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A TWO FIELD ITERATED ASYMPTOTIC-PRESERVING METHOD1

FOR HIGHLY ANISOTROPIC ELLIPTIC EQUATIONS2

FABRICE DELUZET ∗ AND JACEK NARSKI∗3

Abstract. A new two field iterated Asymptotic-Preserving method is introduced for the numeri-4
cal resolution of strongly anisotropic elliptic equations. This method does not rely on any integration5
of the field defining the anisotropy. It rather harnesses an auxiliary variable removing any stiffness6
from the equation. Compared to precedent realizations using the same approach, the iterated method7
allows for the resolution of each field independently within an iterative process to converge the two8
unknowns. This brings advantages in the computational efficiency of the method for large meshes, a9
better scaling of the matrices condition number with respect to the mesh refinement as well as the10
ability to address complex anisotropy topology including closed field lines.11
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1. Introduction. The present paper is aimed at introducing a new Asymptotic-14

Preserving scheme for the resolution of singular perturbation problems stemming15

from strongly anisotropic elliptic equations. This type of equations are representative16

of plasma physics evolution under large magnetic fields such as Tokamak plasmas17

[8, 9]. Here the focus is made on a simplified model problem containing the main18

difficulty characterizing these equations but without all the complexity of the physical19

background. This simplified context allows the construction of analytic solutions20

which are used to assess the effectiveness of the numerical method introduced herein.21

Let b denote the vector field providing the direction of the magnetic field, b verifying22

|b| = 1, the model problem writes23 
−∇ · (Aε∇uε) = fε in Ω,

n · Aε∇uε = 0 on ΓN ,

uε = 0 on ΓD ,

(1)24

25

where n is the outward normal to the domain, ΓN ∪ ΓD the domain boundary, with26

b · n = 0 on ΓD and b · n 6= 0 on ΓN . The anisotropy of the problem is defined by the27

diffusion matrix Aε related to the vector field b by two positive functions A‖ and A⊥28

with29

Aε =
1

ε
A‖b⊗ b+ (Id− b⊗ b)A⊥(Id− b⊗ b) .(2)30

31

In this equation Id is the identity matrix, the tensor product being denoted ⊗. The32

parameter ε−1 defines the strength of the anisotropy.33

The difficulty addressed in this paper is related to the singular nature of the34

problem. Indeed in the limit of infinite anisotropy strength (ε → 0) the system35

(1) is degenerate. Indeed, the differential operator in the elliptic equation reduces36

to the dominant operator (the derivatives carried by ε−1 in (1)) which is supplied37

with Neumann like boundary conditions. This degenerate system admits an infinite38

amount of solutions, any function with no gradient along b being in the kernel of the39

dominant operator.40
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The derivation of efficient numerical methods for the approximation of this class41

of problems is a difficult task. The straight discretization of (1) gives rise to sys-42

tem matrices with condition number blowing up with the increase of the anisotropy43

strength. This is outlined in precedent works (see [10] for numerical investigations44

or [15] and [22] for an analysis). Therefore these approaches are limited to reduced45

anisotropy strength.46

A way to circumvent this difficulty is to develop Asymptotic-Preserving methods47

as introduced in [14] for a different context. Actually a well posed system can be48

derived to compute uniquely the solution in the limit of infinite parallel diffusion. The49

aim of such method is to guarantee that the discrete system is consistent with this50

well posed problem for vanishing ε rather than with the degenerate one. This ensures51

that the condition number of the system matrix remains bounded independently of52

the anisotropy strength.53

In precedent works, different AP schemes have been derived for this class of prob-54

lems. The first iterations were devoted to anisotropy directions aligned with one55

coordinate [10, 5]. This requirement has been released in [11] and extended to closed56

field lines in [16]. In all these works the problem is reformulated into a two field prob-57

lem based on a decomposition of the solution into a microscopic and a macroscopic58

component. This reformulated two field system offers the advantage of embedding the59

limit problem. Hence, the limit ε→ 0 is a regular limit in this set of equations. How-60

ever the decomposition of the solution is not unique and different numerical methods61

can be derived according to the choices implemented in this reformulated system.62

The present work aims at exploring further the possibilities offered by a different63

decomposition. Note that the method developed herein does not rely on any geomet-64

rical procedure, requiring an integration along the b-field lines as proposed by other65

authors [6, 19].66

The main goal of the present work is to correct some of the weaknesses of the67

precedent realizations. The first one is related to the structure of the discrete system68

issued from the discretization of the reformulated problem. So far, this system strongly69

couples the equations providing both components and is therefore solved at once. We70

propose a different method referred to as “two field iterated Asymptotic-Preserving”71

method which offers the ability to solve each component independently, in an itera-72

tive process. The system solved for each component is the same mildly anisotropic73

problem parameterized by a numerical parameter ε0 � ε with different source term74

for every component. This gains an improved efficiency in terms of computational75

resources compared to the direct resolution of the two field system. A second advan-76

tage of this new method is related to the conditioning of the system matrix. The77

linear systems issued from precedent AP methods [11, 15] have a condition number78

scaling as 1/h4, h denoting the typical mesh size. The two field iterated method intro-79

duced herein requires only the resolution of linear systems with a condition number80

scaling as 1/(ε0h
2). An additional advantage is the ability to carry out numerical81

approximations with closed field lines. This is a difficulty that can not be addressed82

by the Micro-Marco AP scheme [11]. Indeed this numerical method requires that all83

the field lines cross the domain boundary. It should be pointed out that a solution84

has been proposed in [16] in the frame of the “stabilized” Micro-Macro scheme. It85

consists in introducing a stabilization operator small enough not to deteriorate the86

precision of the numerical method. The main difficulty with this approach lies in the87

choice of the stabilization operator scaling. Indeed, it should be kept large enough to88

preserve a good conditioning of the system matrix but small enough to be comparable89

to the truncation error of the discretizations. This prevents from using the stabilized90
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method with high order methods. The two field iterated method is free from these91

weaknesses. We also show that, the parameter ε0 can be chosen in a wide range of92

values preventing the so-called locking effect [4] and securing a fast convergence of the93

iterations as well as a good conditioning of the linear systems. The numerical method94

is also free from the perpendicular dynamic pollution by the parallel one, reported by95

other authors in very similar frameworks [12, 13, 20, 21].96

The outlines of the paper are the following. The problem at hand in the present97

work is stated in Section 2 with highlights on the singular nature of the limit ε→ 0.98

