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Abstract.

We assess different fluid neutral models by comparing the resulting plasma sources

to the sources from a Monte Carlo simulation of the kinetic equation. The background

plasma is kept fixed and represents an ITER detached case. The fluid models take

into account the microscopic cross-sections and rate coefficients from the AMJUEL-

HYDHEL databases and the microscopic TRIM reflection model. We accomplish the

latter by elaborating macroscopic fluxes that are imposed as boundary conditions,

without the introduction of any user-defined fitting parameters. The pure pressure-

diffusion equation provides accurate results for the particle source, but is inaccurate

for the parallel momentum and ion energy source. Therefore, we have added a parallel

momentum equation. This gives maximum errors of about 9% for the momentum and

32% for the energy source. These errors are further reduced to respectively 6 and

14% by adding a separate neutral energy equation. It is hard to ascertain whether the

remaining fluid-kinetic discrepancies are either mainly due to numerical or modeling

errors.

Keywords: plasma edge modeling, neutrals, fluid approximation

1. Introduction

Plasma edge codes are crucial for the design of the divertor, pumps and other plasma-

facing components. The neutral particles are mostly described kinetically, where the

kinetic equation is solved with a Monte Carlo (MC) simulation with codes such as

EIRENE [1]. However, the statistical noise hampers the convergence and the calculation

time increases for charge-exchange (CX) dominated regimes due to the high number

of ion-neutral collisions. With the traditional MC approach it is excluded to use
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gradient-based optimization techniques to obtain an optimal design for, e.g., the divertor

geometry [2].

Therefore, there is a need for (partially) deterministic neutral models, e.g., a fluid

model that becomes valid in high-collisional regions. Multiple fluid neutral models that

strongly differ in terms of performance, have been developed over the last decades.

The most simple fluid neutral model in literature consists of a diffusion model based

on density gradients, assuming mono-energetic neutrals [3] or using a multi-group

approach [4]. This model is improved by solving a pressure-diffusion equation [5–8].

The pressure-diffusion equation is obtained by neglecting the convective and viscous

terms in the Navier-Stokes (momentum) equations, which results immediately in an

expression for the particle flux. Imposing this expression in the continuity equation

leads to a single convection-diffusion equation. A parallel momentum equation is added

in Refs. [6,9–11] and the full Navier-Stokes model with the momentum equations in the

three directions is solved in Refs. [6, 12].

The largest difficulties occur due to the choice of the boundary conditions, which

are very influential for the results and have to represent the underlying physics. This

becomes especially an issue for the more complete models due to the additional boundary

conditions for the extra equations. A typical boundary condition for the parallel

momentum equation is the momentum recycling boundary condition where the neutral

parallel velocity at the target plate is assumed to be a constant fraction of the ion parallel

velocity [6, 10]. However, this fraction is user-defined and not based on the underlying

physics. In addition, flux limiters are often used to model the non-equilibrium behavior

and mimic the results from the kinetic solution [5, 8, 10, 11, 13]. This leads to models

with multiple user-defined case-specific fitting parameters that are not determined by a

theoretical or empirical law.

In this paper, we develop a hierarchy of fluid neutral models with different degrees

of complexity starting from the Boltzmann (kinetic) equation. We also derive the

boundary conditions starting from the kinetic description. This leads to imposed

boundary fluxes for the fluid models. Therefore, we need the velocity distribution of the

incident neutrals at the boundaries. This distribution is estimated with the help of the

diffusion theory from Ref. [14]. In addition, we incorporate the AMJUEL-HYDHEL

atomic databases [15, 16] for collision processes and the TRIM code database [17],

which contains all information about the energy and angular distributions of reflected

particles as a function of the incident energy and angle for different projectile-solid

material combinations. This leads to fluid neutral models that are as much as possible

consistent with the underlying microscopic description without the use of artificial fitting

parameters as, e.g., the momentum recycling and flux limiter coefficients.

A sufficiently accurate fluid neutral model can replace the MC simulation for studies

where the details of all microscopic physics of the neutrals are not that important, e.g.,

for the development of operational scenarios for a certain machine and to investigate

other physical phenomena. It is important that the sources from the neutral-plasma

interactions are of the same order of magnitude as the sources from an MC simulation
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and that the same trends can be observed. In this way the computational cost can be

limited and there is no noise that hampers the convergence. An accurate fluid neutral

model can lead to a significant speed-up of design calculations with plasma edge codes.

If still more accurate results are desired, a well-performing fluid neutral model is the

basis for an efficient hybrid approach, where a kinetic correction is added to the fluid

model, as, e.g., proposed in Ref. [18].

This paper is outlined as follows. In Section 2, we elaborate the fluid neutral

models starting from the kinetic equation. The treatment from the boundary conditions

is discussed in Section 3. Finally, in Section 4 we assess the fluid neutral models

by comparing the results to an MC simulation of the kinetic equation with a fixed

background plasma. Exclusively the outer divertor leg from ITER is modeled and the

plasma is taken from a (partially) detached case.

2. From a kinetic to fluid description

2.1. Kinetic model

We only consider Deuterium (D) atoms. The (steady-state) kinetic neutral equation

becomes

v · ∇fn(v) = f̃i(v)nineKr + ni

∫
σcx(Ec)||v − v′||f̃i(v)fn(v′)dv′

− fn(v)(niKcx(v) + neKi), (1)

with v the neutral particle velocity vector, ∇ = ∇x the gradient with respect to the

position x, fn(v) the neutral velocity distribution function and f̃i(v) the normalized

ion distribution (
∫
f̃i(v)dv = 1), which is assumed to be a drifting Maxwellian. The

short notation
∫
. . . dv is used for the integral over the whole velocity space (thus for

all velocity components from −∞ to ∞). The ion, electron and neutral densities are

respectively ni, ne and nn =
∫
fn(v)dv.

The left hand side of the equation describes the neutral transport while the sources

and sinks, due to the interactions with ions and electrons, are stated in the right

hand side. Three processes are taken into account: volumetric (radiative and three-

body) recombination, electron impact ionization and CX collisions with respectively

rate coefficients Kr, Ki and Kcx. Due to the large thermal velocity of the electrons

compared to the ion and neutral thermal velocity, the recombination and ionization

rate coefficients are independent of the particle velocity. This is no longer the case for

the CX rate coefficient, due to the similar thermal velocity of both collision partners

(ions and neutrals). Consequently, the rate coefficient becomes a function of the particle

velocity v, given by

Kcx(v) =

∫
σcx(Ec)||v − v′||f̃i(v

′)dv′, (2)

with σcx(Ec) the microscopic cross-section, which is a function of the center-of-mass

kinetic energy of the collision partners Ec = m
4
||v−v′||2, with m the particle mass. The

expressions for Kr, Ki and σcx are taken from the AMJUEL-HYDHEL databases [15,16].
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It should be noted that all distributions, densities and rate coefficients are functions

of the spatial position.

