
EUROFUSION WP14ER-PR(16) 16091

E Lanti et al.

A Portable Platform for Accelerated PIC
Codes and Its Application to Multicore

and Many Integrated Cores
Architectures Using MPI and OpenMP

Preprint of Paper to be submitted for publication in
Computer Physics Communications

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



A Portable Test Bed for Accelerated PIC Codes and its Optimization on
Multicore and Many Integrated Cores Architectures Using MPI and OpenMP

E. Lantia,∗, T. M. Trana, A. Jockschb, F. Hariric, S. Brunnera, C. Ghellerb, L. Villarda
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Abstract

With the aim of developing efficient optimizations and parallelization algorithms for porting application PIC codes

to new multi- and manycore HPC platforms, a test bed called the pic engine has been developed as a simple and

portable abstraction of the PIC algorithm. In this work, we use it to test the hybrid MPI/OpenMP implementation

as well as different algorithmic optimizations. Among them, a counting sort method is implemented to increase

data locality in the memory and thus increase the performance. Thanks to the portability of the pic engine,

several optimization algorithms are tested on the two Cray XC30 and XC40 machines from CSCS in Switzerland

and the Bullx B510 supercomputer at IFERC-CSC in Japan equipped with both CPUs and Intel Xeon Phi

processors. The results show that with our optimizations the performance can be increased by at least a factor

2.15 compared to the initial non-optimized version of the pic engine.

Keywords: Particle-In-Cell, parallelization, OpenMP, MPI, multithreading, vectorization

1. Introduction

Particle-In-Cell (PIC) codes are widely used in computer simulations as a mean to solve integro-differential

equations. Developed in the mid 50’s for hydrodynamic problems [1], the PIC algorithm has quickly gained

popularity in the plasma physics community [2, 3] and is now extensively used to solve the Vlasov-Maxwell (or

Fokker-Planck) problem [4, 5, 6, 7].

In the PIC algorithm, so-called numerical particles, or markers, are used to represent the physical particle’s

distribution function and are evolved in their continuous phase space in a Lagrangian frame. Typically, a PIC

simulation consists in a sequence of discrete time steps for each of which the marker equations of motion have

to be solved. To that end, the contribution from each marker to the electric charge and current fields are first

deposited on a discretized grid and the self-consistent electromagnetic fields are computed. Then, the Lorentz

forces acting on the markers are evaluated by interpolating the electromagnetic fields at the particle’s positions

which enables to advance their velocities and finally update their positions.
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To resolve the high-dimensional phase space, in any case, requires significant numerical resources. Furthermore,

based on the statistical Monte-Carlo method, the PIC algorithm generally requires a large amount of numerical

markers to reduce the statistical noise. Thus, PIC codes usually need the use of High Performance Computing

(HPC) platforms that provide the required large computing capacities.

During the last two decades, PIC codes have dramatically evolved to take full advantage of the low-level

parallelism provided by the present HPC clusters, usually using the Message Passing Interface (MPI) programming

model. However, recently emerging platforms equipped with multi- and manycore shared memory processors now

supply an additional level of parallelism through threads that has to be exploited.

In this paper, we present various optimization techniques as well as parallelization algorithms that were tested

using the pic engine. This platform has been developed as a test bed allowing one to easily implement and test

algorithms in a framework retaining only the key elements of the PIC algorithm. It is designed to be modular and

portable such that it can be used on different multi- and manycore architectures such as GPU-equipped machines

[8, 9, 10]. Here, this study focuses on multicore CPUs and the Intel Xeon Phi Many Integrated Core (MIC)

[11] processors. The portability is an important aspect of the work since the pic engine is meant, in a future

work, to deploy generic optimizations to the PIC algorithm that will be used to port to the multi- and manycore

platforms full application codes such as the global gyrokinetic code ORB5 [6, 12] used to simulate turbulence in

magnetically confined plasmas and the RAMSES [13] code that models astrophysical systems. To this end, the

pic engine is designed to be the simplest abstraction possible of the PIC algorithm but nevertheless retaining

its essential elements. In this way, we can study the optimization techniques implemented on the most general

parts of the algorithm and treat the fundamental parallelization problems inherent to the PIC method.

As a base case for this work, the pic engine evolves a simple plasma physics problem and the methods will

thus be designed with this goal in mind. However, the portability is ensured by only treating the elements of the

PIC algorithm that are common between different research fields.

The pic engine is written in Fortran using hybrid MPI and OpenMP for the CPU parallelization. The Open-

MP API has been chosen as it is standardized and portable. Furthermore, it is usually easy to handle and can

be implemented incrementally. Note that with this programming model, the same source code can be run either

on CPUs or MICs in native or symmetric modes, i.e. treating the MICs as standalone processors.

The paper is organized as follows. In section 2, we present the pic engine platform, its main methods, and

how it is parallelized. Section 3 is the main section of the paper presenting the performance analysis of the

pic engine components as well as the overall performance of the program for both single and multinode tests.

Finally, the conclusions are given in section 4.

2. The pic engine platform

Particle-In-Cell codes are widely used in plasma physics applications as a mean to evolve the plasma species

distributions according to the kinetic Vlasov-Maxwell system of equations. The physical particles are represented
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by a set of numerical markers that are continuously evolved in phase space and represent the sources for the

self-consistent electromagnetic fields. The basic PIC algorithm adopts a Lagrangian description of the system

which is evolved following four steps, as seen in Figure 1. The first one is the charge assignment, called setrho,

in which the charge and current carried by the particles are deposited from the particle’s positions (p index) to

the field grid (i index). In the second step, the self-consistent electromagnetic fields ~E and ~B are computed on

the grid according to Maxwell’s equations and for the charge and current deposited previously. In the following

step, called accel, the Lorentz force acting on the particles is evaluated and interpolated back from the field grid

to the particle’s positions. Finally, the particle’s positions and velocities are updated in the push step. A PIC

simulation therefore typically consists of a set of time iterations during which each of these four steps is carried

out.

Figure 1: Time loop of the PIC algorithm. Each iteration consists of four steps. (1): The contribution to the charge and current

fields are deposited from the particle’s positions (p index) to the field grid (i index). In the pic engine, this step is called setrho and

only the charge is deposited. (2): Using the deposited charge and current, the electromagnetic fields ~E and ~B are computed by the

field solver. (3): The Lorentz forces acting on the particles are estimated based on the electromagnetic fields which are interpolated

from the grid to the particle’s positions. These forces allow updating the particle’s velocities. (4): Finally, the particle’s positions are

updated. In the pic engine, the last two steps are called accel and push respectively.