The two field iterated AP method is then introduced and the convergence of the it-99

erative procedure is demonstrated. Finally, emphasizes are made on how this new100

method compares to precedent works. Numerical investigations are carried out in101

Section 3. Different setups are proposed to asses the effectiveness of the method.102

The locking effect is first investigated and the robustness of the method with respect103

to this classical issue is outlined. The efficiency of the two field iterated method is104

benchmarked against the Micro-Macro scheme. This demonstrates tremendous gains105

for large meshes. Two other test cases are finally proposed. The second one is a dif-106

fusion in a ring similarly to computations performed in [7, 18] but proposed here with107

anisotropy strength much more severe. The last test case is aimed at demonstrating108

the ability to carry out accurate numerical approximations in frameworks including109

closed field lines.110

2. The anisotropic problem and its asymptotic-preserving formulation.111

2.1. Introduction and notations. Let b ∈ (C∞(Ω̄))d be a smooth vector field112

in a domain Ω ⊂ Rd, with d = 2, 3 and |b(x)| = 1 for all x ∈ Ω. Let us also decompose113

the boundary Γ = ∂Ω into two parts: ΓD parallel to b and its complement ΓN :114

ΓD = {x ∈ Γ | b(x) · n = 0}, ΓN = Γ \ ΓD,(3)115116

where n is the outward normal to Ω. Let us also decompose any vector v ∈ Rd,117

gradients ∇φ, with φ(x) a scalar function, and divergence ∇ · v into a part parallel to118

the anisotropy direction and a part perpendicular to it with:119

v‖ := (v · b)b , v⊥ := (Id− b⊗ b)v , such that v = v‖ + v⊥ ,

∇‖φ := (b · ∇φ)b , ∇⊥φ := (Id− b⊗ b)∇φ , such that ∇φ = ∇‖φ+∇⊥φ ,

∇‖ · v := ∇ · v‖ , ∇⊥ · v := ∇ · v⊥ , such that ∇ · v = ∇‖ · v +∇⊥ · v ,

120

where we denoted Id the identity matrix and ⊗ the vector tensor product. The121

following notations and definitions will be helpful in the sequel.122

Definition 1. Let V and G be the functional spaces defined by123

V = {v ∈ H1(Ω) : v|ΓD
= 0} ,(4)124

G = {v ∈ V : ∇‖v = 0} .(5)125126

For any function φ ∈ V, ε0 ∈ R, ε0 > 0, A‖ ∈ C∞(Ω̄) a positive function and127

A⊥ ∈Md×d(C∞(Ω̄)) a matrix satisfying128

A0||v||2 ≤ vTA⊥v ≤ A1||v||2 , ∀v ∈ Rd(6)129130

for some positive constants A0 and A1 , we introduce the operators ∆‖, ∆⊥ and ∆ε0131
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defined as132

∆‖φ = ∇‖ ·
(
A‖∇‖φ

)
,(7a)133

∆⊥φ = ∇⊥ · (A⊥∇⊥φ) ,(7b)134

∆ε0φ = ∆‖φ+ ε0∆⊥φ ;(7c)135136

and for (u, v) ∈ V × V the associated bilinear forms137

a‖(u, v) =

∫
Ω

A‖∇‖u · ∇‖vdx ,(8a)138

a⊥(u, v) =

∫
Ω

(A⊥∇⊥u) · ∇⊥vdx .(8b)139
140

Finally the matrix Aε0 is introduced with141

(9a) Aε0 = A‖ (b⊗ b) + ε0 (Id− b⊗ b)A⊥ (Id− b⊗ b)142

and the induced norm143

||u||2ε0 = a‖(u, u) + ε0a⊥(u, u) .(9b)144145

2.2. The singular perturbation problem. The problem studied in this paper146

is the following: find uε such that147 
−1

ε
∆‖u

ε −∆⊥u
ε = f in Ω,

1
εn‖ ·

(
A‖∇‖uε

)
+ n⊥ · (A⊥∇⊥uε) = 0 on ΓN ,

uε = 0 on ΓD ,

(10)148

149

This problem is refereed to as a singular perturbation problem, because of its degen-150

eracy for vanishing ε. Indeed, setting ε to 0 in (10), the problem reduces to151 
−∆‖u

0 = 0 in Ω,

n‖ ·
(
A‖∇‖u0

)
= 0 on ΓN ,

u0 = 0 on ΓD ,

(11)152

153

which admits an infinite number of solutions as any function v that is constant in the154

direction of anisotropy (v ∈ G) solves this problem. The limit of the solution can be155

computed by multiplying (10) by a test function v ∈ G, integrating by parts over Ω156

and then let ε→ 0. This leads to the following, well posed problem: find u0 ∈ G such157

that158 ∫
Ω

(A⊥∇⊥)u0 · ∇⊥v =

∫
Ω

fv , ∀v ∈ G ,(12)159
160

which defines a weak formulation of the limit problem. The difficulty when dealing161

with the numerical approximation of (1) consists in imposing the consistency of the162

scheme with the limit problem (12) rather than the degenerate one (11) when ε→ 0.163

Standard discretizations of the problem (10) are not compliant with this property. The164

condition number of the associated system matrices are increasing with the anisotropy165
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strength ε−1. This translates that the numerical methods provide a discretization of166

the degenerate problem for vanishing ε-values. To address this issue, the philosophy167

of Asymptotic Preserving schemes relies on a discretization of a suitable reformulated168

problem. This system is equivalent to the problem (10) for ε > 0, however the limit169

problem (12) is recovered from the reformulated system when ε is set to 0.170

Another difficulty encountered when dealing with the numerical resolution of171

anisotropic problems is the so-called locking phenomenon [4]. To highlight this issue in172

the present framework, let us again consider the reduced problem (11). This problem173

states that the solution has no gradient along b for vanishing ε. If the discrete space174

does not contain functions that are constant in the direction of the anisotropy, then175

the numerical approximation of this problem does not converge to the solution of the176

problem. It is important to point out that the locking is not related to the fact that the177

reduced problem is ill posed on the continuous level but to the coarse approximation178

properties of the discrete functional space. That is the case, for example, when179

either unstructured (triangular) meshes or rectangular Cartesian grids with variable180

anisotropy directions are used with low order numerical methods. For small non zero181

values of ε, large enough to preserve a good conditioning of the matrix related to the182

discretized version of the (10), the locking phenomenon is manifested in the discrete183

solution converging to zero as ε gets smaller. This feature will be illustrated in the184

section devoted to the numerical investigations.185

2.3. A two field iterated Asymptotic-Preserving method. Let us now186

propose a two step iterative method to solve the singular perturbation problem (10).187