2.2. Fluid models

As shown in Ref. [19], solving the following simplified Boltzmann equation leads to

almost the same results as the exact Boltzmann equation (Eq. (1)), at least for a

detached ITER case:

v · ∇fn(v) ≈ f̃i(v)nineKr − fn(v)neKi + (f̃i(v)nn − fn(v))niKcx,m, (3)

making use of the so-called momentum linearized CX rate coefficient Kcx,m. From now

on, Eq. (3) is used for the derivation of the fluid neutral models.

The fluid equations are obtained by taking moments of the kinetic equation

(Eq. (3)). If we generalize the kinetic equation as v ·∇fn(v) = S(fn(v)), the continuity,

momentum and (total) energy equations follow from the moments:∫
m(v) (v · ∇fn(v)) dv =

∫
m(v)S(fn(v))dv, (4)

with m(v) =
[
1 mvT m

2
||v||2

]T
. Elaborating this, gives

∇ · Γn = ∇ · (nnVn) = Snn , (5)

∇ · Γn
m,f = ∇ · (mnnVnVn + Πn) = −∇pn + SmVn , (6)

∇ ·Qn = ∇ ·
((

5

2
Tn +m

||Vn||2
2

)
nnVn + Πn ·Vn + qn

)
= SE,n, (7)

solved for the neutral density nn, drift velocity Vn = 1
nn

∫
vfn(v)dv =

[
unθ unr unφ

]T
and neutral temperature Tn = 1

nn

m
3

∫
||c||2fn(v)dv, with c = v−Vn the deviation from

the drift velocity. The velocity Vn is expressed in the poloidal (θ), radial (r), toroidal

(φ) coordinate system. The stress tensor Πn = m
∫

ccfn(v)dv−pnI, with pn = nnTn the

neutral pressure and I the identity tensor, and the heat flux vector qn = m
2

∫
||c||2cdv

have still to be determined.

Thus far, Eqs. (5)-(7) are fully equivalent with the kinetic equation. However, due

to the presence of the unknown stress tensor and heat flux vector, the system cannot be

solved. We need an expression for Πn and qn. Therefore, we use the Chapman-Enskog

theory [20] that is valid for sufficiently small deviations of fn(v) from the equilibrium

distribution. The neutrals obtain the equilibrium distribution if the CX mean free

path is much smaller than the macroscopic length scales determined by the gradients of

relevant plasma properties (density, temperature, . . . ). In our case the fluid models are

exclusively based on the neutral-ion CX collisions. No neutral self-collisions are taken

into account for both kinetic and fluid models. Because of the assumed Maxwellian

distribution for the ions, the neutral equilibrium distribution becomes also a Maxwellian.
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The Chapman-Enskog approximation gives

Πn = − ηn

(
∇Vn + (∇Vn)T − 2

3
(∇ ·Vn) I

)
, (8)

qn = − κn∇Tn, (9)

with the viscosity ηn = nnTn
niKcx,m

and heat conduction coefficient κn = 5nnTn
2mniKcx,m

. As a rule

of thumb, one can state that the Chapman-Enskog approximation is valid for Knudsen

numbers (ratio of the CX mean free path and a characteristic macroscopic length scale)

smaller than 0.1.

Also the particle flux density vector Γn, (fluid) momentum flux density tensor Γn
m,f

and energy flux density vector Qn are explicitly written down in Eqs. (5)-(7). The

subscript f is used to distinguish between the momentum flux tensor from the fluid

approach, which does not include the pressure, and the momentum flux tensor from the

kinetic approach, defined as Γn
m = m

∫
vvfn(v)dv = mnnVnVn + Πn + pnI. The latter

includes the pressure. This distinction is important for the elaboration of the boundary

condition of the momentum equation (Section 3.3.2).

The source terms are

Snn = nineKr − nnneKi, (10)

SmVn ≈ m(nineKr + nnniKcx,m)Vi −m(nnneKi + nnniKcx,m)Vn, (11)

SE,n ≈ (nineKr + nnniKcx,m)

(
3

2
Ti +

m

2
||Vi||2

)
− (nnneKi + nnniKcx,m)

(
3

2
Tn +

m

2
||Vn||2

)
, (12)

with Ti the ion temperature and Vi =
[
uθ ur uφ

]T
=
[
bθu|| 0

√
1− b2

θu||
]T

the ion

fluid velocity, with bθ the magnetic pitch and u|| the plasma parallel velocity. We assume

that the plasma flows perfectly in the parallel direction. From Eq. (11) it can be seen that

the momentum source due to CX collisions is linear with the ion-neutral fluid velocity

difference if the moment from the simplified Boltzmann equation (Eq. (3)) is taken.

In fact it is not perfectly linear, if the moment from the exact Boltzmann equation

(Eq. (1)) should be taken, but the assumption is justified if the neutral distribution

is close to a drifting Maxwellian. Thus, the momentum linearized CX rate coefficient

Kcx,m is defined as the slope of the CX momentum source with respect to the ion-neutral

velocity difference, as explained in more detail in Ref. [19]. Also the expression for the

energy source (Eq. (12)) is the second order moment from the right hand side of the

approximate Boltzmann equation (Eq. (3)) instead of from the exact kinetic equation

(Eq. (1)).

The Navier-Stokes neutral model without the energy equation with the assumption

of thermal equilibrium of neutrals and ions (Eqs. (5)-(6) with Tn = Ti) is frequently

used in the late nineties (e.g., Ref. [21]). Due to the low Knudsen numbers in detached

cases, it is a representative model to study the trends and behavior of the plasma in

these regimes. However, solving the full system of Navier-Stokes equations with the
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momentum equations in the three directions can become computationally costly and it

is often hard to converge to the steady-state solution [22]. For practical calculations,

it is recommended to reduce the model. We investigate three models with increasing

degrees of complexity. They are elaborated in next subsections.