2.1. Structure of the pic engine

With the aim of developing and testing optimization techniques and parallelization schemes for porting PIC

codes to the new multicore and MIC architectures, the pic engine has been implemented using Fortran and

parallelized with OpenMP and MPI. It corresponds to an abstraction of the PIC algorithm presented in the

previous paragraph, retaining only its key elements. For the sake of simplicity, it evolves a single-species plasma

in the electrostatic limit. No magnetic field is considered and the electric field ~E(~x) is imposed and assumed

periodic in all three configuration space dimensions and stationary in time:

ϕ(x, y, z) = cos (kxx) cos (kyy) cos (kzz) , (1)

~E(x, y, z) = −∇ϕ(x, y, z), (2)
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where ϕ(x, y, z) is the electrostatic potential and ki are the components of an arbitrary wave vector. Consequently,

no field solver is required here. Note that the computation of the fields reduces to a linear problem that can be

solved with various types of approaches, e.g. direct, iterative and multigrid methods. Since these methods and

their parallelization are well known, they are not considered here. Due to the electrostatic approximation, only

the charge is deposited on the field grid in the charge assignment step setrho. In the accel step, to evaluate

the Lorentz force ~F , the electrostatic field is interpolated from the field grid to the particle’s positions which

then allows evolving the particle’s velocities. Similarly, the positions of the particles are updated in the push

method. In these last two steps, the time integration is done using a second order leap-frog scheme that is energy

conserving and reversible [2], see Section 2.1.3 for more details.

At this point, it is important to note that the pic engine is only meant to study the algorithmic performance

of the different parts of the PIC algorithm and no physical results are sought. Thus, the absence of a field solver

and the use of the aforementioned approximations are not critical for our study. Furthermore, with a field solver

and some minor changes, the pic engine can solve different plasma physics problems of interest [14]. Also, we

keep in mind that for application codes such as ORB5 using non-standard PIC methods, e.g. involving higher

order schemes or more complex equations of motion, the numerical cost of accel, push and setrho is greatly

enhanced by the complexity of the problem.

2.1.1. Data structure and particle initialization

In the pic engine, field and particle data structures have to be distinguished. The field quantities, in partic-

ular, the electrostatic field and the particle charge density are represented on a 3D periodic domain of length lx,

ly and lz discretized in nx, ny and nz intervals. The subscripts represent along which direction of the Cartesian

coordinates (x, y, z) the quantity applies. On the other hand, particle quantities such as their positions and veloc-

ities can take any values in the phase space (~x,~v) and are stored in the part att(natts,np) array, where natts

represents the six particle attributes, namely the Cartesian coordinates of the positions and the corresponding

three coordinates of the velocities, and np is the number of particles in the system. The part att array can

be stored either in Array Of Structures (AOS), i.e. part att(natts,np) or in Structure Of Arrays (SOA), i.e.

part att(np,natts). As we shall see in the next sections the way of storing data in memory significantly affects

the performance.

At the beginning of the simulation, the particle’s positions and velocities are initialized using the Fortran

random number method. The positions are uniformly distributed in the periodic configuration domain. The

velocities vx and vy are initially distributed uniformly with |vx, vy| ≤ vmax, where the parameter vmax sets

a maximum velocity while vz can be either uniformly distributed as vx and vy, or distributed according to a

normalized Boltzmann distribution.
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2.1.2. Parallelization

The pic engine parallelization is achieved using a hybrid MPI/OpenMP implementation, see Figure 2. First,

the 3D domain is decomposed into nsd subdomains in the z direction. Each subdomain grid data is then replicated

into nclones clones and this 2D decomposition is mapped onto an MPI grid. Finally, a third level of parallelism

is added using OpenMP by assigning nthread threads to each MPI task, so that the total number of cores used is

equal to the product nsd× nclones× nthread. Usually, the number of cores used by the program is equal to the

number of physical cores on the processor. However, using Intel’s Hyper-Threading technology, it is possible to

initialize more threads than physical cores. Depending on the application, this can be beneficial or, in the worst

case, can decrease the performance.

0

1

2

3

0 1 2 3 4 5 6 7

Figure 2: Illustration of the pic engine parallelization. The 3D domain is first decomposed into nsd subdomains in the z direction.

Each subdomain is then copied nclones times and this 2D decomposition is mapped onto an MPI 2D grid. Finally, OpenMP is

introduced and nthread threads are affected to each clone. With this parallelization scheme, only two types of communications are

needed for three operations: a reduction is done across the clones to gather the partial charges with MPI allreduce and particles

and guard cells are transferred across subdomains with MPI point-to-point sendrecv.

It is important to note that communications are only needed for three operations. First, all the partial

charges computed by setrho on each clone of one subdomain must be added using MPI allreduce operations

and the guard-cells must be exchanged with neighboring subdomains using MPI point-to-point sendrecv. Then,

the particles have to be transferred between subdomains; this is done by the pmovez routine using MPI point-

to-point sendrecv directives. The pmovez method allows one to transfer the particles not only to the nearest

neighboring subdomains but is applicable to an arbitrary source/destination pattern.

2.1.3. Charge deposition, particle accelerating and pushing

As we have seen at the beginning of this section, the pic engine consists of three main steps: the charge

deposition, the particle accelerating, and pushing. In the program, they are implemented respectively in the

setrho, accel and push methods. In this section, we discuss their implementation which is mainly inspired by

[2].

The first step in the PIC algorithm is the charge deposition. Its goal is to collect the electric charge density
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ρ of all particles and to deposit it on the field grid with the aim of computing the electrostatic field. Thus, for

each particle, we have to compute

ρgrid ←− ρgrid + ρdepp (particle to grid), (3)

where ρgrid is the charge already deposited on the field grid and ρdepp is the charge of the current particle deposited

on this same grid using a first-order particle weighting. This approach, also called Cloud-In-Cell (CIC), works as

follows. For a particle that lies in the interval [xi, xi+1), we first compute its relative position:

wp =
xp − xi

∆x
,

where xp is the particle’s position and ∆x is the length of the interval. Then, we deposit the charge according to

ρdepp (xi) = 1− wp, ρdepp (xi+1) = wp.

Note that in the pic engine, the equations are normalized such that the elementary charge e and the mass m of

the particles are unity in absolute value. The charge deposition clearly involves a gather operation since particles

are distributed randomly in configuration space, resulting in an indirect addressing to the ρ array when depositing

the contribution from each particle. This indirect writing has to be taken care of carefully when parallelizing the

setrho method for shared memory systems to avoid race conditions, i.e. when two or more threads try to modify

data stored at the same memory location.

