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Dirichlet boundary conditions for arbitrary-shaped boundaries in
stellarator-like magnetic fields for the Flux-Coordinate Independent method

Peter Hill,1, a) Brendan Shanahan,1 and Ben Dudson1

York Plasma Institute, University of York

(Dated: 11 July 2016)

We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent
(FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields.
The FCI method constructs a finite difference scheme for ∇‖ by following the field lines between poloidal
planes and interpolating within planes, rather than having a field-aligned mesh on flux surfaces. Doing so
removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null
points in the magnetic field (or equivalently, when q →∞). One cost of this method is that as the field lines
are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the
application of boundary conditions.

The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation
of the boundary value onto the field line end point. The usual finite difference scheme can then be used
unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions
to verify the implementation in a rectangular domain, and show that it doesn’t modify the error scaling of
the finite difference scheme. We outline the use of LVF for arbitrary wall geometry.

We also demonstrate the feasibility of using the FCI approach in non-axisymmetric configurations for a
simple diffusion model in a “straight stellarator” magnetic field. A Gaussian blob diffuses along the field
lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that
confines the density. Including a poloidal limiter moves the LCFS to a smaller radius.

The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method,
in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-
processing, in order to reduce artefacts in visualisations, is described.

I. INTRODUCTION

Anisotropic phenomena are prevalent in magnetised
plasmas. The Lorentz force tends to confine charged par-
ticles to magnetic field lines, with the result that the char-
acteristic size of spatial variations of macroscopic plasma
quantities are larger in the direction parallel to the mag-
netic field compared to those in the perpendicular plane.

Computational techniques take advantage of this
anisotropy by, for example, aligning the computational
grid to the magnetic field and reducing the resolution
in the parallel direction. However, field-aligned coordi-
nate systems typically have difficulties handling changes
in magnetic topology; X-points, for instance, introduce
singularities in the metric tensor. The Flux Coordinate
Independent (FCI) parallel derivative operator1–4 does
not require a field-aligned coordinate system, allowing
the use of simpler grids in the perpendicular plane while
still allowing efficient handling of anisotropic physics.

In this work, we extend the FCI technique to han-
dle arbitrarily shaped boundaries, including limiters, and
demonstrate its use in stellarator-like fields. This work
is organised as follows: in section II, we explain the
FCI method and discuss its implementation; in sec-
tions III and IV, we discuss some issues about interpola-
tion and non-axisymmetric magnetic fields; simulations

a)Electronic mail: Peter.Hill@york.ac.uk

of stellarator-like magnetic fields are in section V. We also
describe a novel technique for upscaling visualisations in
section V B.

II. FLUX-COORDINATE INDEPENDENT METHOD
FOR PARALLEL DERIVATIVES

Conventionally in magnetised plasma turbulence sim-
ulations, derivatives parallel to the magnetic field are
taken by using a field-aligned coordinate system. How-
ever, these are tied to flux surfaces, and hence suffer
from inevitable singularities in the metric tensor when
attempting to encompass multiple magnetic topologies,
i.e. crossing separatrices. These singularities can be nu-
merically challenging to handle.

The Flux-Coordinate Independent (FCI) method for
the parallel derivatives of a function is conceptually sim-
ple: one first follows the magnetic field line from a given
grid point in both directions until it intersects the two ad-
jacent perpendicular planes (see fig. 1). The function to
be differentiated is then interpolated in the perpendicular
plane at the field intersection points, and a finite differ-
ence scheme can be constructed using these values and
the value at the emitting grid point. Higher order finite
difference schemes may be constructed by following the
field line past further perpendicular planes, interpolat-
ing at each intersection point. It should be noted at this
point that while FCI is strictly formulated on perpendic-
ular planes, in practice, poloidal planes are often used.

mailto:Peter.Hill@york.ac.uk
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This is a reasonable approximation, given the assump-
tions of strong anisotropy required by FCI, and we use
the terms “perpendicular” and “poloidal” interchange-
ably throughout this work.

FIG. 1: Schematic of the Flux Coordinate Independent
method for the parallel derivative operator. Starting

from a given grid point, magnetic field lines are traced
in the forward and backward directions. The argument
of the operator is interpolated to find the value at the

location where the field line intersects the adjacent
perpendicular slices, allowing a finite difference scheme

to be constructed.

As the finite difference scheme is constructed at each
individual grid point, the coordinate system in the per-
pendicular plane is no longer tied to the flux surfaces
and in principle any mesh may be used. Other concerns
may limit the choice of mesh, e.g. the need for easy
flux-surface averages, which may require a flux-surface
mesh in part of the plasma. Another consideration is
that while it is possible to vastly drop the resolution in
the parallel direction (i.e. the inter-plane spacing) with
only a small loss in accuracy, similar to conventional field-
aligned grids, one must still retain enough resolution in
the perpendicular mesh to capture the relevant physics
of interest.