Let us consider ε̃0 smaller than one but big enough so that the singular perturbation188

problem for ε = ε̃0 is not yet singular nor the discretized system suffers from locking.189

Let us define ε0 = max{ε̃0, ε} so that ε0 is never smaller than ε.190

Let us first observe that the source of the numerical issues in the resolution191

of the original problem (10) is the dominant derivative, multiplied by ε−1, in the192

direction of the anisotropy. The idea behind the herein proposed scheme relies on the193

introduction of an additional variable that fulfils the following relation: ε∆‖q = ∆‖u.194

This operation allows to eliminate the stiff term from the equation, preventing by this195

means the degeneracy of the equation. The two field system becomes:196 {
−∆‖q −∆⊥u = f ,
−∆‖u = −ε∆‖q ,

(13)197
198

supplied with the boundary conditions precised in (10) for both u and q. This system199

does not have a unique solution as q is defined up to a function constant in the200

direction of the anisotropy. Let us now multiply the first equation by ε0 and add it201

to the second one to get:202

(14) −∆ε0u = ε0f + (ε0 − ε)∆‖q,203

allowing to compute u uniquely if q is known. The next step consists in decoupling204

the problems and solve the two resulting equations in an iterative manner, finding205

first an approximation to u using q computed in the previous step, then recompute q206

and repeat until convergence. This yields the following iterations207 {
−∆ε0u

n+1 = ε0f + (ε0 − ε)∆‖qn,
−∆‖q

n+1 = f + ∆⊥u
n+1.

(15)208
209

The second equation of this iterative scheme is not yet invertible. Let us now add210

the term −ε0∆⊥q
n+1 to the left hand side and subtract its equivalent for qn from the211
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left hand side. The resulting problem for qn+1 has a unique solution for given qn and212

un+1. Finally, the two field iterated method is defined in the following way:213 
−∆ε0u

n+1 = ε0f + (ε0 − ε)∆‖qn in Ω,

n · Aε0∇un+1 = −(ε0 − ε)n ·
(
A‖∇‖qn

)
on ΓN ,

un+1 = 0 on ΓD ,

(16)214


−∆ε0q

n+1 = f + ∆⊥(un+1 − ε0q
n) in Ω,

n · Aε0∇qn+1 = −n ·
(
A⊥∇⊥

(
un+1 − ε0q

n
))

on ΓN ,

qn+1 = 0 on ΓD ,

(17)215

216

where qn+1 is an auxiliary variable and un+1 the approximation to uε. In this method,217

the original strongly anisotropic elliptic problem (10) is replaced by a set of two only218

mildly anisotropic equations parameterized by ε0 � ε. Moreover, the matrix to be219

inverted in the first step (16) of the iterative method is the same as in the final step220

(17), the only difference is in the right hand side of the equation. That is to say,221

the matrix has to be factorized only once, the rest of the iterative scheme is a fast222

triangular system solve. This method does note require any discretization of the space223

G (functions constant in the direction of the anisotropy), which can be complicated224

for generic field b. To be complete, the variational formulation of the iterative scheme225

(16-17) is stated:226

Find (qn+1, un+1) ∈ V2 such that227

a‖(u
n+1, v) + ε0a⊥(un+1, v) = ε0(f, v)− (ε0 − ε)a‖(qn, v), ∀v ∈ V,(18)228

a‖(q
n+1, w) + ε0a⊥(qn+1, w) = (f, w)− a⊥(un+1 − ε0q

n, w), ∀w ∈ V.(19)229230

Let us now prove that the iterative scheme (16-17) converges and that the limit231

solution solves the original singular perturbation problem.232

Theorem 2. For any (q0, u0) ∈ V × V, the sequence (qn, un)n>0 defined by the233

iterative method (16-17) converges to a solution (q̄, ū). The component ū of the sta-234

tionary point solves uniquely the initial singular perturbation problem (10) for ε > 0235

and the limit problem (12) when ε = 0.236

To prove Theorem 2, the following lemmas and proposition are necessary.237

Lemma 3. The operator ∆ε0 is invertible on V. The eigenvalues of the operator238

∆−1
ε0 ∆‖ are real non negative and bounded by 1. The eigen functions ν0 associated to239

the null eigenvalue belong to the kernel of the operator ∆‖: ν
0 ∈ G.240

Lemma 4. The iterative method defined by Eqs. (16-17) yields the following re-241

currence242

qn+1 = AIq
n −∆−1

ε0 ∆‖∆
−1
ε0 f(20)243244

for n ≥ 1, the iteration operator AI being defined as245

AI = 1− ε

ε0
∆−1

ε0 ∆‖ −
ε0 − ε
ε0

(
∆−1

ε0 ∆‖
)2
.(21)246

247

The eigenvalues of AI , denoted `i, are real with `i ∈ [0, 1]. The eigenfunctions asso-248

ciated to the largest eigenvalue `i = 1 is in the kernel of the operator ∆‖.249

6

This manuscript is for review purposes only.



Lemma 5 (Orthogonality of qn+1 − qn with respect to w ∈ G). For any q0 ∈ V250

all functions in the sequence (qn)n≥0 issued from the iterative method (16-17) differ251

from each other only by a function orthogonal to G, the space of functions constant252

in the direction of anisotropy with respect to the H1 seminorm. That is to say, for253

any i, j ≥ 0 the difference qj − qi is orthogonal to G with respect to the H1 seminorm.254

Moreover, if ∇⊥q0 = 0 than qn is orthogonal to G with respect to the H1 seminorm255

for all n ≥ 0.256

Proposition 6. For any fixed point (ū, q̄) of the iterative method defined by257

Eqs. (16-17), the component ū is the solution of the singular perturbation problem258