The particle’s equations of motion

d~v

dt
= ~F = − ~E, (4)

d~x

dt
= ~v, (5)

are respectively solved by the accel and push methods. To evolve the particle’s positions and velocities, we use

the leap-frog method [2] that consists in discretizing the equations with a finite-difference scheme:

~vnew − ~vold
∆t

= ~Fold, (6)

~xnew − ~xold
∆t

= ~vnew, (7)

where Fold is the Lorentz force computed at xold and ∆t is the numerical time step. They are then evolved on

two separate time-grids staggered by ∆t/2, see Figure 3. By doing so, the leap-frog method is time centered and

thus second order accurate with respect to ∆t.

When using this method, two issues must be correctly addressed. First, since the velocities and positions are

evolved on two different time grids, care must be taken when computing any quantity involving both the particle’s

positions and velocities such as the total energy. Secondly, at the beginning of the simulation, both the velocities

and positions have to be correctly initialized on their respective time grid.

In the accel method, the electrostatic potentials are linearly interpolated from the field grid to the particle’s

positions resulting in piece-wise linear polynomials in the x, y and z directions. The electrostatic field components
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Figure 3: Illustration of the leap-frog method. Newton’s law is split in two first order equations: one for the velocities and one for the

positions. They are then discretized using a finite-difference scheme and evolved on two time grids staggered by ∆t/2. This scheme

is time centered and thus second order accurate.

Ex, Ey and Ez that result from the gradient of the potential are, in their turn, piece-wise constant in the x, y

and z directions respectively and piece-wise linear in the other two directions. This method is not subject to race

conditions because there are no concurrent writes and can, therefore, be parallelized in a straightforward way.

However, due to the indirect read of the field array, vectorized operations are not possible because they are not

in the instruction set of the processor.

In summary, both push and accel methods can be trivially parallelized using OpenMP since they consist

respectively of vector add and multiply (SAXPY) operations and indirect reads. The most challenging method to

parallelize is in fact setrho, as it involves indirect writes that are subject to race conditions. For these reasons,

we shall particularly focus on accel and setrho in the remaining of this paper.

2.2. Particle sorting

In the pic engine, and more generally in most PIC codes, the particles are randomly distributed in space.

As a consequence, data locality is poor and performance drops due to non-contiguous memory writings in setrho

and accesses in accel. Indeed, cache memories are designed to be efficient with consecutive data accesses. If

this is not ensured, significant overhead time will be spent by reloading the data from the main memory. With

increased data locality, it is more likely that the data already in the cache can be reused for further computations

thus avoiding cache misses and reloading.

To this end, we have implemented a sorting method based on the counting sort algorithm. As a reminder, the

algorithm sorts the particles into buckets that typically represent one or more grid cells. This is done in three

main steps, see Algorithm 1:

1. In this first step, we create a histogram of the np particles by parsing them and computing the indices of

their recipient bucket. To this end, the 2D (x, y) plane is mapped on a 1D vector using a linear mapping,

i.e.

index =
⌊ xp

∆x

⌋
+

⌊
yp
∆y

⌋
nx, (8)

where ∆x, ∆y, xp and yp are the interval lengths and the particle’s positions in the x and y directions

respectively. Note that we consider only domains with one grid interval in the z direction but a 3D
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generalization is straightforward. Other options like Hilbert filling curves [15] are also of interest to preserve

data locality across the mapping but they are not considered here.

2. In the second step, an inclusive prefix sum is made. It essentially consists in parsing the nbtot buckets to

compute the ending position of each bucket in the sorted array.

3. Finally, using the results of the prefix sum, the particles are put in their sorted place.

4. The temporary sorted array is copied back to part att.

Algorithm 1 The counting sort algorithm is composed of three main loops that respectively compute the

histogram of the particles in the buckets (lines 1 to 4), compute the starting and ending indices of each bucket

with a prefix sum (lines 5 to 7) and move the particles in their correct order with the help of a temporary array

(lines 8 to 12).

1: for ip = 1, np do

2: id = index(ip) . The index function returns the particle grid-cell index

3: count(id) = count(id) + 1

4: end for

5: displs(1) = count(1)

6: for ib = 2, nbtot do

7: displs(ib) = displs(ib− 1) + count(ib− 1)

8: end for

9: for ip = np, 1,−1 do

10: id = index(ip)

11: part att tmp(:, displs(id)) = part att(:, ip)

12: displs(id) = displs(id)− 1

13: end for

Note that the fourth step was added because this algorithm is out-of-place and hence requires a temporary array.

Memory can be saved with in-place versions but such methods [16] have not been implemented because memory

was not an issue for this application.

A straightforward algorithmic analysis shows that the timing of this sorting is linear in the number of particles

and buckets, i.e. Tpsort = O(np) +O(nb), where Tpsort is the serial timing of the sorting method.

2.2.1. Vectorization

Both setrho and accel methods have to read the particle’s positions to compute in which grid cell they belong.

This requires an indirect addressing in the particle loop which prevents the compiler to use auto-vectorization

because no such vectorization operations are in the instruction set of the processor. To solve this issue, we can

take advantage of the particle sorting. Indeed, with a full sorting, i.e. if the buckets coincides with the grid

cells, all the particle loops with indirect addressing can be replaced by a double loop involving first a loop over
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the buckets and a second loop over the particles in each of these buckets, see Algorithm 2. Indeed, by knowing

which bucket one is treating, one automatically knows the field grid positions of the particles if they have been

fully sorted. By doing so, the inner loop is totally independent of the indirect addressing and the compiler can

vectorize it. This method can be beneficial if the inner loop is long enough to allow a good vectorization.

Algorithm 2 Illustration of the vectorization procedure. In the first method (lines 1 to 4), the grid cell index

of each particle is computed and rest of the routine is executed. In the second method (lines 6 to 12), the loop

over the particle is decomposed into a loop over the grid cells and a loop over the particles in the grid cells. With

this approach, all the particles within each bucket have the same grid cell index for the inner loop. Hence, the

compiler can vectorize it.

1: for ip = 1, np do

2: ! Compute particle grid cell index

3: . . .

4: end for

5:

6: for ib = 1, nx ∗ ny ∗ nz do

7: ! Compute particle grid cell index

8: for ip = displs(ib) + 1, displs(ib+ 1) do

9: ! Then do the calculation for each particle in the current grid cell

10: . . .

11: end for

12: end for

3. Performance analysis

In this section, we present the different optimizations made to the pic engine as well as the timings and

performance gains obtained. The study was performed on Piz Daint and Piz Dora from the Swiss National

Supercomputing Centre (CSCS) and the Helios supercomputer at the Computational Simulation Center of the

International Fusion Energy Research Centre (IFERC-CSC) in Japan. All the relevant characteristics of these

machines are summarized in Table 1.