A. Comparison with the standard BOUT++ mesh

BOUT++5–7 is a free and open source framework de-
signed to solve partial differential equations, with an em-
phasis on models of magnetically confined plasmas. It
has been used for a variety of applications, from edge8–10

and scrape-off layer11,12 physics in tokamaks, to turbu-
lence in linear devices13,14.

BOUT++ discretises space on a three-dimensional
mesh, with the dimensions labelled x, y and z. Typi-
cally, x is the “radial” direction, y the “poloidal”, and
z the “toroidal”. The conventional “ballooning”-style
BOUT++ coordinate system5,15, for ψ, θ, ζ the usual

orthogonal tokamak coordinates, is defined as:

x = ψ, y = θ, z = ζ −
∫ θ

θ0

νdθ, (1)

where ν is the local field line pitch, given by

ν(ψ, θ) =
∂ζ

∂θ
=

~B · ∇ζ
~B · ∇θ

. (2)

By keeping z fixed and moving in y, the integral in z
changes so we need to move in ζ. This moves us along a
field line. Essentially, y is the coordinate along the field
line while z picks out different field lines. Because the
physics of interest are expected to be field-aligned, we
are able to use a lower resolution in y and still resolve
the physical scales.

The metric tensor for this coordinate system is or-
thogonal only at one y-location, meaning as we move
in y, cross-terms appear in the x-derivatives. It is possi-
ble to eliminate these cross-terms by applying a shifted
metric1,16. To do this, at each y-point, we can shift z
by the integral in eq. (1), effectively moving us back into
non-field-aligned coordinates, performing the derivatives
in x, and then transforming back to the field-aligned co-
ordinates. This can be done using Fast Fourier Trans-
forms (FFTs) which are computationally inexpensive.

At either y-end of the grid we need to shift in z in order
to match the field lines in a twist-shift boundary17. This
needs to be done regardless of whether or not we choose
to use the shifted metric to eliminate the x-derivative
cross-terms.

In contrast to the standard BOUT++ coordinate sys-
tem, the FCI method explicitly does not use field-aligned
coordinates. The construction of the parallel derivatives
in fact has the major advantages of a field-aligned system
(reduced resolution in the parallel direction) but allows
more freedom in the choice of coordinates for the perpen-
dicular directions. For example, two possible choices of
coordinate system are tokamak coordinates:

x = ψ, y = ζ, z = θ, (3)

or cylindrical coordinates:

x = R, y = ζ, z = Z. (4)

Internally, BOUT++ assumes that y is the “parallel”
direction, for e.g. communication. FCI requires ζ to be
the “parallel” direction, thus the FCI implementation in
BOUT++ identifies y ≡ ζ. Another way of looking at
this is that the usual BOUT++ mesh identifies y with
the poloidal direction whereas the FCI mesh identifies it
with the axisymmetric (or guide field) direction.

FCI inherently employs a shifted metric, so no cross-
terms appear in the the perpendicular derivatives, sim-
plifying the calculations, and no twist-shift has to be per-
formed.

While it is technically possible to switch between us-
ing the standard BOUT++ mesh and FCI for a given
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problem, currently there are some technical hurdles. The
assumptions on the nature of x, y, and z in BOUT++
simultaneously limit FCI in the choice of perpendicular
coordinates, while lifting some restrictions in the parallel
direction. The current implementation of BOUT++ as-
sumes that z is axisymmetric, but makes no such assump-
tion on y. Thus, using FCI, it is possible to simulate non-
axisymmetric configurations, such as stellarators, which
are not possible otherwise, at the cost of complicating the
inclusion of curvature effects. Note that these obstacles
are not inherent to FCI – merely the implementation of
FCI in BOUT++. Overcoming these technical limita-
tions is the focus of future work.

B. Boundary conditions

1. Simple geometry

While FCI has already been implemented in other
codes1,2,4 and used for plasma simulations3, the bound-
aries of the simulation domain were either periodic, or
treated very simply. The problem is how to treat field
lines correctly when they intersect with or leave the sim-
ulation boundaries. For example, in Ref. 2, the mag-
netic topology was a cylinder, and a mask was applied
to the simulation domain such that the equations were
not solved outside of a radius r. A different solution was
used in Ref. 3, where the simulation was periodic in two
directions, and the component of the magnetic field in
the third direction was damped close to the edges, such
that the resulting field was tangential to the edge. Field
lines then never intersected the domain boundaries, and
boundary conditions could be applied in the perpendic-
ular direction only.

Let us first consider a scalar field f on a simple, uni-
form, rectangular grid with boundaries located at half the
grid spacing outside the first and last points in each of the
grid dimensions. For any given point in the grid where
the field line traced from this point intersects the bound-
ary before intersecting the next perpendicular plane, we
need to be able to calculate parallel derivatives. This
situation is depicted in fig. 2, where f2 is the value of
the scalar field at the point in question, f1 and f3 are
the values at the intersection points with the adjacent
perpendicular planes in the negative and positive y di-
rections, respectively; fb is the value on the boundary;
l1,2,3 are the parallel distances between f1,2, f2,b, fb,3 re-
spectively.