(10) for ε > 0 and of the limit problem (12) for ε = 0.259

Proof of lemma 3. The operator ∆ε0 is invertible due to standard elliptic argu-260

ments. The eigensystem of the operator ∆−1
ε0 ∆‖ is defined by the problem:261

Find λi ∈ R and qi ∈ V such that262

∆−1
ε0 ∆‖qi = λiqi ,(22)263264

or equivalently265

∆‖qi = λi∆ε0qi.(23)266267

Multiplication by qi (or by q∗i , if qi is assumed to have complex values and λi ∈ C)268

and integration by parts yield269

λi =
a‖(qi, qi)

a‖(qi, qi) + ε0a⊥(qi, qi)
.(24)270

271

Clearly all eigenvalues are real and between 0 and 1.272

Proof of lemma 4. Thanks to Eq. (16) it follows that, on the one hand273

un+1 = −ε0∆−1
ε0 f − (ε0 − ε)∆−1

ε0 ∆‖q
n(25)274275

and, on the other hand276

f + ∆⊥u
n+1 =

1

ε0

(
−∆‖u

n+1 − (ε0 − ε)∆‖qn
)
.277

Plugging this identity into Eq. (17) yields,278

(26) ∆ε0q
n+1 = ∆ε0q

n +
1

ε0
∆‖u

n+1 − ε

ε0
∆‖q

n .279

After some algebra and using Eq. (25), the recurrence relation (20) between qn+1280

and qn is recovered. The eigenvalues of the iteration operator AI defined by Eq. (21)281

verify282

`i = 1− ε

ε0
λi −

ε0 − ε
ε0

λ2
i(27)283

284

where λi are the eigenvalues of the operator ∆−1
ε0 ∆‖ characterized in lemma 3. Note285

that `i is a decreasing function of λi for ε0 > ε, with `i = 1 for λi = 0 and `i = 0 for286

λi = 1.287
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Proof of lemma 5. Let us first prove that qn+1 − qn is orthogonal to the space G288

with respect to the H1 seminorm. Let us plug w ∈ G into (19) to get289

ε0a⊥(qn+1, w) = (f, w)− a⊥(un+1, w) + ε0a⊥(qn, w) , ∀w ∈ G.(28)290291

Owing to the identity a⊥(un+1, w) = (f, w) and thanks to (18) evaluated with v =292

w ∈ G, the following relation is derived293

a⊥(qn+1 − qn, w) = 0 , ∀w ∈ G,(29)294295

which finally leads to296

a‖(q
n+1 − qn, w) + a⊥(qn+1 − qn, w) = 0 , ∀w ∈ G.(30)297298

This proves that qn+1 − qn is orthogonal to G with respect to the H1 seminorm. It299

follows immediately that qn+l − qn is also orthogonal to G for any l ≥ 1 and n ≥ 0:300
301

(31) a‖(q
n+l − qn, w) + a⊥(qn+l − qn, w)302

=
n+l−1∑
i=n

(
a‖(q

i+1 − qi, w) + a⊥(qi+1 − qi, w)
)

= 0 , ∀w ∈ G.303

304

Moreover, if ∇⊥q0 = 0 than qn is orthogonal to G in the H1 seminorm.305

Proof of Proposition 6. Let (q̄, ū) be the stationary point of the iterative scheme.306

Eqs. (16) and (17) yield307

−∆‖q̄ −∆⊥ū = f(32)308

−∆‖ū− ε0∆⊥ū = −ε∆‖q̄ + ε0

(
f + ∆‖q̄

)
(33)309310

which gives311

∆‖ū = ε∆‖q̄,(34)312313

a relation that couples the parallel gradient of ū with that of q̄. Combining this again314

with (32) one obtains the initial singular perturbation problem:315

−1

ε
∆‖ū−∆⊥ū = f.(35)316

317

The boundary conditions become:318

n · ∇‖q̄ = −n · ∇⊥ū(36)319320

and321

n · Aε0∇ū = −(ε0 − ε)n · ∇‖q̄ = (ε0 − ε)n · ∇⊥ū,(37)322323

which proves that the boundary conditions for the original singular perturbation prob-324

lem are recovered for the converged solution of the iterative scheme.325

This problem admits a unique solution ū for ε 6= 0, independent on u0. If ε = 0326

then Eqs. (32) and (35) provide the following system:327 {
−∆‖q̄ −∆⊥ū = f ,
−∆‖ū = 0 .

(38)328
329

The second equation forces ū to belong to the space G of functions constant in the330

direction of anisotropy and the first equation defines the strong formulation of the331

limit problem (12) with q̄ acting as a Lagrange multiplier.332
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Proof of Theorem 2. Let us write (19) for un with n ≥ 1, subtract it from the333

equation for un+1 and choose v = un+1 − un. One obtains334
335

(39) a‖
(
un+1 − un, un+1 − un

)
+ ε0a⊥

(
un+1 − un, un+1 − un

)
=336

− (ε0 − ε)a‖
(
qn − qn−1, un+1 − un

)
337338

The Cauchy-Schwartz inequality yields339

||un+1 − un||ε0 ≤ (ε0 − ε)||∇‖(qn − qn−1)||.(40)340341

It is now sufficient to prove that the sequence (qn)n>0 converges. Thanks to Lemma 4,342

it follows343

qn+1 − qn = AI

(
qn − qn−1

)
(41)344345

for n ≥ 1, AI being the iteration operator defined by Eq. (21). The eigenvalues of AI346

are real and non negative (see lemma 4). Moreover, the largest eigenvalue is equal347

to 1 with the associated eigenfunctions belonging to G, the kernel of the operator348

∆‖. Thanks to lemma 5, in particular Eq. (29), we conclude that qn − qn−1 does not349

contain any non trivial function from G which concludes the proof.350

Remark 7 (Non uniquemess of q̄). The stationary point (q̄, ū) of the iterative351

method (16-17) is one of the solutions of the following problem: find (q, u) ∈ V2 such352

that353 {
a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = 0 , ∀w ∈ V .(42)354

355

The above system does not admit a unique solution. Indeed, if (q, u) solves this prob-356

lem, than (q + g, u) also does for any function g ∈ G. The stationary point q̄ of the357

iterative process depends on the initial value q0, however ū is unique.358

2.4. A comparison with the Micro-Macro AP-schemes. The two field iter-359

ated scheme bares some similarities with the Asymptotic Preserving scheme based on360

micro-macro decomposition (MMAPP) proposed in [11]. Indeed, the MMAP scheme361

couples Eqs. (32) and (34) but with a different choice for q and no iterative process.362

The weak formulation of the MMAP scheme writes:363

Find (q, u) ∈ V in × V such that{
a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = 0 , ∀w ∈ V in .