2.2.1. Model 1: pressure-diffusion equation In CX dominated regions, it is expected

that the neutral dynamics is governed by a balance between the momentum source and

the pressure gradient. Therefore, the left hand side of Eq. (6) (convective and viscous

terms) becomes negligible, leading to a simplified momentum equation:

m(nineKr + nnniKcx,m)Vi −m(neKi + niKcx,m)nnVn = ∇pn. (13)

If we rearrange the terms, we get an expression for the particle flux density Γn:

Γn = nnVn = nn,eqVi −Dn
p∇pn, (14)

with nn,eq = (nineKr + nnniKcx,m)/(niKcx,m + neKi) and Dn
p = (m (niKcx,m + neKi))

−1.

Imposing this expression in the continuity equation leads to the so-called pressure-

diffusion equation:

∇ ·
(
nn,eqVi −Dn

p∇pn

)
= Snn . (15)

This single convection-diffusion equation combines the continuity (Eq. (5)) and

momentum (Eq. (13)) equations and is solved for the neutral pressure. In addition,

we assume that the neutrals are in thermal equilibrium with the ions (Tn = Ti). The

pressure-diffusion equation is frequently used [5–8]. The model is linear with respect to

the neutral pressure and consequently, it is easily solved.

2.2.2. Model 2: pressure-diffusion and parallel momentum equation The toroidal

neutral velocity resulting from the pressure-diffusion equation unφ,PD is

unφ,PD =
nn,eq

nn

uφ. (16)

The toroidal contribution of the pressure gradient disappears due to the assumption

of toroidal symmetry. nn,eq tends to nn for Kcx,m � Ki, Kr leading to almost equal

neutral and ion toroidal velocities in CX dominated regions. Indeed, if the CX mean

free path is small compared to the macroscopic length scales, the neutral fluid velocity

will tend to the ion velocity. However, at the boundaries neutral particles are emitted

in different directions as described by the underlying recycling/reflection model. This

leads to an ion-neutral velocity difference close to the boundaries. It is from crucial

importance to capture this velocity difference in order to get accurate results for the

parallel momentum source for the plasma. Therefore, we add a momentum equation
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parallel to the magnetic field:

1

hφ
√
g

∂

∂θ

(
hφ
√
g

hθ

(
mnnunθun|| − ηn

(
1

hθ

∂un||
∂θ
− un||

1

hθhφ

∂hφ
∂θ

)))
+

1

hφ
√
g

∂

∂r

(
hφ
√
g

hr

(
mnnunrun|| − ηn

(
1

hr

∂un||
∂r
− un||

1

hrhφ

∂hφ
∂r

)))
−mbθnnu

2
n||

1

hθhφ

∂hφ
∂θ

= −bθ
1

hθ

∂pn

∂θ
+ Smun|| , (17)

solved for the parallel neutral velocity un|| = bθunθ+
√

1− b2
θunφ. The metric coefficients

are hθ, hr and hφ and
√
g = hθhrhφ. Smun|| is the projection of the momentum source

(Eq. (11)) in the parallel direction. This parallel momentum equation is similar to the

parallel momentum equation for the plasma as described in Ref. [23] and implemented

in, e.g., the SOLPS-ITER code package [24].

Eq. (17) is a simplified version of the exact parallel momentum equation as described

in Ref. [25]. It is assumed that the neutral parallel velocity is at least an order of

magnitude larger than the radial and diamagnetic components and only the dominant

curvature terms are kept in the equation. The assumption of dominant parallel ion and

neutral velocities can be violated in the presence of ion drifts. In addition, the viscous

coupling in the three directions can lead to significant radial and diamagnetic neutral

velocities, especially if neutral-neutral collisions are included. This has to be kept in

mind for future extensions to the model.

Mainly the toroidal velocity is not well predicted by the pure pressure-diffusion

equation close to the target (Eq. (16)) such that including a toroidal momentum equation

should already lead to a sufficient improvement of the results. However, we choose

for a parallel momentum equation, because this model can guarantee conservation of

global parallel momentum of the plasma and the neutrals if the coupled plasma-neutral

equations are solved. The parallel momentum equation for the neutrals is also solved in

Refs. [6, 9, 10].

The parallel momentum equation is solved together with the continuity equation

(Eq. (5)). The radial and diamagnetic particle flux densities follow from the pressure-

diffusion equation:

nnunr = −Dn
p

1

hr

∂pn

∂r
, (18)

nnun⊥ = −Dn
p

√
1− b2

θ

1

hθ

∂pn

∂θ
, (19)

with un⊥ =
√

1− b2
θunθ− bθunφ the diamagnetic neutral velocity. For this model we still

assume thermal equilibrium of the ions and the neutrals (Tn = Ti).

2.2.3. Model 3: pressure-diffusion, parallel momentum and energy equation For the

last model we add a separate neutral energy equation to model 2 (Eqs. (5) and (17)).

Elaborating Eq. (7), where we again assume the dominant neutral velocity in the parallel
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direction, gives

1√
g

∂

∂θ

(√
g

hθ

((
5

2
Tn +

m

2
u2

n||

)
nnunθ −

ηn

2

1

hθ

∂

∂θ

(
u2

n||
)

+ ηn
u2

n||
hθhφ

∂hφ
∂θ
− κn 1

hθ

∂Tn

∂θ

))

+
1√
g

∂

∂r

(√
g

hr

((
5

2
Tn +

m

2
u2

n||

)
nnunr −

ηn

2

1

hr

∂

∂r

(
u2

n||
)

+ ηn
u2

n||
hrhφ

∂hφ
∂r
− κn 1

hr

∂Tn

∂r

))
= SE,n. (20)

Again, we make use of the pressure-diffusion expressions for the radial and diamagnetic

particle flux densities (Eqs. (18)-(19)).

The assumption of different ion and neutral temperatures is innovative compared

to the models from literature. For 1D cases it is already shown that the neutral energy

equation improves the results [26].

3. Boundary conditions

Boundary conditions determine the solution of a partial differential equation. Therefore,

it is important to elaborate them carefully such that they include as much as possible

the microscopic physics. Particles incident on the solid material (e.g., the target plates)

are reflected with a certain probability and the velocity distribution of the reflected

particles is a function of the energy and angle with respect to the surface normal of the

incoming particles.

There are two kinds of particles incident on the solid boundaries: ions that pick up

electrons and recombine and neutral atoms. Both particles are re-emitted as neutrals

(fast atoms or thermally released molecules). The recombined ions are called the

recycled neutrals, while the other emitted particles are called the reflected neutrals. For

the development of fluid boundary conditions that are consistent with the microscopic

recycling/reflection model, we need the distribution of the incident neutrals and ions.