For a Dirichlet boundary condition, we have a pre-
scribed value on the boundary, fb, which may be a func-
tion of time and/or space. Given uniform spacing in y,
we also have l2 + l3 = l1 = dy. The question then is given
l1,2,3, f1,2,b, what is f ′2?

We should like to avoid adapting the finite difference
scheme at each point which interacts with the boundary
as above in order to keep the implementation as simple
as possible. One possible solution is to fill in the value
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FIG. 2: A field line leaving the boundary. f2 is located
on a grid point, while f1, f3 are located on intersection
points with the adjacent perpendicular planes, and fb is
located on the intersection with the boundary. l1, l2, l3

are distances along the field lines between the four
points above.

of the field on the “leg” of the field line, f3, and then
use the standard finite difference scheme to compute the
parallel derivatives. We call this scheme “Leg Value Fill”
(LVF). This involves an extrapolation which needs to be
accurate enough to not degrade the accuracy of the FD
scheme.

We start from the Taylor expansions, truncated to
third order, of f1, f2, f3 about the boundary:

f1 = fb − (l1 + l2)f ′b +
1

2
(l1 + l2)2f ′′b −

1

6
(l1 + l2)3f ′′′b ,

(5)

f2 = fb − l2f ′b +
1

2
l22f

′′
b −

1

6
l32f

′′′
b , (6)

f3 = fb + l3f
′
b +

1

2
l23f

′′
b +

1

6
l33f

′′′
b . (7)

We then use eqs. (6) and (7) to get the first derivative
at the boundary

f ′b =
1

l2l23 + l22l3
[l22f3 + (l23 − l22)fb − l23f2]− 1

6
l2l3f

′′′
b .

(8)

As f ′′′b is unknown, this is second-order accurate. Simi-
larly, we can also get the second derivative:

f ′′b =
2[l2f3 − (l2 + l3)fb + l3f2]

l3l22 + l2l23
− (l23 − l22)

3(l2 + l3)
f ′′′b + ...

(9)

The error in this expression is first order, except for the
special case where l2 = l3 and eq. (9) reduces to the
standard central difference scheme.

We can combine eqs. (6) and (7):

fb =
l2f3 + l3f2

l2 + l3
+
f ′′b
2

l2l
2
3 + l22l3
l2 + l3

+ ... (10)



4

Note that the error term (f ′′b ) is second order in the l1,2,3
lengths, so the value at the boundary is determined to
second order accuracy. In order to do this, f3 must be
set to

f3 = fb
l2 + l3
l2

− l3
l2
f2 −

f ′′b
2

l2l
2
3 + l22l3
l2 + l3

+ ... (11)

This result can then be used in an arbitrary finite differ-
ence scheme to give the parallel derivatives of f2.

For example, putting eq. (11) into the standard 2nd-
order accurate central difference for the first derivative:

f ′2 =
fb
l1
l2

+ f2(1− l1
l2

)− f1

2l1
− f ′′b

2

l2l
2
3 + l22l3
l2 + l3

+ ... (12)

It can be seen that this result is still second-order in
l1, l2, l3.

We can actually go further and get a 3rd-order accurate
scheme. Insert eqs. (8) and (9) into eq. (5):

f1 = −fb
l1(l1 + l2 + l3)(l2 + l3)

l22l3 + l2l33

+ f2
l3

l22l3 + l2l23
[(l1 + l2)l3 + (l1 + l2)2]

+ f3
(l21l2 + l1l

2
2)

l22l3 + l2l23

− f ′′′b
1

6
[l21(l1 + l2 + l3) + 2l1l2l3 + l22l3], (13)

drop the f ′′′b term and rearrange for f3:

f3 =
l22l3 + l2l

2
3

(l21l2 + l1l22)
f1

+ fb
l1(l1 + l2 + l3)(l2 + l3)

(l21l2 + l1l22)

− f2
l3

(l21l2 + l1l22)
[(l1 + l2)l3 + (l1 + l2)2]. (14)

f3 is now known to third order, and can again be inserted
into a standard finite difference scheme.

These two schemes, for second- and third-order, use the
points along the field line which are already used in the
second-order FCI parallel derivative operator. Higher or-
der schemes can be derived along similar lines, but these
require more points along the field lines. These could be
generated at the same time as the initial field line tracing.

It is natural to ask if this scheme has consequences for
field lines that intersect the boundary at shallow angles,
or equivalently with low perpendicular resolution grids.
Magnetic field lines might be so shallow as to intersect
many perpendicular planes before hitting the boundary.
That is, the intersection point on the adjacent plane may
be outside the grid but still inside the material wall. We
don’t anticipate this to be a problem, as for this case,
the LVF scheme changes from an extrapolation in the
parallel direction, to an interpolation which is often more
numerically stable. This can be seen by reducing the tilt

of the field line in fig. 2. When the field line is angled
such that f3 now lies above the boundary (but still below
f2 in the perpendicular direction), then fb must be now
further along the field line from f2 than f3.