For both the CSCS machines, Piz Daint and Piz Dora, the Cray compiler cce 8.3.12 and the Cray MPICH

7.2.2 library were used. On Helios, the Intel compiler 15.0.2 in conjunction with Intel MPI 5.0.3 was used.

Except for the MICs that showed a better performance with four threads per core, the hyper-threading was

always disabled to guarantee an optimal performance. All the available cores were used by ensuring that the

product nsd× nclones× nthread was always equal to the total number of cores. In this paper, nclones equal

to 1 corresponds to a pure OpenMP run and nclones equal to the number of cores per node corresponds to a
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pure MPI run. Note that when we talk about pure OpenMP runs, there may be several MPI processes for the

inter-node communications which is typically the case for multinode runs. This terminology is only used here to

emphasize that within each node, all the parallelization is made using OpenMP.

For the MIC nodes, three different run modes are available on Helios: offload, symmetric and native. In this

paper, to ensure a homogeneous performance among the processors and avoid complicated interactions between

MICs and CPUs, we focus on the latter which consists in using the MICs as standalone nodes. This is possible

because each of them is equipped with a Linux micro operating system. In this mode, only the MICs are used,

as opposed to the symmetric mode where either the CPUs and MICs are used in a similar way. Finally, the

offload mode consists in using the MIC as an accelerator. The host, generally the CPU, starts the application

and offloads some data and computations to the MIC.

The standard singlenode problem tested in this study consists in a 512(nx) × 256(ny) × 1(nz) grid with 106

particles similar to [8] for the sake of comparison. When performing a multinode study, we essentially make a

weak scaling, i.e. the size of the problem is multiplied by the number of nodes such that each has an equivalent

per-node workload to the singlenode case. Whenever activated, the sorting was always full, i.e. we considered

512 and 256 buckets in the x and y directions respectively. All the timings given in this paper are normalized to

the standard singlenode problem and are reported in nanoseconds per particle and per time step.

In the following, if not mentioned otherwise, only the results on Helios CPU and MIC nodes are presented for

the sake of conciseness. For every conclusion, it has been checked that it also applies on Piz Daint and Piz Dora.

3.1. Data structure

As a first result, the effect of the data structure is studied. To this end, the code is compiled with both SOA

and AOS data structures and is run on the Helios machine on both CPU and MIC nodes. The singlenode results

for the CPU case are presented in Table 2 for both pure MPI (nclones = 16) and pure OpenMP (nclones = 1).

The SOA data structure is always faster than AOS. Most of the gain comes from the setrho routine resulting in

an overall time gain of 6.4% for the pure MPI case and 14.4% for pure OpenMP. Similar results are observed on

the MIC nodes.

In the remaining of this paper, we have always used the SOA data structure as it is the most efficient option.

3.2. Particle sorting

Different thread-parallel implementations of the sorting algorithm have been designed using OpenMP. Es-

sentially, out of the three loops presented in Algorithm 1, only the prefix scan (second loop) is not parallelized

because it is quite complex to do so and it never represents more than 4% of the total timing of the sorting. Here

is a brief description of the different versions implemented. More details can be found in Appendix A.1.

psort 1: The first loop is parallelized using OpenMP reduction while the third loop uses the parallel do

directive in parallel with atomic to avoid race conditions.
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Piz Daint Piz Dora

(Cray XC30) (Cray XC40)

Socket(s) 1 2

Intel Xeon Intel Xeon

CPU E5-2670 E5-2690 v3

Sandy Bridge Haswell

Frequency 2.6 GHz 2.6 GHz

Cores 8/CPU 12/CPU

Helios Helios

(CPU) (MIC)

Socket(s) 2 2

Intel Xeon Intel Xeon

CPU E5-2680 Phi

Sandy Bridge KNC

Frequency 2.7 GHz 1.3 GHz

Cores 8/CPU 60/MIC

Table 1: Characteristics of the clusters used for this study. Piz Daint and Piz Dora are two computers from the Swiss Supercomputing

Centre (CSCS) and Helios is a magnetic fusion research supercomputer from the Computational Simulation Centre (CSC) in Japan.

Note that this last computer is equipped with both CPU and MIC nodes.
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Pure MPI

AOS SOA Gain

push() 0.84 0.78 7.95 %

accel() 8.58 8.47 1.25 %

setrho() 9.17 8.21 11.67%

Total 18.62 17.5 6.40 %

Pure OpenMP

AOS SOA Gain

push() 1.43 1.40 2.00%

accel() 4.25 4.15 2.53%

setrho() 5.78 4.47 29.34%

Total 11.47 10.03 14.36%

Table 2: Comparison between the AOS and SOA data structures on Helios (CPU) for the pure MPI and OpenMP cases. All the

timings are in ns/particle/∆t. In both cases, the standard problem with unsorted particles is considered. Similar results are observed

for the MIC equipped nodes.
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psort 2: This implementation slightly differs from Algorithm 1. During the first loop, the histogram is computed

as well as the index of each particle in the sorted array and OpenMP atomic is used to avoid race conditions.

By doing so, the third loop only consists in a simple OpenMP parallel do loop.

In Figure 4 (left), we show the timings of the sorting methods for different hybrid runs, i.e. we vary the

number of clones and threads such that their product corresponds to the total number of available cores per node.
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Figure 4: Comparison of the different sorting parallelizations on Helios CPU (left) and split view of psort 2 showing the timings

of the loops composing the sorting algorithm (right). In each case, the timings are shown on a full node such that the product

nclones× nthread is always equal to the total number of cores.

For the CPU nodes, the timings of the two sorting methods have the same qualitative behavior. For pure

OpenMP (nclones = 1), they are maximum and they decrease towards their minimum value for nclones = 8

and then, increase for pure MPI (nclones = 16). To explain this, first recall that the sorting timing depends

linearly on both the number of particles and buckets:

Tsort = Tnp + Tnb, (9)

where Tnp and Tnb are two linear functions of the number of particles and buckets respectively. Also, with the

decomposition in clones, we have:

Npclones ∼
Nptot
Nclones

, (10)

where Npclones and Nptot are respectively the number of particles per clone and the total number of particles

and Nclones is the number of clones. Thus, with an increasing number of clones, each of them must perform the

sorting on a fewer number of particles.

13



In Figure 4 (right) we show the timings of the loop over the buckets (loop over nb) and the two loops over the

particles combined (loops over np) composing the sorting method for psort 2. First, note that the number of

particles sorted per core is constant for the different hybrid runs since the product nclones×nthread is constant.