V in = {v ∈ V : v = 0 on Γin} ,

(43)364

365

Γin being the part of the boundary where b · n > 0. Note that, from this formulation,366

the two equations can be hardly decoupled to define an iterative process. Hence,367

the MMAP scheme is solved at once for the two fields (u, q). The uniqueness of368

q is strongly related to the assumption that all the field lines intersect the domain369

boundary, hence the definition of V in. The MMAP method is therefore restricted to370

anisotropy fields that do not contain closed lines. However, one can tackle this problem371

by introducing a stabilization operator [16, 15]) yielding the weak formulation of the372

stabilized MMAP373

Find (q, u) ∈ V2 such that{
a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = σhk(q, w) , ∀w ∈ V .(44)374

375
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where σ and k are stabilization parameters chosen in order to match the scale of the376

scheme approximation error. Precisely, k = 2 for P1-FEM and k = 3 for P2-FEM. The377

difficulty here lies in the calibration of the stabilization parameters in order not to alter378

the precision of the scheme and to preserve a moderate condition number of the system379

matrix. The conditioning of the matrix for the discrete MMAP formulation depends380

on 1/h4 and 1/(σh2+k) for the stabilized version [15]. It is therefore ε independent.381

The method here introduced is well defined for all anisotropy topologies includ-382

ing closed field lines. The matrix stemming from the discretization of the operator383

∆ε0 is indeed invertible regardless of the anisotropy direction b. Moreover, the condi-384

tion number of the two scalar systems are not only ε independent, but it also scales385

more favorably, as 1/(ε0h
2), independently of the precision of the numerical method.386

The two field iterated method may appear similar to the stabilized MMAP scheme.387

However, at convergence this new formulation is completely equivalent to the original388

set of equations with no condition on ε0. This is a crucial feature that allows to389

choose ε0 in a large range of values. Contrariwise, this choice is tightly constrained390

for the stabilization parameters and of course test case dependent. This new method391

hence permits to overcome the limitations of the stabilization methods for high order392

methods.393

3. Numerical investigations.394

3.1. Introduction. The goal of this section is to present some validation tests395

for the proposed method. We study the finite element formulation of the problem in396

different two dimensional settings, finite elements being usually a method of choice397

when dealing with elliptic problems. We consider two frameworks. The first one is398

a first order P1-FEM on unstructured triangular grids. The second one relies on a399

Cartesian rectangular grid with a second order Q2-FEM discretization.400

Three configurations are considered:401

1. A rectangular domain with open field lines and oscillating anisotropy direc-402

tions;403

2. A ring shaped domain with closed circular field lines;404

3. A rectangular domain with both open and closed lines.405

The first test is performed with both P1 (unstructured grids) and Q2 (Cartesian Mesh)406

finite elements. The second test case is carried out with P1-FEM and the last one407

with Q2-FEM.408

The iterative scheme presented herein relies on the iterative resolution of a mildly409

anisotropic problem for both u and q. The discretization of such problems by FEM410

may suffer from locking [3, 4]. We therefore propose to analyse how the locking effect411

can be circumvented thanks to the choice of the numerical method as well as the value412

of the parameter ε0. This later parameter defines the strength of the anisotropy in413

the problem solved at each step of the iterative process. It is thus a key point in414

parameterizing the efficiency of the numerical method.415

Let us first focus on the finite element discretization of the iterative scheme.416

The finite element space Vh denotes either the P1 or the Q2 elements defined on a417

discretization of the domain Ω with a mesh cell of typical size h. Let the homogeneous418

Dirichlet boundary conditions on ΓD be enforced in the definition of Vh, i.e. Vh ⊂ V.419

A discrete formulation of the scheme reads: find (q̄h, ūh) ∈ V2
h, the stationary point420
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α = 0 α = 2, m = 1 α = 2, m = 10

Fig. 1. Test problem 1: Exact solution for three sets of parameters defining the anositopry
directions.

of the sequence (qn+1
h , un+1

h ) ∈ V2
h, n ≥ 1, solution to421

{
a‖(u

n+1
h , vh) + ε0a⊥(un+1

h , vh) = ε0(f, vh)− (ε0 − ε)a‖(qnh , vh), ∀vh ∈ Vh,
a‖(q

n+1
h , wh) + ε0a⊥(qn+1

h , wh) = (f, wh)− a⊥(un+1
h − εqnh , wh), ∀wh ∈ Vh,

(45)

422
423

In all the numerical investigations conducted in the sequel, the iterative method424

(45) is initiated with q0
h = u0

h = 0. The manufactured solution method is implemented425

in order to define the different setups. An analytic anisotropy direction is defined by426

means of a vector field b. The analytic expression of the problem solution uε is used427

together with that of b to compute the source term f accordingly to428

f = −∆⊥u
ε − 1

ε
∆‖u

ε .429

This expression is introduced in the system (45) to carry out the numerical approx-430

imation (q̄h, ūh). The component ūh is thus compared against the exact analytic431

expression of the problem solution to evaluate the effectiveness of this new numerical432

method.433

3.2. Test problem 1: Open field lines with oscillating anisotropy di-434

rections. Let Ω = [0, 1]2 be the square computational domain. Let us consider the435

anisotropy direction defined by436

b =
B

|B|
, B =

(
α(2y − 1) cos(mπx) + π
παm(y2 − y) sin(mπx)

)
,(46)437

438

where m/2 is the number of oscillation periods in the computational domain and α439

its amplitude. For α = 0 this vector field is constant and aligned along the direction440

of x. When α > 0 the field oscillates in the domain. The analytic solution of the441

problem is given by442

uε = sin
(
πy + α(y2 − y) cos(mπx)

)
+ ε cos (2πx) sin (πy) ,(47)443444

Three configurations will be investigated. A constant anisotropy direction aligned445

the x-direction. This setup is defined by α = 0. An anisotropy direction slowly varying446

in the computational domain, parametrized by α = 2, m = 1. Finally an anisotropy447

direction with fast oscillations, defined by α = 2, m = 10. For these computations,448

the anisotropy ratio is set to ε = 10−15. Therefore the only variations of the problem449
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Fig. 2. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) error
as functions of the iteration number, for an anisotropy direction aligned with one coordinate (α = 0)
and different ε0-values.

