe, respectively, the importance of the sheath resistivity with respect to the interchange
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Our model Our Model Myra et al. [37]
(dimensionless units) (physical units) (physical units)

γ2
mhd

−2ρ2
s

R0
ρs0

1
n0,1

∂n1
∂x −2

Ω2
0ρ̃

2
s

R0

1
ñ0,1

∂ñ1
∂x̃ −2 Ω̃

2ρ̃2
s

R̃
∂x̃ lnn1

ωσ, j

(
νL1L j n0, j k2

1

)−1 Ω2
0miσ‖

e2L̃1L̃ j ñ0, j k̃2
1

Ω̃2miσ‖
e2L̃2

‖ñ1k̃2
1

ωα, j

(
ρsL2k2

j

)−1
Ω0

ρ̃s L̃2k̃2
j

2Ω̃
ρ̃s L̃‖k̃2

j

Table 1: Comparison of the characteristic frequencies of the two-region model as derived in
the present work and as derived by Myra et al. [37]. In the first column the dimensionless
frequencies are written in GBS dimensionless units, the second column translates them in
physical units and, finally, the third column reproduces the expressions from the referenced
article. The physical expression ωσ, j are evaluated imposing ν = e2n0R0/(miσ‖cs0), with σ‖
parallel conductivity.
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drive and with respect to the plasma resistivity. Let us estimate the values of Λ and Θ as
functions the blob properties

Λ= n1α

σ1
= ωα,1

ωσ,1
= νn1

L2
1

L2ρs
(53)

Θ= ωα,1

γmhd

=
 k−4

1 ax

2ρ4
s L2

2
∆x n1
n0,1

ρ−1∗

 1
2

fig 9=

 (2ay /π)
4
5 a

1
5
x(

2ρ4
s L2

2
∆x n1
n0,1

ρ−1∗
) 1

5


5
2

=
( ab

a∗
) 5

2 = â
5
2 (54)

Here ∆x n1 is an estimate of the variation of the blob density in x, such that ∂x n1 can be
approximated with ∆x n1/ax , where ax represents the blob radius in the radial direction. In
the general case of background density varying in x over the blob extension, ∆x n1 6= δn1 and
ax , is half of the radial extension of the entire perturbation above background. In addition,
ab = (2ay /π)4/5a1/5

x is used to estimate of the blob size, while a∗ is the reference size, which
is given by the balance between the curvature drive β and the sheath current α (defined in
eq. (38)):

a∗ =
(
2ρ4

s L2
2
∆x n1

n0,1
ρ−1
∗

) 1
5 =

(
β

α2

∆x n1

n0,1
ρ−1
∗

) 1
5

(55)

We now derive an analytical prediction for the blob radial velocity, as a function of the
normalised blob size â (or Θ) and the collisionality Λ. As a first step, we express the radial
velocity vx as a function of the frequency ω. Since the radial blob motion is due to the E×B
drift, using the linearised continuity equation (43), one can write:

vx = vE = Im(ω)
ρs0

R0

δn1

∆x n1
ax (56)

as ∂x n1 = ∆x n1/ax , and vE = −i k1δφ1. The reference velocity v∗ is chosen such that the
normalised velocity, v̂ = vx /v∗, reads

v̂ = Im(ω̂)â1/2 (57)

By using equations (56) and (57) the reference velocity reads:

v∗ = vx

Im(ω̂)â−1/2
= γmhd

ρs0

R0

δn1

∆x n1
ax â−1/2 = ρs

[
8

δn5
1

∆x n2
1n3

0,1

(
πax

2ay

)2

ρ2
s L2ρ

2
∗

] 1
5

(58)

We note that the chosen reference velocity can be interpreted as the radial velocity of a blob
of size â = 1, when the Resistive Balooning is the dominant instability, for which the drive in
region 1 is balanced by the inertia in the same region (i.e. the first and last terms in eq. (48))
and ωRB = iγmhd.

In the high collisionality caseΛÀ 1, of interest in the present paper, one can incur either
in the RB, if Λ À Θ, or in the RX regime, if Λ ¿ Θ. Since Λ À 1, then ωα À ωσ, and the
linearised vorticity equation in region 2 (see eq. (49)) reduces to

ω' iωσ,2
δφ1

δφ2
− iωα,2 (59)
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Our model Our Model Myra et al. [37]
(dimensionless units) (physical units) (physical units)

Λ νn1
L2

1
L2ρs

νe/i
1 L̃2

1

ρ̃sΩ0,e L̃2

νe/i
1 L̃‖
ρ̃sΩ̃e

ab

(
2ay

π

) 4
5

a
1
5
x

(
2ãy

π

) 4
5

ã
1
5
x ãb

a∗
(
2ρ4

s L2
2
∆x n1
n0,1

R0
ρs0

) 1
5

ρ̃s

[
2L̃2

2
ρ̃s R0

∆x ñ1
ñ0,1

] 1
5

ρ̃s

[
L̃2
‖

ρ̃s R̃

] 1
5

v∗ ρs

[
8C (n1)ρ2

s L2
ρ2

s0

R2
0

] 1
5

c̃s

(
8C (n1) ρ̃

2
s L̃2

R3
0

) 1
5

c̃s

(
ρ̃2

s L̃‖
R̃3

) 1
5

Table 2: Comparison of main blob parameters expression as derived here and as reported in
the reference article [37]. Columns 1 and 2 contain the same expressions in GBS units and
in physical units respectively. Myra’s expression in physical units are reported in the third
column. In v∗, C (n) = (δn5

1/∆x n2
1n3

0,1)(πax /(2ay ))2.
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Sinceωσ,2 is small relatively toωα,2, either the parallel current term iωσ,2δφ1/δφ2 drops com-
pletely or, alternatively δφ1 À δφ2. In the first case the two regions are completely discon-
nected and the perturbation does not extend to region 2, therefore δφ2 ∼ 0 and, in region 1,
the inertia balances the drive (RB regime), from eq. (48):

ω2δφ1 =−γ2
mhdδφ1, (60)

this leads to ω̂RB = i and v̂RB = â
1
2 [43] [44]. On the other hand, if δφ1 À δφ2 (RX regime), in

region 1

ω2 =−iωσ,1ω−γ2
mhd (61)

i.e., the parallel current balances the interchange drive:

ω̂RX = i
γmhd

ωσ,1
= i

Λ

Θ
, (62)

and v̂RX = Λâ−2. The transition threshold between the two regimes is at Θ = Λ, as it can be
observed in eq. (61):

ω̂2 + i
Θ

Λ
ω̂+1 = 0 (63)

If Λ > Θ (RB regime) first and third term balance, alternatively, if Λ < Θ the second and the
third term balance (RX regime), and the first term drops since |ω̂2| = (Λ/Θ)2 ¿ 1. The same
result for these two regimes can be obtained more formally, but less intuitively, by taking the
limit of the dispersion relation in eq. (52) for high values ofΛ and obtaining directly the above
eq. (63).
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