This means that Tnp should be constant. However, for pure OpenMP, we think that the high number of threads

tends to saturate the memory bandwidth which explains the timings increase. The loop over the number of

buckets is negligible, never more than 4% of the sorting total timing. Finally, the difference between the timing

of psort 2 and the sum of the three loops is due to the copy of the temporary particle array to part att.

In conclusion, method psort 2 is found to be the most efficient on the CPU nodes. For that reason, it is

always used in the following results whenever sorting is activated. The conclusions are equivalent for the MIC

nodes.

3.3. Charge deposition

We have seen that both accel and push are thread-parallelized in a straightforward way, typically with

OpenMP parallel loops, whereas care must be taken with setrho because of the race conditions furthermore

complicated by the indirect writing.

In the pic engine, four different parallelization procedures for the charge deposition are implemented:

setrho 1: Threads on particles, collision free, with data replication. In this method, threads are defined on the

particles and we try to mimic OpenMP reduction. To this end, race conditions are avoided using private

copies of the ρ array for each thread. Although being data safe, this algorithm requires more memory and

a scalar reduction must be made at the end of the routine to collect all the data from the threads.

setrho 2: Threads on particles, collision resolving, no data replication. The OpenMP atomic directive is used

to resolve the race conditions.

setrho 3: Threads on particles, collision free, with data replication. Similarly to the first method, we use the

OpenMP reduction directive to avoid race conditions.

setrho 4: Threads on grid points, collision free, no data replication. In this method, we use the finite support

of the linear CIC method to compute the charge and avoid race conditions. Indeed, with this scheme, a

particle will only deposit its charge to the eight nearest grid points (for a 3D problem) so the algorithm

consists basically in parsing first the grid points and then the particles contained in the eight nearest grid

cells. Note that this method requires the particles to be fully sorted according to their positions.

More details on these parallelizations can be found in Appendix A.2.

In Figure 5, we show the setrho timings for the four implementations, for unsorted and sorted particles,

without and with vectorization, on a single Helios node. Both CPU (left) and MIC (right) results are shown.

Beginning with the CPU case with unsorted particles, we see that setrho 1 is the fastest with a best timing of

4.8 ns per particle and per timestep in the pure OpenMP case. This represents a gain of around 2.8 as compared
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Figure 5: Comparison of the different charge assignment methods on a single CPU (left) and MIC (right) Helios node. Unsorted

and both sorted without and with vectorization cases are considered. Method setrho 4 is only present in the sorted and vectorized

case because it requires a full sorting and it is intrinsically vectorized. For both CPU and MIC, the center gain plots show the

performance gain of the sorted version of respectively setrho 1 and setrho 2 against the unsorted. Similarly, the right gain plots

show the performance gain of the vectorized version of respectively setrho 1 and setrho 2 compared to the sorted version. The

unconnected data points (nclones = 16 for CPU and nclones = 60 for MIC) show the timing of the pure MPI version of the code

compiled without OpenMP.
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to the pure MPI run that is mainly explained by the reduction of memory contention due to the use of a shared

memory programming language such as OpenMP. For 8 and 16 clones, setrho 1 and setrho 3 have similar

timings. This is not surprising as they are both based on a reduction approach. Indeed, using the OpenMP

standard, we tried to mimic the OpenMP reduction in setrho 1. However, setrho 3 is slower for nclones < 8.

We think that this is because, in our case, the problem is too simple and thus dominated by the OpenMP overhead.

For the sorted particles without vectorization, we first observe that setrho 2 is greatly improved because, as

the particles are now sorted, the OpenMP atomic occurrences are reduced. Furthermore, due to the enhanced

data locality, the timings are improved for all methods. On the gain graph below, we show the time gain of the

optimal method, setrho 1, as compared to the unsorted case. The maximum gain of 44% is obtained for the

pure OpenMP case and decreases to 10% for the pure MPI run.

Similarly, the third column of the figure shows the timings in the sorted and vectorized case. Note that

we have now included setrho 4 as it requires a full sorting and is vectorized by default. This method has the

advantage of not being subject to race conditions and not using additional memory. However, it is only beneficial

for high number of threads (nthread > 8) otherwise, the method is the slowest for nthread < 4. For the other

methods, the conclusions are the same as for the sorted case. The vectorization allows one to have a small gain

for a number of clones between one and four but it becomes negative for higher values. It has to be noted that the

vectorization is poor because there are too few particles per grid cell. Indeed, as we will see later, the performance

of the vectorization depends on the number of particles per grid cell; it needs a high particle density to be efficient.

In summary, for all CPU cases, setrho 1 with homemade reduction is the fastest method. The method

setrho 3 using OpenMP reduction has a similar timing as the first method for nclones ≥ 8 but becomes

surprisingly slower for nclones < 8. Although greatly improved by the sorting, setrho 2 has a poor performance

compared to the reduction methods because of the OpenMP atomic directives. Finally, setrho 4 uses no ad-

ditional memory and is not subject to race conditions. Furthermore, for nthread = 16, it is the second fastest

candidate but otherwise, it is among the slowest of our charge deposition methods.

For the MIC case, the best option is not as obvious. Indeed, depending on the number of clones, different

setrho methods are optimal. Even though setrho 4 is more than two times faster for pure OpenMP, we have

chosen, for the following, setrho 2 (with atomic directives) because it is the second fastest around pure Open-

MP, where we expect the program to run fastest, and it is not constraint to sorted particles with vectorization.

Furthermore, where it is not optimal, only a small difference is observed compared to the fastest method.

The sorting allows one to reduce the timing of setrho 2 by factors from 1.5 to 3 for the same reasons as the

CPU case. Essentially, with sorted particles, the atomic occurrences are reduced.

Similarly to the CPU case, the performance gain due to the vectorization is very small because too few particles

per grid cell are present. It has been checked, see Figure 6, that with around 10 times more particles per grid

cell, i.e. a total of 10 million particles, the vectorization performance is enhanced. In the CPU case, the overall

gain is of 40% with an impressive gain of a factor 3.7 for setrho. For the MIC, the overall gain with 10 million
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Figure 6: Performance gain due to the vectorization with different number of particles for both CPU (left) and MIC (right). In each

case, the timings of push, accel, setrho and psort are presented for the standard case with 1 million particles and a test case with

10 million particles.

particles is of ∼ 10%. This is less than the CPU case because the MICs have vector registers twice as big as the

CPU registers and they need much more particles per grid cell to fully benefit from the vectorization. In our

application, we could not test the program with much more than 10 million particles due to the limited memory

capacity.