We have also derived an expression for f ′2 based on a
non-uniform grid. Instead of extrapolating to find val-
ues on the field line “leg”, one can use the value on the
boundary directly, but now the finite difference scheme
for the parallel derivative must be adapted in order to
maintain the second order accuracy. The second order
accurate central difference for parallel derivative using
this scheme is

f ′2 =
fb
l1
l2

+ f2( l2l1 −
l1
l2

)− l2
l1
f1

l1 + l2
. (15)

However, when we tested this approach in a python toy
model, we found that this scheme was more prone to
numerical instabilities.

Further boundary condition schemes have also been in-
vestigated, such as asymmetric or one-sided differences.
For these types of schemes, the field line needs to be
traced further to the two immediately adjacent poloidal
slices. However, the LVF scheme appears to demonstrate
the best numerical properties and is the simplest to im-
plement.

2. Arbitrary geometry

The boundary scheme presented here is well-suited to
a logical rectangular mesh, or the case where limiters are
infinitesimally thin and so do not present a face to the
magnetic field in the perpendicular direction, or mask the
perpendicular grid. While this scheme also works in the
case of more complex material boundaries, the problem
is a more general one of how to represent the material
geometry numerically. The mesh has to either follow the
geometry, or grid cells must be “masked” where they in-
tersect the material walls and the equations not evolved
there. A masked mesh complicates not just the interpo-
lation for the LVF boundary scheme, but also perpendic-
ular operators and boundary conditions.

Currently, BOUT++ uses a logical rectangular mesh
with optional branch cuts to handle X-points. Re-
cent work18 has enabled this grid to follow the mate-
rial boundaries more accurately. Future work to upgrade
BOUT++ will also explore grids which can handle com-
plex machine geometries, building on the work presented
here.

C. Implementation

The derivation of the FCI technique is discussed in
Refs. 1 and 2; here we discuss its particular implemen-
tation in BOUT++. There are three major steps re-
quired for FCI: first, the magnetic field lines must be fol-
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lowed from each grid point in both directions, and the in-
tersection points with the adjacent perpendicular planes
recorded; secondly, the scalar field must be interpolated
at the intersection points; lastly, a finite difference can
be applied using the interpolated values.

Following the magnetic field lines, or field line trac-
ing, generates a field line map that maps a given grid
point to its intersection point on the next/previous per-
pendicular plane. Two field line maps are needed, one
for the forwards (positive y) and one for the backwards
(negative y) directions. We construct these field line
maps with a tool called Zoidberg, written in python.
Zoidberg uses odeint from SciPy19 to trace the field
lines. The magnetic field can be supplied to Zoid-
berg either as an tuple of three analytic functions (for
Bx(x, y, z), By(x, y, z), Bz(x, y, z)), or a tuple of arrays
which are to be interpolated by odeint. The latter form
allows general numeric equilibria (from e.g. VMEC 20

or EFIT 21 files) to be used as input for FCI grids in
BOUT++. The output from Zoidberg is a file contain-
ing the field line maps. This is an input to BOUT++ –
currently, only time-independent magnetic fields are sup-
ported.

The second step of the FCI method, interpolation, is
handled internally in BOUT++. At each time-step, all
fields which are to be acted upon by parallel derivative
operators must be interpolated at the points held in the
field line maps. For details of the specific interpolation
techniques used in BOUT++, see section III.

The boundary conditions in BOUT++ are set at run-
time, including the choice of making the y and/or z
boundaries periodic for FCI. Currently, non-periodic z
boundaries are only supported by the FCI parallel deriva-
tive operators in BOUT++, and not by any other spa-
tial operator. Future work will address supporting non-
periodic z boundaries generically.

During the initialisation stage in BOUT++, the field
line maps are read in, the field lines that hit the edge are
detected, and for each such field line a data structure of
information required for the boundary condition is ap-
pended to a vector. A separate vector of these structures
is kept for the forward and backward directions, and each
vector is stored in a BoundaryRegionPar class. When
the boundary conditions are applied to a field during the
course of the simulation, these vectors can be iterated
over, and the LVF scheme is applied to populate the rel-
evant points.

The BoundaryRegionPar class needs to know some
pieces of information about the field lines that intersect
the boundaries. These are the originating index point,
the index-space coordinates of the intersection with the
boundary, and the angle and distance to the boundary.
Briefly, the algorithm to collect this information is im-
plemented as follows: first determine which, if any, edges
the field lines intersect; then find the coordinates of the
intersection point. For simple, planar boundaries, deter-
mining the intersection point is a trivial application of
trigonometry; for more complex boundaries, determining

where the field lines intersect the material walls may need
to be done in the field line tracing procedure. In either
case, once the intersection point with the boundary is de-
termined, the distance along the field line, and the angle
the field line makes to the boundary can be computed.
While the angle of intersection is not used in the present
work, it may be useful in more sophisticated boundary
conditions, e.g. Loizu22 boundary conditions for plasma
pre-sheaths in the divertor region of tokamaks, where the
boundary ion velocity is proportional to the sine of the
angle of intersection.