solution occur along the direction defined by b. The plots displayed on Fig. 1 relate450

the solution as well as the anisotropy direction for the configurations precised above.451

For these three anisotropies, the numerical method (45) is performed on 30 it-452

erations to define the numerical approximation ūh carried out with different values453

for the parameter ε0, on eight different meshes with h ranging from 1/10 to 1/1280.454

The corresponding number of mesh vertices varies from 153 for the coarsest mesh to455

approximately 2 · 106 for the most refined mesh.456

P1-FEM, Unstructured triangular meshes.. The relative L2 and H1 errors are457

displayed on Figs. 2, 3 and 4 for the aligned, slowly and rapidly varying anisotropy458

directions defined above.459

For the aligned anisotropy direction (α = 0, see Fig. 2) and ε0 = 10−1 the460

convergence of the iterative method in the L2 norm is obtained after at most five461

iterations (for the finest mesh) and after at most three iterations in the H1-norm.462

For ε0 = 10−2 the convergence is even faster with two iterations being sufficient for463

the H1-norm and three for the L2-norm. The results are however less precise than464

for ε0 = 10−1. Moreover, for the coarsest meshes the divergence of the iterations is465
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Fig. 3. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) error
as functions of the itteration number, for a slowly varying anisotropy direction (α = 2, m = 1) and
for different ε0-values.

observed. This is due to the locking phenomena, as explained in the next lines. This466

effect is even more visible with ε0 = 10−3.467

For the slowly variable direction of anisotropy (α = 2, m = 1, Fig. 3) the conver-468

gence is slow for ε0 = 10−1. The stationary point can not be reached in 30 iterations469

in the L2-norm for the most refined meshes. For intermediate and coarse meshes the470

convergence is however obtained in less than 10 iterations. The locking is causing slow471

divergence of the numerical solution for the coarsest mesh (h = 10−1). For ε0 = 10−2472

the stationary point is reached in at most 3 iterations for both norms. Some locking473

effects are manifested in small augmentation of the error in course of the iterations.474

This is observed on the L2 norm evolution for the coarsest mesh and for all meshes475

using the H1 norm. For ε0 = 10−3 the stationary point is obtained in just two iter-476

ations for both norms. The precision is however worse compared to ε0 = 10−2 and477

the locking causes the relative error to blow up for two coarsest meshes. For these478

computations, the norm of the numerical solution is converging towards zero. This479

feature characterizes the locking.480

In the most demanding test case with rapidly oscillating anisotropy direction481
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Fig. 4. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) error
as functions of the iteration number, for a rapidly varying anisotropy direction (α = 2, m = 10) for
different ε0-values.

(α = 2, m = 10, Figure 4) the optimal value of ε0 is again 10−2: the stationary point482

is thus obtained after two iterations in both norms. The same convergence rate is483

obtained for ε0 = 10−3 but the numerical error is approximately ten times bigger484

with this setting. The locking allows accurate computations only on the finest meshes485

for this test case. For ε0 = 10−1 the convergence is very slow and the stationary point486

is not obtained for fine meshes in 30 iterations.487

Q2-FEM, Cartesian meshes.. The results related to these computations are gath-488

ered on Figs. 5–10. The use of Cartesian grids eliminates the locking phenomenon489

for the anisotropy aligned with one coordinate (see Figs 5 and 6 related to α = 0).490

The stationary point is reached in 8 iterations for ε0 = 10−1, in 4 for ε0 = 10−2, 3491

for ε0 = 10−3 and 2 for ε0 = 10−4. The precision remains the same whatever the492

values of ε0 for the H1 norm (see Fig. 6). An increase of the L2 error norm is ob-493

served for the most refined meshes and the smallest ε0-value (10−4). One can indeed494

observe on Fig. 5 that the L2 error increases when the number of cells ranges from495

320 × 320 (h = 0.003125) to 640 × 640 (h = 0.0015625) and then to 1280 × 1280496

(h = 0.00078125). Similar conclusions hold true for the computations carried out on497
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Fig. 5. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error as a function of the
iteration number for an anisotropy direction aligned with one coordinate (α = 0) and for different
ε0-values.

the two most refined meshes with ε0 = 10−3.498

This loss of precision is explained by the conditioning of the matrix (stemming499

from the discretization of the operator ∆ε0), which is proportional to 1/ε0h
2. For the500

most refined meshes and the smallest values of ε0, the condition number of this matrix501

(computed by MUMPS [1, 2]) is estimated as large as 109. Therefore computing a502

numerical approximation with a precision larger than 10−6 is out of reach. The503

condition number estimated for ε0 = 10−1 is of the order of 106 which accounts for504

the improved precision (10−9) obtained with this value of the parameter.505

For the varying anisotropy directions the second order finite elements help to506

prevent the locking. This is a feature documented in the literature [3, 4]. For the507

slowly varying case (Figs 7 and 8) the numerical solution converges even for the coarse508

meshes except for the smallest value ε0 = 10−4. However, even in this case, no blow509

up of the error is observed. For ε0 = 10−1 the stationary point is reached in up to 12510

iterations for mesh sizes smaller than or equal to 80×80 (h ≤ 0.025) for the L2 norm.511

For finer meshes the algorithm does not converge within 30 iterations in the L2 norm512

(Fig. 7). In the H1 norm (see Fig. 8) the convergence is obtained for mesh sizes smaller513

than or equal to 320×320 (h ≤ 0.003125). The best performance for intermediate and514

refined meshes is obtained for ε0-values in the range [10−4, 10−3]. The convergence515

is thus obtained after three iterations only. For coarse meshes however some locking516

effects are still observed with the deterioration of the precision, more apparent for the517

smallest ε0-values.518
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Fig. 6. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error as a function of the
iteration number for an anisotropy direction aligned with one coordinate (α = 0) and for different
ε0-values.