In all cases shown in Figure 5, the unconnected data points at nclones = 16 for the CPU and nclones = 60 for

the MIC show the timings of the pic engine compiled as pure MPI, i.e. without OpenMP. As expected, the first

three methods have the same timings because they rely on the same algorithm, only the OpenMP parallelization

is different. Surprisingly, the timings of pure MPI are between 30% and 90% (!) lower than the runs with one

OpenMP thread. This is explained by the OpenMP overhead introduced to manage the threads and indicates

that it is better to compile the code without OpenMP if we want to use it for a pure MPI run.

The timings of the MICs are on average more than five times higher than CPUs. This is mainly because the

MIC heavily relies on vectorization and in our case, there either no vectorization or too few particles per grid cell

to benefit from it.

3.4. Comparison of the different clusters

In the previous sections, we have identified the optimal methods for the data structure, the sorting, and charge

deposition. We found that the SOA data structure with psort 2 and setrho 1 were the most efficient methods on

CPU while psort 2 and setrho 2 were the most efficient on MIC. In the following, we study the overall timings
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of the pic engine on Helios and then compare the results with the other machines, Piz Daint and Piz Dora.

In Figure 7, we show the timings of the different components of the pic engine for the unsorted, and sorted

without and with vectorization cases on a single Helios CPU node.

nclones

1 2 4 8 16

ti
m
e
[n
s/
pa

rt
/∆

t]

100

101

Unsorted

nclones

1 2 4 8 16

100

101

Sorted, no vec.

Hybrid scan on a single Helios CPU node

push accel setrho

nclones

1 2 4 8 16

100

101

Sorted, vec.

psort Total

Figure 7: Complete hybrid scan on a single Helios CPU node using the most efficient methods, namely psort 2 and setrho 1. The

unconnected points at nclones = 16 show the timing of the pure MPI version of the code compiled without OpenMP.

The hybrid implementation using OpenMP allows one to reduce the total timing by a factor of around 2.15

in the unsorted case. Indeed, with a hybrid approach, fewer data replications are made among the clones which

improves the memory usage.

When the sorting is activated, the timings of both accel and setrho are reduced by a factor of 3.25 and 1.44

respectively due to the increased data locality in the memory. However, we note that the total timing is effectively

slower than the unsorted case as a result of the sorting cost. For now, the sorting does not lead to a total gain in

performance as it represents around 70% of the timing but it is expected that it will turn out to be advantageous

for application codes as ORB5 with more complex equations of motion and higher interpolation schemes. Indeed,

the cost of the sorting, as previously stated, depends only on the number of particles and buckets whereas the

cost of accel, push and setrho will increase as the complexity of the physics/numerics increases.

With vectorization, the timings of both accel and setrho are further decreased by ∼ 25% and ∼ 8% respec-

tively for nclones ≤ 8 and are increased as we approach the pure MPI runs. This loss of performance is explained

by the small particle density per grid cell that makes the vectorized loops too short to be efficient.

The single data points located at nclones = 16 represent the timing of the pic engine when compiled without

OpenMP. As for the charge deposition, it is seen that OpenMP, even with a unique thread introduces a lot of

overhead as the program runs around 30% faster without OpenMP activated.
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Figure 8: Comparison of the performance on the different computers considered in this study. For each machine, the best timing of

the MPI version and the unsorted and sorted with and without vectorization cases are shown. Respectively, they correspond to MPI,

U, N and V in the graph. Above each hybrid result, the number of clones and threads used to obtain this timing is shown. Note that

for the MIC, hyperthreading has been used with four threads per core.

In Figure 8, a comparison between Helios CPU and MIC nodes, and the CSCS machines Piz Daint and Piz

Dora is shown. The timings are obtained as follows. For each case, a hybrid scan similar to Figure 7 is made and

the minimum total timing is retained. For each machine, four cases are presented. First, the rough timing of the

pic engine made in the pure MPI version of the code compiled without OpenMP (MPI) is shown. Then, the

usual unsorted (U) and sorted without (N) and with vectorization (V) timings are presented.

As we will see shortly, the conclusions are the same for all the machines but differ quantitatively as the

architectures and compilers are different.

The hybrid unsorted version of the code is very beneficial for the performance with a time gain of at least 60%

compared to the pure MPI due to the reduced memory contention. Furthermore, the sorting and vectorization

add a significant performance gain on both accel and setrho on a single node.

Note that except for Piz Dora, the optimum timings are obtained for a pure OpenMP run with one clone. For

Piz Dora, the optimal configuration is found for two clones and twelve threads which corresponds to one clone

per socket.

Finally, the performance of the MIC is surprisingly poor compared to the CPU timings, ∼ 5 times slower

for our simple application. In fact, we have shown that for an increased particle density per grid cell, the MIC

performance is enhanced. Indeed, the main advantage of the MICs is their improved vectorization with 512-bits

vector registers but it is bound in our application by the small number of particles per grid cell. Note that for
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these results the optimal performance was found for a pure OpenMP run with 4 (!) hardware threads per physical

core.

3.4.1. Multinode study

Singlenode runs as presented previously are a useful way to provide insight into the program performance.

However, for production runs, we generally need to use several nodes to partition the large problem size and

number of particles across the cluster nodes. For this reason, in this section, we present multinode timings of

the pic engine. Specifically, we will be able to measure the timings of the inter-node communications that are

present in setrho to transfer the guard cells between subdomains and in pmovez that transfers the particles

between the subdomains.

The results presented in this section are made on 16 nodes of the different machines. To be able to compare

them with the singlenode results, the cases tested here correspond to 16 copies of the singlenode problem. In

other words, we evolve 16 × 106 particles on a 512 × 256 × 16 grid such that each node has the equivalent of a

singlenode problem. Furthermore, the timings are again given in ns per particle and per timestep normalized to

one node, i.e. for one million particles.
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Figure 9: Hybrid scan on 16 Helios CPU nodes using the most efficient methods, namely psort 2 and setrho 2. The single points

show the timing of the pure MPI version of the code compiled without OpenMP.

In Figure 9, we show the multinode hybrid scan on the Helios computer for the unsorted, and sorted without

and with vectorization cases. The timings are qualitatively very similar to the singlenode runs. The main

difference comes from the pmovez routine that is now activated and that represents around half of the total

timing. In our case, less than 1% of the particles per subdomain are moved. Thus, the communication time

is negligible. However, the pmovez routine spends a lot of time preparing the communication by, for example,
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determining the particles that should be moved which represent, in this case, most of the pmovez timing. Similar

to the sorting method, this is not an issue for some application codes as with a higher physical complexity, the

cost of pmovez will not change. Indeed, it has been found in ORB5 that it does not represent more than 10% of

the total timing for all production runs made so far.
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Figure 10: Comparison of the performance of a 16 nodes run on the different computers considered in this study for a multinode

simulation. For each machine, the unsorted (U) and sorted without (N) and with (V) vectorization cases are shown. Above each

hybrid result, the number of clones and threads used to obtain this timing is shown. Note that for the MIC, hyperthreading has been

used with four threads per core.