D. Verification

An important part of testing a numerical model is
verifying that it correctly implements the mathematical
model. Validating that the mathematical model correctly
represents reality is a separate consideration. Given that
it is often the case that an analytical solution cannot be
constructed for a mathematical model, it is necessary to
use a different technique, such as the Method of Manu-
factured Solutions23–25 (MMS). With MMS, an arbitrary
“manufactured” solution is imposed, and the mathemat-
ical model is applied to this solution. This manufactured
solution is in general not an exact solution, however, the
“remainder” may be added to the numerical model as
source terms such that the manufactured solution now
is an exact solution of the modified model. The error is
defined as the difference between the numerical solution
and the manufactured solution. Details on how the MMS
framework is implemented in BOUT++ can be found in
Ref. 7.
BOUT++, including the FCI method, has been suc-

cessfully verified using MMS in periodic domains7. In
this work we use MMS to verify the 2nd- and 3rd-order
LVF boundary condition scheme, as well as to verify
different interpolation methods (section III). The same
physics model, computational domain and magnetic field
as in Ref. 7 were used, which we briefly restate here. Two
coupled differential equations were evolved for a single
time-step:

∂f

∂t
= ∇‖g +D(dy)2∇2

‖f

∂g

∂t
= ∇‖f +D(dy)2∇2

‖g

(16)

where D = 10 is an artificial diffusivity used purely
for numerical stability. A sheared slab with dimensions
Lx = 0.1m, Ly = 10m, Lz = 1m in the radial, parallel
and binormal directions, respectively, and magnetic field
(Bx, By, Bz) = (0, 1, 0.05 + (x− 0.05)/10) was used. The
manufactured solution used was

f = sin(ȳ − z̄) + cos(t) sin(ȳ − 2z̄), (17)

g = cos(ȳ − z̄)− cos(t) sin(ȳ − 2z̄), (18)

where ȳ, z̄ are normalised to be between 0 and 2π. The
diffusion terms in eq. (16) scale with dy2 and so do not
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affect the convergence of the error on ∇‖. As in Ref. 7,
we scale the grid in y and z simultaneously.

Figures 3 and 4 show the scaling of the MMS errors for
f, g for the 2nd- and 3rd-order LVF schemes, respectively,
implemented in BOUT++. The two schemes produce
almost identical results, as the limiting factor on the error
scaling is the finite difference scheme, which is second
order.

It should be noted that because the 3rd-order LVF
scheme relies on “upstream” information (i.e. points
away from the boundary), it gets stuck in corners, where
the field line leaves the boundary in both the forward
and backward directions. In these cases, the boundary
condition cannot be applied, as is the case for the slab
topology presented here. As this is not possible, the re-
sults shown here are where the z-direction is periodic but
the y-direction is not. Switching which directions are pe-
riodic changes the order by only a fraction of a percent.
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FIG. 3: Error scaling for the 2nd-order LVF scheme in
BOUT++. Solid lines are the l2 norm, dashed lines are

the l∞ norm (i.e. max. error).

E. Limiters

While true arbitrary shaped boundaries have not yet
been implemented in BOUT++ due to the reasons
stated above, we have made the first steps by imple-
menting an infinitesimally thin poloidal limiter. Field
lines either hit the limiter on the front/back face or they
miss the limiter altogether and pass behind/in front of
it. Thus, no masking of the perpendicular grid is re-
quired, which would complicate operators in this plane.
The limiter is located halfway between the last and first
y-planes.

Limiters are implemented in BOUT++ as any func-
tion of (x, z) (i.e. on the perpendicular plane) that passes
through 0, with positive values indicating the material
walls. This enables arbitrarily shaped limiters to be eas-
ily created.
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FIG. 4: Error scaling for the 3rd-order LVF scheme in
BOUT++. Solid lines are the l2 norm, dashed lines are

the l∞ norm (i.e. max. error).

The implementation of the limiter is very simple: field
lines that end on the y = 0 slice can check if they hit
the limiter by evaluating the limiter function described
above. If the result is positive, they are put in the same
vectors of field lines held by the BoundaryRegionPar ob-
jects, and treated identically.

III. INTERPOLATION

The FCI method relies on interpolation in order to
work, and it is the interpolation which is the most com-
putationally expensive part of the technique (outside of
the initial field line tracing, which only needs to be done
once for static magnetic fields). It is therefore impor-
tant to understand how much of an impact the interpo-
lation makes on the accuracy and efficency of the parallel
derivate operator. We have implemented three different
interpolation methods - bilinear, four-point Lagrange and
Hermite splines. The choice of interpolation scheme is
made at runtime.

After nearest-neighbour interpolation, bilinear inter-
polation is one of the most basic forms of interpolation
in two dimensions, and consists of two sets of linear in-
terpolation: first in one direction, then in the other.

Lagrange polynomials ensure that the interpolated
function goes through the data points exactly. Similarly
to the bilinear interpolation, one dimensional polynomi-
als are used to interpolate in each dimension successively.
An nth order accurate scheme needs to use polynomials
of degree at least n, which in turns requires at least n+1
data points. Higher order polynomials can be used, but
these are prone to over-fitting and spurious oscillations
between the data-points. A 3rd-order (4 point) 2D La-
grange interpolation is implemented in BOUT++.

