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Abstract

Spin-lattice dynamics generalizes molecular dynamics to magnetic materials,
where the set of dynamic variables describing an evolving atomic system
includes not only coordinates and velocities of atoms but also directions
and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics
simulates the collective time evolution of spins and atoms, taking into account
the effect of non-collinear magnetism on interatomic forces. Applications of
the method include atomistic models for defects, dislocations and surfaces in
magnetic materials, thermally activated diffusion of defects, magnetic phase
transitions, and various magnetic and lattice relaxation phenomena. Spin-
lattice dynamics retains all the capabilities of molecular dynamics, adding to
them the treatment of non-collinear magnetic degrees of freedom. The spin-
lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter
decomposition of atomic coordinate, velocity and spin evolution operators,
and delivers highly accurate numerical solutions of the evolution equations
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over extended intervals of time. The code is parallelized in the coordinate
and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA
C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins
are controlled by Langevin thermostats. Conduction electrons are treated
by coupling the discrete spin-lattice dynamics equations for atoms and spins
to the heat transfer equation for the electrons. Worked examples include
simulations of thermalization of ferromagnetic bcc iron and the dynamics of
laser pulse demagnetization.

Keywords: spin-lattice dynamics, molecular dynamics, spin dynamics

PROGRAM SUMMARY
Manuscript Title: SPILADY: A Parallel CPU and GPU Code for Spin-Lattice
Magnetic Molecular Dynamics Simulations
Authors: Pui-Wai Ma, S. L. Dudarev, C. H. Woo
Program Title: SPILADY, version 1.0
Journal Reference:
Catalogue identifier:
Licensing provisions: Apache License, Version 2.0
Programming language: OpenMP C/C++, CUDA C/C++
Computer: Any computer with an OpenMP capable C/C++ compiler or com-
puter with CUDA capable GPU card and an nvcc compiler.
Operating system: Linux, Unix, Windows
RAM: at least 500MB, depending on the number of atoms or atomic spins, and
on the simulation type.
Number of processors used: At least 1
Supplementary material:
available on website: http://spilady.ccfe.ac.uk
Keywords: Spin-lattice dynamics, molecular dynamics, spin dynamics
Classification: 7.7
External routines/libraries:
Subprograms used:
Nature of problem: Excitation of magnetic degrees of freedom affects a broad range
of properties of magnetic materials, including their equilibrium crystal structure
and response to mechanical deformation. Existing atomistic simulation methods,
for example molecular dynamics, do not treat magnetic degrees of freedom and
do not describe the effect of magnetism on interatomic forces. This is addressed
by the spin-lattice dynamics approach. The integration algorithm satisfies the re-
quirement of phase volume conservation in the multi-dimensional space of atomic
coordinates, velocities, and atomic spins, which is achieved through the use of the
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symplectic Suzuki-Trotter decomposition. Numerical solutions of spin-lattice dy-
namics equations retain high accuracy over extended intervals of time.

Solution method: An atomic scale simulation technique for modelling the cou-
pled dynamics of atomic coordinates and spins. The method generalizes molecular
dynamics to the case of magnetic materials, and uses a parallel Suzuki-Trotter
decomposition-based time integration algorithm.

Restrictions: The current version assumes that the material is composed of a single
chemical element. Evolution equations assume the validity of localized magnetic
moment approximation.

Unusual features: An open source spin-lattice dynamics code. The time inte-
gration algorithm uses the Suzuki-Trotter decomposition, which is a symplectic
integration method retaining high accuracy over extended intervals of time. The
code runs in parallel on multiple CPUs using OpenMP directives, or on an Nvidia
GPU card.

Running time: Similar to molecular dynamics, from several minutes to several
weeks or months, depending on the number of atoms or spins involved in a simu-
lation, and on the type of the simulation.

1. Introduction

Magnetic materials play pivotal roles in a diverse range of engineering
applications, involving storage, recovery, transportation, manipulation and
processing of information, and quantum computing. At the same time, mag-
netic excitations affect the stability of crystal structures of many magnetic
alloys, including iron alloys and steels. For example, the body-centred cubic
crystal structure of iron appears anomalous in the context of the Periodic
Table, since it owes its stability to the fact that the ground state of iron
is ferromagnetic [1, 2]. Other elements in the same group of the Periodic
Table have hexagonal crystal structure [3]. The high temperature softening
of elastic constant C ′ of iron [4, 5] is fundamentally related to the α − γ
phase transition, which in turn is associated with the loss of magnetic order
at the Curie temperature TC = 1043K. The α − γ and γ − δ phase transi-
tions in iron stem from competing effects of phonon and magnon excitations,
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where magnetic excitations stabilize the bcc phase whereas thermal atomic
vibrations favour fcc crystal structure [6, 7]. Another example is that at low
temperatures a self-interstitial defect in iron adopts the 〈110〉 dumbbell con-
figuration, whereas in non-magnetic bcc metals a self-interstitial defect is a
〈111〉 crowdion [8, 9]. These examples show that both the phase stability [10]
and dislocation-mediated mechanical properties [11] of materials are strongly
influenced by magnetism.