In Figure 10 are shown the timings of the multinode hybrid runs on all the machines. As for Helios, we see

that the pmovez method dominates all the timings. This conclusion is even enhanced for the MIC that suffers

from a poor communication network as the messages must first pass through the CPU before being sent to the

recipient MIC. Again, let us emphasize that only the improvements of setrho and accel are relevant as they are

the most time-consuming methods of PIC codes such as ORB5.

The single and multinode results are compared in Table 3. As expected, the timings of push and accel do

not vary between the runs.

The timings of setrho are slightly higher in the multinode case because we have enabled MPI communications

between the subdomains to transfer the guard cells. This represents around 20% of the total setrho timing.

Surprisingly, the sorting method is slower for the multinode runs. This is however explained by the fact that

in multinode simulations, the particles travel through the subdomains in the z direction and their positions are

not sorted in the (x, y) plane in the recipient subdomain.
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Helios CPU Piz Daint

Nodes Single Multi Single Multi

push 1.41 1.37 1.75 1.76

accel 1.30 1.30 1.90 1.93

setrho 2.80 3.56 3.10 3.54

psort 7.02 9.66 10.07 12.12

Piz Dora Helios MIC

Nodes Single Multi Single Multi

push 0.73 0.73 4.33 5.01

accel 0.81 0.81 1.59 1.69

setrho 2.76 3.28 13.18 15.93

psort 4.65 5.43 44.93 47.65

Table 3: Comparison of the performance for the single- and multinode simulations. The timings shown here correspond to pure

OpenMP runs and are presented in ns/particle/∆t normalized to the singlenode problem to compare the results.
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4. Conclusions

With the goal of porting application PIC codes to the new multi- and manycore HPC platforms, we have

developed and tested different optimization techniques and parallelization schemes. For this purpose, we have

developed a test bed called the pic engine as a simple and portable abstraction of the PIC algorithm allowing

us to easily test these techniques on a simplified yet realistic code. To that end, only the key elements common

to all PIC applications are retained.

In this work, we have considered a 6D Vlasov equation describing the evolution of a single-species plasma in

the electrostatic limit in Cartesian coordinates. For the sake of simplicity, no magnetic field is considered and

no field solver is used. The charge depositions and grid-to-particle interpolations are done using, respectively,

a cloud-in-cell method and a linear interpolation on the electrostatic potential. The time integration scheme

evolving the equations of motion is based on the second order leap-frog method.

In order to preserve the portability of the program, it has been coded using Fortran and a hybrid implementa-

tion of MPI and OpenMP for the parallelization. By doing so, the code can be run on most of the modern HPC

clusters including the recent MIC-equipped computers.

We have presented different possible optimizations, which have been tested on a singlenode problem in order

to apprehend the shared memory programming model and the inherent difficulties.

We have first discussed the data structure used in the pic engine to store particle quantities. Both structure

of arrays and array of structures have been considered. Since most of the memory access is made following the

particle order, it is found that the structure of arrays is more efficient because data is accessed contiguously —

recall that Fortran uses a column-major order to store arrays in memory. A performance gain up to 14.4% is

observed in this mode.

In most of the PIC codes, particles are stored randomly in computer memory. This is critical for the program

performance since random memory accesses are very inefficient. To avoid this problem, we have implemented

a counting sort algorithm to sort the particles according to their positions. Despite its cost, the sorting allows

increasing the performance of the most time-consuming methods, namely accel and setrho, by respectively 3.25

and 1.44. Furthermore, the particle sorting also allows vectorizing both accel and setrho, which is otherwise

not possible due to their indirect addressing. A performance gain up to 25% is observed with the vectorization

for the case considered with an average of eight particles per grid cell. Furthermore, we have shown that with

an increased number of particles per grid cell, the vectorization performance increases. For the CPU, the gain

is up to 30% while it is around 10% for the MIC. The lower gain increase for the MIC compared to the CPU is

explained by the poor vectorization due to the small number of particle per grid cell and the wide 512-bits vector

registers used by the MIC that can vectorize up to eight doubles compared to four for the CPU.

The setrho method is a challenging candidate for the parallelization because of the race conditions. In the

pic engine, we have implemented different parallelization methods based either on an atomic update of the

memory or data safe algorithms that completely avoid these race conditions.
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The use of a shared memory programming language allows reducing the memory contention problem by

limiting data replication thus improving the performance. Indeed, it is observed that the pure OpenMP version

of the code runs up to 2.15 times faster than the pure MPI version.

Multinode experiments were done to test the pic engine in more realistic conditions and to time the MPI

communications. The total multinode timings are almost twice slower than the singlenode results mainly because

of the pmovez method used to transfer the particles across the subdomains but they are not representative of

more realistic conditions. However, for more complex applications, the timings of psort and pmovez will remain

the same in absolute value, but the timings of the other methods will be much higher due to the more complex

physics and/or higher order schemes. Therefore, the relative timings of psort and pmovez is expected to be much

smaller in such applications.

We have been able to test the performance of the pic engine on the new MIC architectures. This is possible

because the same programming model is used for both CPUs and MICs in native mode. Unfortunately, the MIC

performance is poor compared to the CPU. In this case, we think it is due to the poor vectorization. However, a

recently published study [17] shows that with the appropriate low-level optimizations, the Intel MIC can be up

to 1.6 times faster than an Intel eight-core CPU. In a future work, we will consider their approach and try to

apply it to the pic engine.

Finally, the pic engine is not only a simple abstraction of an application PIC code allowing to design and test

easily new optimizations, but, due to its modularity, it can also be used to find the optimal running configuration

on any computer.
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Appendix A. Parallelization algorithms

In this appendix, we present the different parallelizations methods we have implemented in the pic engine

for the sorting and the charge deposition already briefly presented respectively in Sections 3.2 and 3.3. The

algorithms are presented in Fortran-like language that we have intentionally simplified to keep only the relevant

information. They may not work as they are but only the parallelization technique is emphasized here.