The distribution of the incident neutrals is unknown and has to be estimated. We

extend the diffusion theory elaborated in Ref. [14] to the two-dimensional plasma edge to

estimate the incident neutral distribution, as explained in Section 3.1. The distribution

of the incident ions is assumed to be a known truncated Maxwellian possibly accelerated

by the sheath potential if the boundary is not parallel to the magnetic field. This

distribution is elaborated in Section 3.2.

For known incident distributions the TRIM code database [17] can be applied to

determine the distribution of the reflected particles. The TRIM database contains

exclusively information about the fast recycled/reflected atoms. The probability of

fast reflection as a function of incident energy and angle can be found in the TRIM

tables. The remainder (or in some cases a fraction of the remainder) is thermally

released as molecules (D2), which are assumed to dissociate immediately by the Franck-

Condon process. The dissociated atoms are emitted isotropically with an energy of

2 eV. The moments of the total velocity distribution (incident and recycled/reflected
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particles) lead to fluxes, which are imposed as boundary fluxes for the fluid equations.

The incorporation of the advanced TRIM reflection model for the calculation of these

boundary fluxes is discussed in detail in Section 3.3.

3.1. Diffusion approximation to estimate the distribution of the incident neutrals

The diffusion theory is frequently used in nuclear (fission) reactor physics [27–29]. In our

case, we will exclusively use it for estimating the distribution of the incident neutrals.

We consider a control volume dV in which CX collisions scatter the neutrals in different

directions, as indicated in Fig. 1. We are interested in the number of neutrals that reach

the area dA spanned by the solid angle dΩ. dA is a surface element of the boundary (e.g.,

the target plate) with ν the coordinate axis in the direction of the inward pointing surface

normal. Due to the toroidal symmetry the toroidal direction φ is always tangential to

the boundary and τ is the other tangential direction perpendicular to φ.

τ

ν

φ

dV

ϕ

r0

ϑ

dΩ
dA

Scattered
neutrals

Figure 1. Scattering of neutrals in control volume dV .

We try to calculate the velocity- and angular-dependent particle flux density

Γn
ν−(v, ϑ, ϕ) of neutrals scattered by the ions and reaching the plane dA.

Γn
ν−(v, ϑ, ϕ)dvdϑdϕ is the number of neutrals per m2 per second reaching the surface

element dA with a polar angle between ϑ and ϑ + dϑ, an azimuthal angle between ϕ

and ϕ+ dϕ and a speed between v and v + dv. This can be written as

Γn
ν−(v, ϑ, ϕ)dvdϑdϕdA =

∫ ∞
r0=0

e−Σt(v)r0nnniKcx,mf̃i(v, ϑ, ϕ; 0)dV dvdΩ. (21)

nnniKcx,mdV is the number of CX collisions per second in the volume element dV (at

least if the simplified Boltzmann equation (Eq. (3)) is assumed to be true). These CX

collisions are assumed to be the main origin for neutral particles at a certain distance

r0. The probability that the neutral gets a speed between v and v+ dv and is scattered

in dΩ is f̃i(v, ϑ, ϕ; 0)dvdΩ, with f̃i(v, ϑ, ϕ; δpot
sh ) the normalized ion distribution (drifting
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Maxwellian):

f̃i(v, ϑ, ϕ; δpot
sh ) =

(
m

2πTi

)3/2

v2 exp

(
− m

2Ti

(
v2 + 2v sinϑ cosϕuφ + 2v sinϑ sinϕuτ

+ 2

√
v2 cos2 ϑ− 2

m
δpot

sh Teuν + u2
φ + u2

τ + u2
ν −

2

m
δpot

sh Te

))
, (22)

with
[
uφ uτ uν

]T
the ion fluid velocity expressed in the (φ,τ ,ν) coordinate system.

The possible acceleration by the sheath potential, if the boundary is not parallel to the

magnetic field, is already included in Eq. (22). The additional kinetic energy that the

ion gets due to this acceleration is given by δpot
sh Te, with Te the electron temperature.

Because of the assumption of an infinitesimal small sheath, this sheath acceleration plays

only a role for the distribution of the incident ions (Section 3.2), whereas it is assumed

that δpot
sh = 0 for the sampling of the neutrals created by CX collisions (f̃i(v, ϑ, ϕ; 0) in

Eq. (21)).

The source of CX neutrals has to be multiplied with the probability that the neutral

reaches the boundary plane without any extra collision. This probability is represented

by e−Σt(v)r0 , with Σt(v) = niKcx,m+neKi

v
the total macroscopic cross-section (including

CX and ionization events). We assume that the plasma background takes the whole

domain up to r0 =∞. The solid angle spanned by dA is dA cosϑ
r20

and the volume dV is

r2
0 sinϑdr0dϑdϕ. Inserting these expressions in Eq. (21), gives

Γn
ν−(v, ϑ, ϕ) =

∫ ∞
r0=0

e−Σt(v)r0nnniKcx,mf̃i(v, ϑ, ϕ; 0) sinϑ cosϑdr0. (23)

We use a Taylor series expansion for the neutral density:

nn ≈ nn0 + φ

(
∂nn

∂φ

)
0

+ τ

(
∂nn

∂τ

)
0

+ ν

(
∂nn

∂ν

)
0

(24)

= nn0 + r0 sinϑ sinϕ

(
∂nn

∂τ

)
0

+ r0 cosϑ

(
∂nn

∂ν

)
0

, (25)

assuming toroidal symmetry such that ∂nn/∂φ = 0. The subscript 0 indicates that the

neutral density and gradients are evaluated in the origin where the particle flux density

is calculated. Inserting this expression for the neutral density in Eq. (23) and evaluating

the integral neglecting the spatial dependence of Σt, niKcx,m and f̃i, gives

Γn
ν−(v, ϑ, ϕ) =

niKcx,m

niKcx,m + neKi

f̃i(v, ϑ, ϕ; 0)v sinϑ cosϑ

(
nn

+
v

niKcx,m + neKi

(
sinϑ sinϕ

∂nn

∂τ
+ cosϑ

∂nn

∂ν

))
, (26)

where the subscript 0 is omitted. If the total macroscopic cross-section is large, the

exponential term e−Σt(v)r0 decays rapidly. Therefore, only the first mean free paths

starting from the boundary contribute to the semi-infinite integral of Eq. (23). As long

as the spatial variation of the parameters in the integrand is limited and the neutral

density is approximately linear in this region, the assumptions are valid.
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3.2. Distribution of the incident ions