When the anisotropy direction is varying rapidly in the computational domain519

(Figures 9 and 10), the locking is causing the blow up of the numerical error for coarse520

meshes. Here also, the norm of the numerical approximation is observed to converge521

towards zero. For intermediate and refined meshes, the convergence is observed for522

all values of ε0. The convergence rate increases with the vanishing of ε0. The best523

numerical precision is obtained for ε0 = 10−3.524

Partial conclusions and comments.. This first test case is intended to asses the525

importance of the parameter ε0 and the robustness of the method with respect to the526

choice of its value.527

The convergence rate of the iterative method increases with the diminishing of528

ε0. However the values of this parameter have to be kept large enough to prevent529

the locking as well as the deterioration of the matrix condition number. The locking530

alters the convergence of the method for the coarsest meshes. The deterioration of the531

matrix conditioning is more detrimental for the most refined meshes. It prevents to532

obtain the optimal precision from the numerical method. The comparisons of the first533

and second order methods demonstrate that the locking effect can be avoided thanks534

to the use of high order discretizations. Indeed the locking is almost removed when535

Q2 finite element discretizations are used. It only remains for the coarsest meshes.536

However this weakness should be put into perspective. Indeed coarse meshes do not537

contain enough points to resolve accurately the variations of the anisotropy. Hence538

any numerical method can hardly yield acceptable results. With high order methods539
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Fig. 7. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error for a slowly varying
anisotropy direction (α = 2, m = 1) and different ε0-values.

(Q2-FEM), the iterative method introduced in this paper is robust with respect to540

the choice of the parameter ε0. The convergence is secured for the values of this541

parameter between 10−3 and 10−2 for all the computations carried out in the frame542

of this first test case. With ε0 = 10−4 the convergence is obtained in less than 10543

iterations for all the investigations conducted. To be complete, it should be pointed544

out that the maximum performance of the method may be obtained with test case545

specific value (2 to 5 iterations).546

Note that the results reported in the precedent figures are related to computations547

carrying out anisotropy strength as large as 1015. No significant differences have been548

observed over the range of ε-values in [10−20, 10−6] regarding the method precision,549

convergence properties and optimal choice of the parameter ε0.550

Comparisons with MMAP scheme.. The MMAP scheme, introduced in [11], con-551

sists in solving the two fields (u, q) problem (42). In this system, the uniqueness of552

the auxiliary variable q is provided by demanding additionally that q = 0 on the part553

of the boundary where the field lines enter the computational domain (b · n > 0).554

A comparison of the precision of the two field iterative method and the MMAP555

method is reported in Tab. 1. Note that the conditioning of the matrix associated with556

the MMAP scheme is proportional to 1/h4. It is estimated as large as 1012 for the557

aligned (α = 0) and rapidly varying anisotropy directions (α = 2,m = 10) and 1010558

for slowly varying directions (α = 2,m = 1) for the most refined mesh considered559

so far (1280 × 1280, h = 0.00078125). The large matrix conditioning deteriorates560

the precision of the method for the aligned case for the finest mesh and the optimal561
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Fig. 8. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error for a slowly varying
anisotropy direction (α = 2, m = 1) and different ε0-values.

α = 0 α = 2, m = 1 α = 2, m = 10

method L2 # H1 # L2 # H1 # L2 # H1 #
MMAP 9.68 10−8 8.52 10−5 1.47 10−9 1.46 10−6 4.31 10−7 1.36 10−4

ε0 = 10−1 6.85 10−10 8 8.98 10−7 6 4.11 10−6 - 2.86 10−5 - 1.72 10−3 - 4.84 10−3 -
ε0 = 10−2 9.36 10−10 5 8.98 10−7 3 6.28 10−8 - 1.74 10−6 - 1.19 10−5 - 1.52 10−4 -
ε0 = 10−3 7.11 10−9 3 8.98 10−7 3 1.23 10−9 12 1.42 10−6 4 1.81 10−6 5 1.36 10−4 3
ε0 = 10−4 1.23 10−7 2 9.07 10−7 2 1.74 10−9 3 1.43 10−6 2 1.78 10−5 2 1.38 10−4 2

Table 1
Test Problem 1: Comparisons of the precision of the MMAP and the iterative method for a Q2-

FEM discretization on a mesh with 1280 × 1280 points (h = 0.00078125). The number of iterations
required to obtain the smallest relative error in L2 and H1 norms is reported for the different ε0-
values parameterizing the iterative method (“-” meaning that the method has not converged in 30
iterations).

convergence rate is lost. That explains the fact that the iterative scheme is 100 more562

precise than the MMAP method in this configuration. For less refined meshes, the563

MMAP scheme and the iterative scheme with ε0 ∼ 10−3 yield similar precision.564

The numerical efficiency of the two methods are now compared. It may seem at565

first glance that the iterative scheme is more time consuming that the MMAP method566

as it requires several resolutions of a linear system. However, the system related to567

the iterative scheme is twice as small and hence its resolution is faster and requires568

less memory in comparison to the MMAP scheme. Moreover the iteration number569

to convergence is small when ε0 is close to the optimal range of values. In Tab. 2 a570

comparison of the computational time for both methods is proposed. The same sparse571
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Fig. 9. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error for a rapidly varying
anisotropy direction (α = 2, m = 10) and different ε0-values.

direct solver, namely the MUMPS package [1, 2] is used to implement the LU matrix572

factorization and solve the linear systems involved in any method. These results show573

that the MMAP method is approximately twice as fast on coarse and intermediate574

meshes. On the 640×640 mesh it is the iterative scheme that performs better. Finally,575

for the finest mesh (1280 × 1280), the difference is clearly in favour of the iterative576

scheme which turns to be seven times faster. The computational cost required for the577

resolution of a linear system twice as large explains the poor efficiency of the MMAP578

compared to the iterative method for the largest mesh. Solving few times a linear579

system with a small size is more efficient than solving once a large linear system.580

3.3. Test problem 2 — diffusion in a ring. This test case reproduces the581

framework proposed in [7] and [17] investigating anisotropic diffusion problems in a582

Torus. It consists in simulating the diffusion in a circular domain, a context repre-583

sentative of magetized plasma simulation for Tokamaks. The computational domain584

is defined by Ω = {(x, y) ∈ R2|0.25 ≤ x2 + y2 ≤ 1} and the anisotropy direction is585

given by the field b provided in polar coordinates (r, θ):586

b =

(
cos θ
− sin θ

)
.(48)587

588

The analytic solution of the original problem, as represented on Fig. 11, is given by589

uε = − sin(2πr) + ε sin(2πr) cos θ .(49)590591
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Fig. 10. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error for a rapidly varying
anisotropy direction (α = 2, m = 10) and different ε0-values.

Mesh
iterative scheme

MMAP
total per iter. iter. to conv. time to conv.