Appendix A.1. Sorting

We have seen in Algorithm 1 in Section 3.2 that the counting sort used in the pic engine consists mainly

in three loops, two over the particles to create a histogram and put them in their right place and one over the

buckets for the prefix sum. Note that in all versions, the prefix sum is never parallelized because it is negligible

in our application. Here are the two different methods discussed in this paper:

psort 1: In this method, the first loop is parallelized using OpenMP reduction and the third loop is done with a

OpenMP do loop and atomic directives to avoid race conditions. Furthermore, in the first loop, the displs

array is calculated as the count array of particles in each bucket. It is then overwritten by the inclusive

scan in the second loop.

displs (:)=0

!$Omp Parallel &

!$Omp Private(ind1 ,ind2 ,ind)

!$Omp Do Reduction (+: displs)

Do i=1,np

! Compute the particle grid -cell

! index

indX=Int(part_att(i,dirX)/dx)+1

indY=Int(part_att(i,dirY)/dy)+1

ind=(indY -1)* nbX+indX

! Create the histogram

displs(ind)= displs(ind )+1

End Do

!$Omp End Do

!$Omp Single

! Prefix sum

Do i=2,nbX*nbY

displs(i)= displs(i)+ displs(i-1)

End Do
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!$Omp End Single

!$Omp Do Private(is)

Do i=np ,1,-1

! Compute the particle grid -cell

! index

indX=Int(part_att(i,dirX)/dx)+1

indY=Int(part_att(i,dirY)/dy)+1

ind=(indY -1)* nbX+indX

! Update atomically to avoid race

! conditions

!$Omp Atomic Capture

is=displs(ind)

displs(ind)= displs(ind)-1

!$Omp End Atomic

part_att_temp(is ,:)= part_att(i,:)

End Do

!$Omp End Do

!$Omp End Parallel

psort 2: The last sorting method is slightly different than first. During the first loop, we compute the index of

each particle in the sorted array and race conditions are avoided with OpenMP atomic. By doing so, the

third loop is trivially parallelized with OpenMP do loop.

!$Omp Parallel &

!$Omp Private(is,ind1 ,ind2 ,tmp)

!$Omp Do

Do i=1,np

! Compute the particle grid -cell

! index

indX=Int(part_att(i,dirX)/dx)+1

indY=Int(part_att(i,dirY)/dy)+1

ind(i)=(indY -1)* nbX+indX

is=ind(i)

!$Omp Atomic Capture

tmp=counts(is)
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! Create the histogram

counts(is)= counts(is)+1

!$Omp End Atomic

indices(i)=tmp

End Do

!$Omp End Do

!$Omp Single

displs (1)= counts (1)

Do i=2,nb1*nb2

displs(i)= displs(i-1)+ counts(i)

End Do

!$Omp End Single

!$Omp Do

Do i=1,np

is=ind(i)

part_att_temp(displs(is)- &

& indices(i),:)= part_att(i,:)

End Do

!$Omp End Do

!$Omp End Parallel

Appendix A.2. Charge assignment

Similarly to the sorting, we present here different charge assignment methods implemented in the pic engine.

The four versions of setrho are:

setrho 1: In this first method, we mimic the OpenMP reduction with an in-house algorithm inspired by the

OpenMP standard [18].

!$Omp Parallel &

!$Omp Private(tid ,ix,iy,iz,wx,wy,wz)

! Get the thread number

tid=omp_get_thread_num ()

!$Omp Do
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Do ip=1,np

! Compute the particle weight

ix=Int(part_att(ip ,1)- xgrid (0))

wx=part_att(ip ,1)- xgrid(ix)

! Do similarly for y and z

...

! Deposit the charge according to

! the weights

rho_loc(ix ,iy ,iz ,tid)= &

& rho_loc(ix,iy,iz,tid)+ &

& (1.0-wx)*(1.0 -wy)*(1.0 -wz)

! Do similarly for the other seven

! grid points

...

End Do

!$Omp End Do

! Perform the reduction

!$Omp Do Collapse (3)

Do iz=0,nz

Do iy=0,ny

Do ix=0,nx

rho(ix ,iy ,iz)= &

& Sum(rho_loc(ix,iy,iz ,:))

End Do

End Do

End Do

!$Omp End Do

!$Omp End Parallel

setrho 2: The second method uses the OpenMP atomic directive to safely update the charge array.

!$Omp Parallel &

!$Omp Private(ix,iy,iz,wx,wy,wz,ip)

!$Omp Do
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Do ip=1,np

! Compute the particle weight

ix=Int(part_att(ip ,1)- xgrid (0))

wx=part_att(ip ,1)- xgrid(ix)

! Do similarly for y and z

...

! Deposit the charge according to

! the weights

!$Omp Atomic Update

rho(ix ,iy ,iz)=rho(ix ,iy ,iz)+ &

& (1.0-wx)*(1.0 -wy)*(1.0 -wz)

! Do similarly for the other seven

! grid points

...

End Do

!$Omp End Do

!$Omp End Parallel

setrho 3: Similarly to the first method, we use this time the OpenMP reduction to avoid race conditions when

updating the charge array.

!$Omp Parallel Private(ix,iy,iz)

!$Omp Do Private(wx,wy,wz,inb ,ic) &

!$Omp Reduction (+:rho)

Do ip=1,np

! Compute the particle weight

ix=Int(part_att(ip ,1)- xgrid (0))

wx=part_att(ip ,1)- xgrid(ix)

! Do similarly for y and z

...

! Deposit the charge according to

! the weights

rho(ix ,iy ,iz)=rho(ix ,iy ,iz)+ &

& (1.0-wx)*(1.0 -wy)*(1.0 -wz)
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! Do similarly for the other seven

! grid points

...

End Do

!$Omp End Do

!$Omp End Parallel

setrho 4: Finally, in this last method we use the finite support of the CIC method. Indeed, here each particle

will only contribute to the eight nearest grid points.

!$Omp Do Parallel Collapse (3) &

!$Omp Private(ix,iy,iz,d,ibin) &

!$Omp Private(jbin ,wx,wy,wz)

Do iz=0,nz

Do iy=0,ny

Do ix=0,nx

d=0.0

Do jbin=Max(1,iy),Min(ny ,iy+1)

Do ibin=Max(1,ix),Min(nx ,ix+1)

bin=(jbin -1)*nx+ibin

Do ip=displs(bin)+1, &

& displs(bin+1)

wx=part_att(ip ,1)- xgrid(ix)

wy=part_att(ip ,2)- ygrid(iy)

wz=part_att(ip ,3)- zgrid(iz)

d=d+Min(1.0-wx ,1.0+ wx)* &

& Min(1.0-wy ,1.0+ wy)* &

& Min(1.0-wz ,1.0+ wz)

End Do

End Do

End Do

rho(ix ,iy ,iz) = d

End Do

End Do

End Do

!$Omp End Parallel Do
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