The velocity- and angular dependent particle flux density of the incident ions is given

by

Γi
ν−(v, ϑ, ϕ) =

{
C if̃i(v, ϑ, ϕ; δpot

sh )v sinϑ cosϑ if v ≥ vmin, ϑ ≤ arccos
(
vmin

v

)
,

0 else,
(27)

with vmin =
√

2
m
δpot

sh Te the minimum occurring speed after the sheath acceleration. If

the boundary is parallel to the magnetic field, δpot
sh = 0. The coefficient C i follows from

following condition: ∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

Γi
ν−(v, ϑ, ϕ)dvdϑdϕ = −niuν . (28)

3.3. Boundary fluxes

From the distributions of the incident neutrals and ions, the net fluxes at the boundaries

are calculated. In our case the recycling and reflection physics is determined by

the TRIM code database. We elaborate the particle flux density in Section 3.3.1,

the parallel momentum flux density in Section 3.3.2 and the energy flux density in

Section 3.3.3. The resulting fluxes are imposed as boundary conditions for respectively

the continuity (Eq. (5) and Eq. (15) for the pressure-diffusion equation (model 1)), the

parallel momentum (Eq. (17)) and energy equation (Eq. (20)).

3.3.1. Particle flux density The net particle flux density Γn = Γn ·ν, with ν the inward

pointing surface (unit) normal, becomes

Γn =

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[
(−1 +RnR(v, ϑ) +RnRT(1−R(v, ϑ)))Γn

ν−(v, ϑ, ϕ)

+(RiR(v, ϑ) +RiRT(1−R(v, ϑ)))Γi
ν−(v, ϑ, ϕ)

]
dvdϑdϕ, (29)

with R(v, ϑ) the reflection coefficient from the TRIM code database, which is a function

of the energy (or speed) and angle with respect to the surface normal of the incident

particle. The first line of the equation is the reflected minus the incident particle flux

density, whereas the second line is the recycled particle flux density. A fraction RT of the

non-fast recycled/reflected neutrals, as described by the TRIM database, is emitted as

dissociated 2 eV neutrals (due to Franck-Condon dissociation of the molecules). Finally,

we have introduced the recycling and reflection coefficients (respectively Ri and Rn) to

mimic the absorption of a fraction of the incident ions and neutrals, e.g., due to the

presence of a pump. This particle flux density (and also the upcoming momentum and

energy flux densities) are calculated in every boundary cell. In this way the coefficients

Ri, Rn and RT can depend on the position on a particular boundary. The coefficients

from the TRIM code database are determined by the boundary material.
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3.3.2. Parallel momentum flux density The parallel momentum flux density Γn
m,|| =

[Γn
m · ν]|| becomes

Γn
m,|| =m

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[
− v||Γn

ν−(v, ϑ, ϕ) +

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

v||,R

R(v, ϑ, ϕ→ vR, ϑR, ϕR) sinϑRdvRdϑRdϕR

(
RnΓn

ν−(v, ϑ, ϕ)

+RiΓi
ν−(v, ϑ, ϕ)

) ]
dvdϑdϕ+ Γn

m,||,T, (30)

with v|| = bθ(sinαvτ +cosαvν)+
√

1− b2
θvφ the particle velocity parallel to the magnetic

field, with α the angle between the surface normal and the poloidal direction and[
vφ vτ vν

]T
the particle velocity expressed in the (φ, τ, ν) coordinate system. The

probability that a particle with speed v, incident polar angle ϑ and azimuthal angle ϕ

gets after the reflection a speed between vR and vR + dvR and is scattered in the solid

angle dΩR = sinϑRdϑRdϕR is given by R(v, ϑ, ϕ → vR, ϑR, ϕR)dvRdΩR. The first term

in Eq. (30) represents the contribution of the incident neutrals, the second term of the

fast recycled/reflected neutrals and Γn
m,||,T the thermally released 2 eV neutrals. Eq. (30)

can be simplified making use of the momentum reflection coefficients, defined as

Rm,||(v, ϑ) =
1

mv sinϑ

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

mvR sinϑR cosϕRR(v, ϑ, 0→ vR, ϑR, π + ϕR)

sinϑRdvRdϑRdϕR, (31)

Rm,⊥(v, ϑ) =
1

mv cosϑ

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

mvR cosϑRR(v, ϑ, 0→ vR, ϑR, π + ϕR)

sinϑRdvRdϑRdϕR. (32)

The parallel momentum reflection coefficient Rm,||(v, ϑ) represents the mean fraction

of momentum that is conserved in the direction of motion of the incident particle

projected on the boundary plane multiplied by the probability of fast reflection R(v, ϑ).

The perpendicular momentum reflection coefficient Rm,⊥(v, ϑ) represents the ratio of

the momentum perpendicular to the plane of the reflected and incident particle again

multiplied by R(v, ϑ). Both momentum reflection coefficients can be extracted from the

TRIM code database as a function of the speed v and angle ϑ of the incident particle.

The thermally released neutrals are emitted isotropically (Lambert’s cosine law),

leading to the following parallel momentum flux density:

Γn
m,||,T =bθ cosα

2

3
mvTRT

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

(1−R(v, ϑ))(RnΓn
ν−(v, ϑ, ϕ) +RiΓi

ν−(v, ϑ, ϕ))

dvdϑdϕ, (33)

with vT the speed of the thermally released atoms (corresponding to an energy of 2 eV).
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The resulting parallel momentum flux density becomes

Γn
m,|| =m

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[
− v||Γn

ν−(v, ϑ, ϕ) +

(
−
√

1− b2
θRm,||(v, ϑ) sinϑ cosϕ

− bθ sinαRm,||(v, ϑ) sinϑ sinϕ+ bθ cosαRm,⊥(v, ϑ) cosϑ

)
v

(RnΓn
ν−(v, ϑ, ϕ) +RiΓi

ν−(v, ϑ, ϕ))

]
dvdϑdϕ+ Γn

m,||,T. (34)

As already mentioned in Section 2.2, there is an important distinction between

the momentum flux density from the fluid approach (subscript f), which excludes the

pressure, whereas the pressure is included in the momentum flux density from the kinetic

point of view. Thus, the pressure is included in Eq. (34). However, as a boundary flux

we impose Γn
m,f,|| =

[
Γn

m,f · ν
]
|| = Γn

m,|| − bθ cosαpn.