Lastly, Hermite splines are piecewise polynomials that
use the first derivative of the interpolant to act as a ten-
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sion parameter, ensuring that the interpolated function
is C1 continuous. Such splines are computationally more
expensive than splines without tension parameters, as the
first derivative needs to be evaluated several times for
each interpolation. A 3rd-order Hermite spline scheme is
used in BOUT++ as the default interpolation method
for FCI. This is the choice of interpolation scheme used
in the original FCI papers1,2.

We use the two-field wave model (eq. (16)), and verify
the interpolation schemes using MMS (see section II D).
The results are summarised in fig. 5. Bilinear interpola-
tion does not recover the expected scaling on ∇‖. This
is because the error on the interpolation is O(dy), which
is worse than the order of the finite difference scheme. It
is not clear why the overall scaling is then O(1).

Four-point Lagrange and Hermite splines are both
O(dy3), which is better than the finite difference error,
and so recover the expected scaling. The Hermite spline
interpolation is roughly ∼ 10% more computationally ex-
pensive than the Lagrange polynomials due to the need
to evaluate the first derivative. However, it does ensure
that the interpolated function is C1 continuous, which
may be advantageous, especially for non-linear simula-
tions.
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FIG. 5: Error scaling of the field f for three different
interpolation schemes. Solid lines are the l2 norm,

dashed lines are the l∞ norm

IV. 3D MAGNETIC FIELDS

The FCI technique has been demonstrated and used
in sheared slab1, cylindrical1, X-point and island2,3, and
tokamak4 magnetic geometries. Here we demonstrate for
the first time its use in stellarator-like fields. This mag-
netic geometry is fully 3D, but has “extrinsic” curvature,
i.e. the curvature has to be handled by a bracket operator
in the physics model, rather than through the metric ten-
sor. Note that this is a limitation of the current version
of BOUT++, and not of the FCI method in general.

A. Stellarator geometry

Due to the BOUT++ limitations described above we
implement a “straight stellarator”, similar to a screw-
pinch. Because it’s not possible to use a Grad-Shafranov
solver for this magnetic equilibrium, we instead specify

coils and compute ~B from Ampère’s law. We use four

coils, defined by the position ~R of the k-th coil which is:

~Rk(ϕ) = (x0 + rcoil cos( 1
2kπ + ιϕ))~̂x

+ (z0 + rcoil sin( 1
2kπ + ιϕ))~̂z,

(19)

where (x0, z0) is the centre of the domain, rcoil is the
radius of the coil, ι is the rotational transform of the
coils and the current in the k-th coil is given by

Ik = (−1)kIcoil, (20)

with Icoil an input parameter.
The magnetic field at a point in space can then be

computed as a sum of contributions from the coils:

Bx(x, y, z) =
∑
k=0

Ik
C

r2
k

sin(θk)

Bz(x, y, z) =
∑
k=0

−Ik
C

r2
k

cos(θk)

(21)

where rk is the distance (in the (x, z) plane) to the k-
th coil, θk is the azimuthal angle to the coil, C is some
nature of constant. We now have expressions for the
magnetic field components which can be used as inputs
to Zoidberg in order to trace the magnetic field and
produce the field line maps required for BOUT++.

FIG. 6: Poincaré plot of a straight stellarator at three y
planes

Figure 6 shows the Poincaré plot at three different y
locations, demonstrating the existence of flux surfaces.

We would also like to be able to initialise fields on
flux surfaces. While flux surfaces do exist for this mag-
netic topology, we do not have an expression for ψ, the
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poloidal magnetic flux. Instead, we can use Zoidberg
to construct numerical approximations to the flux sur-
faces. By launching field lines from uniformly spaced
radial positions, from the magnetic axis to one edge of
the box, and by following them many times around the
periodic domain in y, flux surfaces are eventually traced
out. Values in [0, 1) are then assigned to the field lines
according to their initial radial position, and these values
then interpolated onto the simulation grid. Points out-
side the last closed flux surface can be assigned the value
1. The resulting scalar field is numerical approximation
to (normalised) ψ. Initial conditions for the simulation
fields can then be constructed in terms of this approxi-
mation to ψ and are therefore flux functions, up to the
accuracy of the field line tracing and the interpolation
onto the grid. The ψ approximation is used only in the
initialisation, and does not appear in the simulations.

V. SIMULATIONS

A. Limiter

We present here preliminary results showing how FCI
is able to handle complex 3D magnetic geometry, includ-
ing first steps towards arbitrary boundaries. The mag-
netic geometry is a “straight stellarator” as described in
section IV A. The computational domain is a box, peri-
odic in the y-direction, with Dirichlet boundary condi-
tions in (x, z).