102 0.181s 0.006s 2 0.012s 0.009s
202 0.477s 0.016s 2 0.032s 0.018s
402 1.992s 0.066s 2 0.132s 0.063s
802 8.051s 0.268s 2 0.536s 0.282s
1602 36.07s 1.202s 2 2.404s 1.121s
3202 144s 4.8s 2 9.6s 5.5s
6402 9m42s 19.4s 3 58.2s 1m42s
12802 44m16s 1m28s 5 7m20s 52m28s

Table 2
Comparison of the runtime of the iterative scheme (total runtime for 30 iterations, time per it-

eration, number of iterations for convergence and time to convergence) with the runtime obtained for
the MMAP scheme for Q2-FEM on different mesh. Runtimes obtained on the MacBook Pro laptop
equipped with a 3.1 GHz Intel Core i7 dual core processor, 16GB of RAM and a Solid State Drive.
The code is written in fortran compiled with gfortran-5.4.0 with -Ofast -march=corei7 optimization
flags.

These simulations are only performed on unstructured meshes (triangles and P1-592

FEM) with ε = 10−15 defining a severe anisotropy. It is important to notice, that593

standard discretization of this problem, although much more elaborated than the one594

implemented herein (see for instance [7, 17, 18]) cannot handle anisotropy strengthes595

ε−1 larger than ∼ 104, this ratio being limited to 10−2 in [7, 18]. It is important also596
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Fig. 11. Exact solution for the test problem 2.

to point out that the elliptic problem addressed in the present paper is much more597

demanding, from the numerical point of view, than the diffusion problem considered598

by other authors. Indeed the discretization of the time derivative of the solution intro-599

duces a mass matrix offsetting partially the anisotropy. This effect is more significant600

than the time step values are small. This artefact is not present in the system at601

hand in the present work, addressing the stationary problem. This guarantees that602

the numerical parameters can be set accordingly to the physics of interest rather than603

to prevent the deterioration of the matrix conditioning. The convergence results of604

the two field iterated method are presented in Fig. 12.605

The scheme behaves well for this test case too. The conclusions drawn from the606

preceding investigations hold true for this setup. The solution converges rapidly to607

the stationary point for ε0 = 10−2 and ε0 = 10−3. For ε0 = 10−1 the convergence is608

very slow and the stationary point is atteined for the coarsest meshes only. The best609

precission is obtained for ε0 = 10−2.610

3.4. Test problem 3 — magnetic islands. The last test case is also related to611

the physics describing hot plasmas in Tokamaks. The main difficulty of this test case612

is the presence of two so-called magnetic islands. They consist of closed magnetic field613

lines in some specific regions of the domain. Some of the magnetic field lines are open614

and reconnect the boundaries of the domain, the other being closed. In the sequel, the615

typical size of these structures will be parametrized by a (in our simulations a = 0.05).616

The computational domain is square Ω = [0, 1]2. If B represents the local magnetic617

field, b = B/|B| is the vector field defining the direction of anisotropy with618

b =
B

|B|
, B =

(
− cos(πy)

4a sin(4πx)

)
.(50)619

620

The the analytical solution is either given by621

uε = sin (sin(πy)− a cos(4πx)) + ε cos(2πx) sin(2πy),(51)622623

or624

uε = sin (10 (sin(πy)− a cos(4πx))) + ε cos(2πx) sin(10πy) .(52)625626
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Fig. 12. Test problem 2: Relative L2 (left) and H1 (right) error norms for different values of
ε0 and a P1-FEM on different mesh resolutions.

The first solution is mildly oscillating in the domain and while the second defines a627

highly oscillatory solution, which is challenging for a numerical method to capture.628

The analytical solutions as well as the anisotropy direction are presented on Fig. 13.629

The source term of the problem is analytically computed according to the pre-630

ceding definitions of the anisotropy direction and solutions, in order to implement the631

manufactured solution technique.632

The numerical convergence of the iterative scheme for intermediate and refined633

meshes and values of ε0 equal to 10−3 and 10−4 is presented in Figs. 14 and 15. With634

the largest value of ε0 the convergence is very slow and for coarse meshes the locking635

prevents the convergence. Even on fine meshes the scheme has not converged in 30636

iterations in both slowly and rapidly oscilating variants. We did not observe any637

significant difference in the convergence speed for both setups. For the smallest value638

of ε0 the convergence is observed except for the two coarsest meshes.639

4. Conclusions. In this paper a new Asymptotic-Preserving scheme is intro-640

duced for the efficient resolution of anisotropic elliptic equations. This method con-641

sists in iterating the resolution of two one field problems which require the solution642
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Fig. 13. Test problem 3: Exact solutions as defined by Eqs. (51) (left) and (52) (right) and
anisotropy direction.
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Fig. 14. Test problem 3: Relative L2 (left) and H1 (right) errors as functions of the number
of iterations for the slowly oscillating solution carried out with a Q2-FEM on several meshes and
different values of ε0.

of the same linear system. This system is issued from the discretization of a mildly643

anisotropic problem, parameterized by a numerical parameter ε0 � ε, where ε−1 is644

the strength of the anisotropy. The advantages of this new scheme are three fold. First645

the method can address any topology of anisotropies including closed field lines. Sec-646

ond, the condition number of the linear systems solved for the iterated method scales647

better than that of other asymptotic-preserving (Micro-Macro) methods. Third, the648

computational efficiency of the method may be substantially improved with respect649

to these same methods. This is already demonstrated for large meshes in two dimen-650

sional frameworks. More substantial gains can be anticipated for three dimensional651
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Fig. 15. Test problem 3: Relative L2 (left) and H1 (right) errors as functions of the number
of iterations for the rapidly oscillating solution carried out with a Q2-FEM on several meshes and
different values of ε0.

computations since the linear systems at hand are issued from classical elliptic prob-652

lems for which very efficient solvers can be used. This issue will be investigated in653

subsequent works. The method already appears to be robust with respect to the654

choice of ε0 and do not suffer from the locking effect provided that high order meth-655

ods and refined meshes are used. The convergence of the iterations is improved for656

small ε0-values, however at the price of a deterioration of the matrix conditioning.657

Future works will also be devoted to the construction of preconditioners, in order to658

offset the deterioration of the matrix conditioning when increasing the anisotropy of659

the inner problems.660
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