There are two possible choices for the pressure at a certain position at a boundary.

You can take the pressure that follows from the fluid solution. However, at the

boundaries the underlying velocity distribution deviates a lot from the Maxwellian

equilibrium distribution. Therefore, it is recommended to recalculate the pressure from

the estimated distribution that consists of the incident, recycled and reflected neutrals.

If the total velocity-dependent particle flux density at a boundary is Γn(v), the pressure

is defined as

pn =
m

3

∫
||v −Vn||2

Γn(v)

|vν |
dv. (35)

Elaborating this for the estimated distribution, gives

pn ≈
m

3

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[ (
v2 + 2unφv sinϑ cosϕ+ 2unτv sinϑ sinϕ+ 2unνv cosϑ+ u2

nφ

)
Γn
ν−(v, ϑ, ϕ)

v cosϑ
+
(
Rp,1(v, ϑ)v2 + 2unφRp,2(v, ϑ)v sinϑ cosϕ

+2unτRp,2(v, ϑ)v sinϑ sinϕ− 2unνR(v, ϑ)v cosϑ+ u2
nφRp,3(v, ϑ)

)
RnΓn

ν−(v, ϑ, ϕ) +RiΓi
ν−(v, ϑ, ϕ)

v cosϑ

]
dvdϑdϕ+ pn,T, (36)

with
[
unφ unτ unν

]T
the neutral fluid velocity expressed in the (φ, τ, ν) coordinate
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system. Here, the pressure reflection coefficients are introduced. They are defined as

Rp,1(v, ϑ) =
cosϑ

v

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

vR

cosϑR

R(v, ϑ, 0→ vR, ϑR, π + ϕR) sinϑR

dvRdϑRdϕR, (37)

Rp,2(v, ϑ) =
1

tanϑ

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

tanϑR cosϕRR(v, ϑ, 0→ vR, ϑR, π + ϕR) sinϑR

dvRdϑRdϕR, (38)

Rp,3(v, ϑ) =v cosϑ

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

1

vR cosϑR

R(v, ϑ, 0→ vR, ϑR, π + ϕR) sinϑR

dvRdϑRdϕR. (39)

Eq. (36) only approximates Eq. (35), because it is assumed that unφ � unτ , unν , such

that the square terms of unτ and unν can be neglected. This assumption is equivalent

to the parallel momentum equation (Eq. (17)), where it is assumed that the neutral

parallel velocity is at least an order of magnitude larger than the radial and diamagnetic

components. For small pitches the toroidal and parallel components are almost the same.

Finally, the pressure of the thermally released neutrals pn,T becomes

pn,T ≈
2

3
m(vT − unν +

u2
nφ

vT

)RT

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

(1−R(v, ϑ))(RnΓn
ν−(v, ϑ, ϕ)

+RiΓi
ν−(v, ϑ, ϕ))dvdϑdϕ. (40)

3.3.3. Energy flux density The net energy flux density Qn = Qn · ν becomes

Qn =
m

2

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[
− v2Γn

ν−(v, ϑ, ϕ) +

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

v2
RR(v, ϑ, ϕ→ vR, ϑR, ϕR)

sinϑRdvRdϑRdϕR(RnΓn
ν−(v, ϑ, ϕ) +RiΓi

ν−(v, ϑ, ϕ))

]
dvdϑdϕ+Qn

T (41)

=
m

2

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

[
− v2Γn

ν−(v, ϑ, ϕ) +RE(v, ϑ)v2(RnΓn
ν−(v, ϑ, ϕ)

+RiΓi
ν−(v, ϑ, ϕ)

]
dvdϑdϕ+Qn

T, (42)

making use of the energy reflection coefficient RE(v, ϑ), defined as

RE(v, ϑ) =
1

mv2/2

∫ v

vR=0

∫ π/2

ϑR=0

∫ 2π

ϕR=0

m

2
v2

RR(v, ϑ, 0→ vR, ϑR, π + ϕR)

sinϑRdvRdϑRdϕR. (43)
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The energy flux density of the thermally released neutrals Qn
T becomes

Qn
T =

m

2
v2

TRT

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

(1−R(v, ϑ))(RnΓn
ν−(v, ϑ, ϕ) +RiΓi

ν−(v, ϑ, ϕ))

dvdϑdϕ. (44)

3.4. Practical implementation

A three-dimensional integral over the whole velocity space has to be evaluated to

calculate the different boundary fluxes. Due to the lack of analytic expressions, this has

to be done numerically for each boundary cell and the calculation has to be repeated

each time the plasma state changes. To avoid the computational cost to evaluate the

integrals, they are calculated in advance for different values of the influencing plasma

variables. Every boundary flux Γn
j can be written as

Γn
j = Γn

j,ν− +
∑
k

Akj

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

gkj (v, ϑ, ϕ; R)f̃i(v, ϑ, ϕ; δpot,k
sh ,Vi, Ti)dvdϑdϕ, (45)

where the index j indicates the particular moment: 0 for the particle flux density Γn, 1

for the parallel momentum flux density Γn
m,f,|| and 2 for the energy flux density Qn.

The coefficient Aji contains all terms that can be brought outside the integral (no

function of v, ϑ or ϕ). The summation is used in order to distinguish between the

different contributions. There is a contribution due to the recycled neutrals and three

contributions of the reflected neutrals, respectively scaling with nn, ∂nn

∂τ
and ∂nn

∂ν
(see

Eq. (26)). Also the computation of the pressure leads to different contributions, e.g.,

terms scaling with unφ, unτ , unν and u2
nφ in Eq. (36). The integrand can be written

as the product of a function gkj (v, ϑ, ϕ; R), which contains the needed TRIM reflection

coefficients (present in R), and the Maxwellian distribution f̃i(v, ϑ, ϕ; δpot,k
sh ,Vi, Ti) given

by Eq. (22) (here we add explicitly the ion fluid velocity and temperature dependence of

the Maxwellian distribution). The superscript k for δpot
sh is needed to distinguish between

the recycled and reflected neutrals. For the reflected neutrals δpot,k
sh = 0, whereas δpot,k

sh

is nonzero for the recycled neutrals if the boundary is not fully parallel to the magnetic

field. Only the integral in Eq. (45) is calculated in advance and saved as a function of

the sheath transmission coefficient, ion fluid velocity and temperature:

Ikj (Vi, Ti) =

∫ ∞
v=0

∫ π/2

ϑ=0

∫ 2π

ϕ=0

gkj (v, ϑ, ϕ; R)f̃i(v, ϑ, ϕ; δpot,k
sh ,Vi, Ti)dvdϑdϕ. (46)

To reduce the number of dependencies of Ikj , we assume that Vi ≈
[
uφ 0 0

]T
,

expressed in the (φ, τ, ν) coordinate system. This assumption is valid if the pitch is

sufficiently small such that the parallel direction almost coincides with the toroidal

direction and if the ion velocity perpendicular to the magnetic field lines is negligible,

an assumption also made for the parallel momentum equation (Eq. (17)). In this way

Ikj contains all needed Maxwellian-averaged reflection coefficients for a discrete number

of values for uφ and Ti. We use linear interpolation for intermediate values of uφ and Ti.
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4. Comparison of the results from the fluid neutral models with the kinetic

solution

In this section we compare the solutions of the different fluid neutral models (models

1 to 3) with the results from an MC simulation for the kinetic equation. The real

ITER geometry is modeled and the fixed background plasma corresponds to a partially

detached case. We use our in-house MC code, which is a simplified version of the full

EIRENE code.

4.1. Description of the case

Fig. 2 shows a close-up of the ITER plasma edge near the X-point. The green shaded

area corresponds to the simulation domain. We are only modeling the outer divertor

leg. Besides the target boundary, the domain is bordered by the upstream, private flux

(PF) and wall boundary. The private flux and wall boundaries do not correspond with

the real vessel walls, but they coincide with some last simulated flux surfaces. In a

traditional MC simulation the neutrals are tracked up to the real vessel wall. However,

for our study we assume that the real vessel wall is located at the last simulated flux

surfaces (both at the wall and private flux boundaries). Therefore, the sheath potential

δpot
sh Te becomes zero at these boundaries. We assume that target, wall and private flux

boundaries are made of carbon. All particles that reach the upstream boundary are

absorbed, i.e., Rn = Ri = 0. For the other boundaries Rn = Ri = 1, except for the

private flux boundary where Rn = 0.9 due to the presence of a pump. The thermally

released fraction RT is 1 at all boundaries.

Inner
target

Outer
target

X-point

R

Z

PF
boundary

Wall
boundary

Upstream
boundary

Separatrix

Figure 2. Location of the simulation domain (green shaded area).

Fig. 3 shows the fixed background plasma state and the magnetic pitch. The plasma

state is a result from a simulation with B2-EIRENE for a partially detached case with

an ITER F12 geometry [30]. The ion density peak is located a small distance from the

target. The ion and electron densities and temperatures are assumed to be equal.
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Figure 3. Plasma state and magnetic pitch. The ion and electron densities and

temperatures are assumed to be equal.

4.2. Comparison of source terms

The most important outputs of the neutral model are the sources for the plasma.

We compare the particle, parallel momentum and ion energy sources, respectively

Sni
= −Snn , Smu|| = −Smun|| and SE,i = −SE,n.

Fig. 4 shows the sources from the MC simulation of the Boltzmann equation

(Eq. (1)). The sources are dominant in a region close to the target. Only this region of

the simulation domain is shown. The peak magnitude of the sources is located at the

target plate. The global shapes of the sources from the fluid solutions are similar as the

shapes from the MC solution. Therefore, to obtain a quantitative assessment we only

compare the sources in single flux tubes. The selected flux tubes are indicated in Fig. 4.

The peak particle source is located in the blue flux tube (1), the ion density peaks in the

green flux tube (2) and the momentum source peaks in the red tube (3). The ion (and

hence also the electron) density peak in the green flux tube leads to a local maximum

of the ionization source.

The sources from the fluid models are compared to the kinetic solution in Fig. 5.

They are plotted as a function of the poloidal distance from the target θt. All fluid

models provide accurate predictions for the particle source with a maximum relative

error of about 28% in the first cell adjacent to the target of the blue flux tube (tube

1). This flux tube is located in a high temperature region of the scrape-off layer that

is much less CX dominated. This leads to larger errors close to the target due to the

emission of non-equilibrium recycled/reflected neutrals.

From Figs. 5(b)-5(c) it is immediately clear that a parallel momentum equation

has to be added to get qualitatively accurate results for the parallel momentum and ion

energy sources. To not overload the figures, we only show the results for the red flux

tube (3) where the peak momentum and energy sources are located, but the conclusions

are also valid for the other flux tubes. The fluid models (with parallel momentum
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Figure 4. Plasma sources from the MC simulation of the kinetic equation.
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(b) Parallel momentum source.
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(c) Ion energy source.

Figure 5. Comparison of sources from fluid models with the MC solution: MC

(solid line), pressure-diffusion equation (model 1) (dashed line), pressure-diffusion

and parallel momentum equation (model 2) (circles) and pressure-diffusion, parallel

momentum and energy equation (model 3) (pluses).

equation) overestimate the magnitude of the momentum and energy source close to the

target. The relative errors of model 2 (no energy equation) for the momentum and

energy source at the target plate in flux tube 3 are respectively 25 and 43%. These

errors are reduced to respectively 20 and 14% by including a separate neutral energy
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equation (model 3).

4.3. Comparison of state variables

We take a closer look to the individual state variables to clarify the differences between

the results for the sources. For the particle source, the neutral density is the only

influential parameter from the neutral solution, as can be seen in Eq. (10). Fig. 6(a)

shows the neutral density profiles. The density differences between the fluid neutral

models remain limited. Therefore, only the results from the MC simulation and fluid

model 1 (pure pressure diffusion) are shown. The frequent CX collisions lead to an

accumulation of neutrals in flux tubes 2 and 3. The fluid models underestimate the

neutral density in the near vicinity of the target, also for flux tube 1 where it leads

to an underestimate of the particle source. In tubes 2 and 3 the particle source peaks

further away from the target. Therefore, the density inaccuracy close to the target has

less impact on the particle source in these flux tubes. The density inaccuracies close to

the target are caused by the emission of non-equilibrium recycled/reflected neutrals. It

might sound surprising that the neutral density profiles from the different fluid models

coincide what leads to almost equal particle sources. Due the toroidal symmetry, the

particle transport is fully governed by the poloidal and radial fluxes. The poloidal

transport is influenced by including a parallel momentum equation. However, due to

the small magnetic pitch the influence of the parallel component on the poloidal flux

is small compared to the diamagnetic contribution. The pressure-diffusion equation is

used for the diamagnetic transport (Eq. (19)) for all models. Therefore, including a

parallel momentum equation has only a minor influence on the particle transport, i.e.,

the neutral density solution.
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(b) Neutral parallel velocity.
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Figure 6. Comparison of neutral state variables from fluid models with the MC

solution: MC (solid line), pressure-diffusion equation (model 1) (dashed line), pressure-

diffusion and parallel momentum equation (model 2) (circles) and pressure-diffusion,

parallel momentum and energy equation (model 3) (pluses).