For these initial simulations, we use a very simple par-
allel diffusion model:

∂f

∂t
= D‖∇2

‖f, (22)

where f is some scalar field (which we refer to as den-
sity), and D‖ is the parallel diffusivity. Using this model,
an initial perturbation will diffuse along the field lines,
tracing out flux surfaces. Due to the Dirichlet boundary
conditions, density on field lines that hit the boundary
will quickly decay away, effectively creating a last closed
flux surface (LCFS). Turning on the limiter will therefore
change the position of the LCFS.

Figure 7 shows the initial condition:

f(x, y, z; t = 0) = 100 gauss(x− 0.2, 0.011)

× gauss(z − 0.15, 0.3) sin6( 1
2y),

(23)

where the normalised Gaussian with width w is given
by gauss(x,w) = exp[−x2/(2w2)]/(w

√
2π). The initial

condition is a blob, spatially localised off-axis in (x, z),
with a wide distribution in y.

The thin dot-dashed black lines in fig. 7 show the lo-
cations of flux surfaces. In the absence of a limiter,
the initial perturbation crosses most of the flux surfaces,
whereas with a limiter, it is mostly outside the LCFS.
Snapshots of f at late times, with and without a limiter,
are shown in figs. 8b and 8d. The density quickly diffuses

along the field lines, either hitting the (x, z) edges, or the
limiter. In either case, the field is cut off at the respective
LCFS.

Figure 8 show the results of two simulations of the
diffusion model (eq. (22)) at the same simulation time,
figs. 8c and 8d have a circular limiter at y = 0 centred
on x = 0.15, z = 0.15 with radius r = 0.06. Figures 8b
and 8d show slices of the (x, y) plane half-way through
z, whereas figs. 8a and 8c are slices of the (x, z) plane at
y = 0. The vertical solid black lines in fig. 8d and the
solid black circle in fig. 8c show the position of the lim-
iter. Note that the limiter is really infinitesimally thin,
so presents surfaces only in the (x, z) plane and has no
y-extent.

FIG. 7: Heat map of initial condition for f in diffusion
model in the (x, y) plane at z = 0.15. Solid black lines
indicate size and position of limiter. Dashed black lines
indicate position of last closed flux surface. Dot-dashed

lines show positions of flux surfaces.

B. Upscaling

As with traditional field-aligned techniques, one of the
raisons d’être of the FCI technique is the ability to use a
low number of points in the parallel direction in order to
resolve the relevant physics of a model. Unfortunately,
this has a downside when it comes to visualising the data.
Typically, visualisation programs use some nature of in-
terpolation in the Cartesian (simulation grid) directions
in order to show smoother images. Because the magnetic
field is not aligned with the grid, and structures in the
data are typically aligned with the magnetic field, this
results in rather blocky artefacts. We can reduce or re-
move these artefacts by first upscaling, i.e. increasing the
resolution in the parallel direction, the data ourselves. If
we assume the scalar field is slowing varying along the
magnetic field line (which is an assumption of FCI it-
self), we can linearly interpolate along the field line to
reconstruct the scalar field at higher parallel resolution.

The upscaling technique we use is as follows. First, as
with the usual FCI method, interpolate the data onto the
field line end points in one direction. Then, use a linear
interpolation between the start and end points to get the
desired number of additional points. As well as inter-
polating the data, the x, z displacements should also be
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FIG. 8: Heat map of f in diffusion model at t = 400 . (a): no limiter, (b): circular limiter. Solid black lines indicate
size and position of limiter. Dashed black lines indicate position of last closed flux surface. Dot-dashed lines show
positions of flux surfaces. Note that these figures have been upscaled in post-processing following the procedure

outlined in section V B.

linearly interpolated, which saves having to re-integrate
the magnetic field. We now have a “cloud” of data on
new points. Depending on the visualisation program,
these new data can be interpolated themselves back onto
a higher resolution rectangular grid, or left as a semi-
unstructured grid.

Figure 9 contrasts the result of using this upscaling
against the original data. In the original data, there are
clear unphysical lobes or fins which are aligned in the y
direction, although the simulation is well resolved. In the
upscaled version, there are still lobes, but they are now
much smaller, and it is now easier to see how the density
follows the field lines.

One issue with this upscaling algorithm is that it may
give “strange” results when the data are not field-aligned,
for example, as with initial conditions or injected sources.
In this case, the artefacts are now “blocky” in the parallel
direction. Note also that such structures will likely not be
well resolved by either FCI or field-aligned approaches.

C. Numerical diffusion

There is some perpendicular (cross-field) diffusion from
the numerical scheme, even in the model with only par-
allel derivatives (eq. (22)), due to, e.g. the interpolation
scheme. The numerical diffusion in FCI has already been
characterised in axisymmetric magnetic geometries1,2,4.
Here we present an estimate of the numerical diffusion

FIG. 9: Visualisation of diffusion model (eq. (22)) in
ParaView, original data on the left, upscaled by factor 4
on the right. The presence of “fins” can be seen in the

original (left) data. These are caused by the
visualisation program interpolating in the Cartesian

directions, rather than along the magnetic field. In the
upscaled (right) version, the data has been interpolated

in the parallel direction in order to reduce these fins.

for the straight stellarator topology. The expectation is
that this should not be substantially different from the
previous results1.

Using the diffusion model (eq. (22)) and initialising
f such that ∇2

‖f = 0, the numerical diffusion can be
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estimated using

df

dt
= Deff

⊥ ∇2
⊥f (24)

where Deff
⊥ is the effective perpendicular numerical diffu-

sivity. At each time-step, df/dt and ∇2
⊥f can be saved

and Deff
⊥ can be computed with

Davg
⊥ = 〈‖∂tf‖/‖∇2

⊥f‖〉, (25)

where ‖‖ is the 2-norm, and angle brackets indicate time
average over latter half of simulation. The time average
is over the second half of the simulation in order to ignore
the effect of initial transients.

In order to measure Deff
⊥ we need to ensure that the

parallel derivatives are zero, as this would appear to
transport f in the perpendicular plane. To do this, f
must be initialised to a flux-function (i.e. constant on
flux surfaces). Because we do not have an expression for
ψ, we must construct a numerical approximation to ψ as
described in section IV A, which can then be used to set
an initial condition that is constant on flux surfaces. The
initial condition is a Gaussian in ψ,

f(ψ; t = 0) = A exp(−(ψ − ψ0)2/(2∆2)), (26)

with A = 1, ψ0 = 0 and ∆ = 0.1. Simulations were
run up to 100t, at fixed ny = 16, with nx = nz ∈
{16, 32, 64, 128, 256}.

The results are summarised in fig. 11. The overall scal-
ing of Deff

⊥ with the perpendicular resolution is of order
2.67, and the absolute values are broadly in line with
Ref. 1, despite the magnetic topology there being ax-
isymmetric.

VI. CONCLUSIONS AND DISCUSSION

We have demonstrated a numerical scheme for parallel
boundaries, where magnetic field lines intersect the mate-
rial wall, for use with the Flux-Coordinate Independent
(FCI) method for numerical derivatives parallel to the
magnetic field. The scheme for Dirichlet boundary con-
ditions is based on a Taylor expansion about the bound-
ary in order to extrapolate the field onto the “leg” of the
field line outside the boundary. Second- and third-order
accurate versions of the scheme have been derived. In
the case of shallow grazing angles, where the field line in-
tersects the next poloidal plane before the material wall,
this scheme corresponds to an interpolation in the paral-
lel direction, and so arbitrary-shaped material walls may
be handled easily with the same scheme. The Method of
Manufactured Solutions (MMS) has been used to rigor-
ously verify the accuracy and correct implementation of
the boundary scheme.

The feasibility of performing simulations in non-
axisymmetric magnetic configurations using the FCI
method has been demonstrated, with a simple diffusion
model in a straight, stellarator-like magnetic field. An

initial Gaussian blob in a simple diffusion model traces
out flux surfaces. The inclusion of a poloidal limiter re-
duces the radial extent of the flux surfaces thereby traced
out. Non-axisymmetry has been shown to not substan-
tially affect the effective numerical diffusivity.

A novel technique for reducing blocky artefacts in vi-
sualisations during post-processing has also been demon-
strated. By linearly interpolating both the data to be
visualised and the field line displacement map at the
same time, the parallel resolution of the data can be up-
sampled, and the new data re-interpolated onto a higher
resolution grid. Smoother, contours can then be pro-
duced, with fewer artefacts not present in the data.

An open question remains on the computational effi-
cency of FCI. Obviously, this does depend on the exact
interpolation method used, the perpendicular grid resolu-
tion, the finite difference scheme, the degree of anisotropy
in the physics, etc., but what is not obvious is when the
cost of the FCI overheads is outweighed by the advantage
in the parallel resolution.

An important consideration is that FCI is designed for
complex magnetic topologies which are difficult to repre-
sent or capture with conventional field-aligned grids. For
example, the island divertors in a stellarator26 involve
multiple null points as well as large regions of stochastic
magnetic field. These would be very challenging to sim-
ulate using the usual mesh in BOUT++. Another ex-
ample would be the snowflake divertor concept27, which
has multiple legs. This has been previously attempted
in BOUT++28, but this study was only able to cap-
ture the expanded flux surfaces in the region of the null
point, and not the additional legs which are a feature of a
second-order null point. Here, then, it is clear that using
the FCI method lets us get much further towards simu-
lating plasma in these complex geometries, regardless of
the computational cost.

In other situations, it is not so clear-cut that FCI
presents a major advantage over a field-aligned grid.
Take, for instance, an island perturbation on a tokamak
equilibrium. This can be represented in a field-aligned
grid simulation by splitting the magnetic field into equi-
librium and perturbation caused by the island. A bracket
operator can then be used to capture the physics due to
the island field. The same method can be used for elec-
tromagnetic simulations where the perturbed magnetic
field is a function of time. In this case, further study
is needed to determine the parameter regime where it is
clearly advantageous to use FCI over a field-aligned grid.
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FIG. 10: Initial condition for the numerical diffusion test case. (a): (x, z) plane at y = 0, (b): (y, z) plane at
x = 0.15.
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