In contrast, the neutral parallel velocity is affected a lot by the parallel momentum

equation as can be seen in Fig. 6(b). This significantly improves the results for

the parallel momentum and ion energy source. Finally, Fig. 6(c) shows the neutral
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temperature. Both models 1 and 2 assume the ion-neutral thermal equilibrium (Tn = Ti)

(dashed line). The energy equation leads to a slight overestimate of the neutral

temperature at the target plate, but the qualitative behavior is described correctly.

The accurate results close to the target are mainly due to the newly developed

boundary conditions. All simulations from this paper are done with Carbon boundaries,

but also for other materials with different TRIM reflection coefficients (e.g., Tungsten)

the results for the fluid models are from the same order of accuracy.

4.4. Grid refinement

All previous simulations (Figs. 4-6) are done with a grid that consists of 120 cells in

the poloidal and 200 cells in the radial direction. This is already about a factor 10 finer

than one typically uses for plasma edge simulations of ITER. It should be noted that

we exclusively simulate the outer divertor leg. Thus, the number of poloidal cells should

be larger for a simulation of the whole plasma edge. These fine grids are inherent to

the use of fluid neutral models that have to be able to capture the steep gradients of

the neutral state variables near the target plate. This disadvantage of the fluid models

is absent for the MC simulation, where the discretization error is typically smaller than

the statistical error. However, when coupled to the plasma equations, the grid has to

be sufficiently small to avoid large numerical errors for the plasma solution, but it is

expected that the grid for the discretization of the plasma equations can be coarser in

the vicinity of the target compared to the required grid for the fluid neutral models. It

might be recommended to use different grids for the MC simulation and the fluid plasma

or neutrals. A fine grid for the MC simulation would worsen the statistical properties.

Now, we double the number of cells in both poloidal and radial directions to estimate

the discretization error. Fig. 7 shows the results for the parallel momentum and ion

energy source for the red flux tube (3). The particle source is not influenced that much

by the grid refinement and is omitted in Fig. 7. Because of the small discretization

error of the MC solution, only the sources for the 120× 200 grid are shown. The results

from model 1 (pure pressure-diffusion equation) are not shown, because they are not

accurate at all for the momentum and energy source. The results from the 240 × 400

grid are interpolated to the original 120 × 200 grid. The fluid solution approaches the

kinetic solution for this grid refinement. The relative differences between the fluid and

kinetic momentum source at the target are reduced to 9 and 6% for the 240× 400 grid

for respectively models 2 and 3 (originally they were 25 and 20%). There is only an

improvement for the ion energy source for model 2, where the relative difference of the

target source is reduced from 43 to 32%. The ion energy source from model 3 remains

almost unchanged due to the fact that the results for both the neutral parallel velocity

and temperature improve. The improved velocity leads to an increase of the energy

source, whereas the temperature change leads to a decrease (Figs. 6(b)-6(c)). Both

effects eliminate each other.

Though the fact that the 120× 200 grid is already fine compared to typical plasma
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(a) Parallel momentum source.
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(b) Ion energy source.

Figure 7. Comparison of sources for a grid refinement for flux tube 3: MC (solid

line), model 2 with 120× 200 grid (red dashed line), model 2 with 240× 400 grid (red

circles), model 3 with 120 × 200 grid (green dotted line) and model 3 with 240 × 400

grid (green pluses).

edge grids, it seems that there still remains a reasonable discretization error. The

problem for a further refinement is the increase of the computational effort. Not

only the time for a single iteration increases, but also the total number of iterations

due to the increased stiffness of the discretized problem, i.e., the time step for the

false time stepping procedure has to be lowered. The non-negligible discretization

error is a disadvantage of the fluid neutral models, but we have proven that the fluid

approximation becomes valid for this detached ITER case with a modeling error from

the same order of magnitude as the discretization error. These accurate results are

mainly obtained by the carefully elaborated boundary conditions.

5. Conclusions and future work

In this paper we have assessed different fluid neutral models by comparing the results

with an MC simulation of the kinetic equation for a fixed background plasma that is

typical for an ITER detached case. The pure pressure-diffusion equation predicts the

particle source with a maximum error of 28% in the first cell near the target and about

10% further away from the target, but the model does not provide satisfying results

for the parallel momentum and ion energy source, even not qualitatively. Therefore,

we have added a parallel momentum equation. This leads to accurate results for the

parallel momentum source (within 10% of accuracy) and ion energy source (maximum

error of about 30%) in the flux tube where the peaks of momentum and energy source

are located. The results further improve by adding a separate neutral energy equation

(maximum error of about 6% for the momentum and 14% for the energy source).

We have shown that there still remains a reasonable discretization error for an
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already relatively fine grid. The discretization error seems from the same order of

magnitude as the modeling error. It is hard to exactly quantify the discretization and

modeling errors due to the increased computational effort for a further refined mesh.

However, we can conclude that the fluid models perform well for this detached case,

mainly due to the newly developed boundary conditions, which translate the microscopic

reflection model (TRIM in this case) in macroscopic boundary fluxes without the

introduction of user-defined fitting parameters. We have derived fluid models that are

fully consistent with the microscopic physics.

In future research, we plan to study the effect of molecules and neutral self-collisions.

The convective term in the momentum equation might become important due to neutral-

neutral collisions as discussed in Ref. [12] and the assumption of the dominant neutral

velocity parallel to the magnetic field can be violated. Afterwards, the neutral model

will be coupled to the plasma equations to study the effect on the plasma state. The

presence of drifts can lead to significant diamagnetic ion and neutral velocities such

that the parallel momentum equation has to be reformulated. We have assessed the

fluid models for the Deuterium atoms. However, as future research it is worth the

effort to study the performance of the fluid models for other species, e.g., Helium and

Tungsten, and molecules.

If even more accurate results are desired, the fluid neutral model can be combined

with a kinetic model. The efficiency of this combined fluid-kinetic hybrid model, i.e.,

the reduction of noise and calculation time, depends on the accuracy of the fluid part.
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