Landau-Lifshits and Gilbert (LLG) equations [12] describe the dissipa-
tive dynamics of spins (Spin Dynamics, SD) on a rigid lattice. Solutions
of the LLG equations asymptotically converge to the ground state magnetic
configuration of the material. Brown [13] extended the LLG treatment and
included thermal excitation of spins through the use of a stochastic method
based on the fluctuation-dissipation theorem (FDT) [14, 15]. The method
makes it possible to drive a spin system to thermal equilibrium at a pre-
defined temperature. Parameters of the model can be defined by assuming
that stochastic exchange fields acting on spins describe coupling to an exter-
nal thermostat.

Kinematic motion of atoms in non-magnetic materials can be modelled
by molecular dynamics (MD). MD treats atoms as point objects interacting
through forces that depend on atomic positions. MD does not treat the
magnetic degrees of freedom of atoms. Models that incorporate magnetic
effects in the many-body interatomic potential formalism were developed by
Dudarev and Derlet [16, 17] and Ackland [18]. These models predict the
magnitudes of atomic magnetic moments for a given atomic configuration
[19] but do not take into account the directional aspect of magnetic degrees
of freedom necessary for the treatment of non-collinear magnetism, including
for example the order-disorder magnetic transitions on a vibrating atomic
lattice.

A dynamic model for spin waves, lattice vibrations, and their interaction
at a finite temperature requires including magnetic degrees of freedom in
molecular dynamics. Omelyan et al. [20] and Tsai et al. [21] explored
models that unify spin and lattice dynamics. They noted the advantages
associated with the application of the Suzuki-Trotter decomposition (STD)
[22] algorithm to the treatment of non-commuting evolution operators that
describe the lattice and spin degrees of freedom. The points that did not
receive attention included the development of a realistic parameterization
for the interatomic interaction law, the definition of the range of validity of
the classical treatment of spin degrees of freedom, and the parallel computer
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implementation of spin-lattice dynamics.
In Refs. [23, 24] we formulated a spin-lattice dynamics model with pa-

rameters derived from the ab initio data on bcc ferromagnetic iron. An al-
gorithm for parallel spin-lattice dynamics simulations was developed in Ref.
[25]. Further analysis showed how to evaluate temperature of a dynamic
spin ensemble [26]. Analytical formulae that help accelerate spin dynamics
simulations were derived in Ref. [27]. Spin-lattice-electron dynamics, also in-
corporating the electronic degrees of freedom, was developed in Refs. [28, 29]
together with the treatment of longitudinal magnetic fluctuations [30].

Applications of spin-lattice dynamics (SLD) include simulations of mag-
netism in iron thin films [31], self-diffusion in iron [32, 33], and a dynamic
model for the magnetocaloric effect in iron and gadolinium [34]. SLD sim-
ulations have been recently performed by several research groups worldwide
[35, 36, 37, 38, 39]. Since a practical implementation of SLD is somewhat
more intricate than that of MD, it appears timely that a working version of
a spin-lattice dynamics computer code (SPILADY), suitable for carrying out
a diverse range of atomistic simulations involving also the magnetic degrees
of freedom of atoms, should be made available as an open source computer
program.

In what follows we briefly describe the underlying theory, algorithms and
parameters that control the execution of a spin-lattice dynamics simulation,
and give two worked examples of application of spin-lattice dynamics. For
further information we refer an interested reader to the user manual of SPI-
LADY, version 1.0, which describes in detail the control options and variables
of spin-lattice dynamics. The manual also gives extra examples showing how
to use SPILADY to perform MD, SD and SLD simulations.

2. Theory

In this section we briefly describe the Hamiltonian and equations of mo-
tion for MD, SD and SLD, the incorporation of longitudinal magnetic fluc-
tuations, the coupled heat transfer equation for the conduction electronic
subsystem, and a method for treating local collective motion of atoms. Al-
though these theories were described in detail elsewhere, we give a brief
summary of the relevant concepts here.
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2.1. Molecular Dynamics

We start from an MD simulation. An atomic scale classical Hamiltonian
can be written as

H =
∑

i

p2
i

2m
+ U(R), (1)

where pi is the momentum of atom i and U is the potential energy, which
is a function of atomic coordinates R = {Ri}. The Hamilton equations of
motion have the form

dRi

dt
=

∂H

∂pi

=
pi

m
, (2)

dpi

dt
= −

∂H

∂Ri
= −

∂U

∂Ri
. (3)

The above equations can be generalized to the case of Langevin dynamics as
[14, 15]:

dRi

dt
=

pi

m
, (4)

dpi

dt
= −

∂U

∂Ri
− γl

pi

m
+ fi, (5)

where γl is a damping parameter and fi is a δ-correlated fluctuating force
satisfying conditions 〈fi〉 = 0 and 〈fiα(t)fjβ(t

′)〉 = µlδijδαβδ(t − t′). The
fluctuation-dissipation theorem states that parameters µl and γl are related
through µl = 2γlkBT . If we take T to be the temperature of an external
thermostat, then Langevin equations provide a practical way of thermalizing
atomic lattice to a given temperature T .

2.2. Spin Dynamics

For an arbitrary spin HamiltonianH, in which the spin operator variables
are treated in the mean-field approximation, the equations of motion for each
individual spin vector have the form [30]:

dSi

dt
=

1

~
[Si ×Hi] . (6)

The spin of atom i is related to its atomic magnetic moment via Si =
−Mi/(gµB), and the effective exchange field acting on spin Si is Hi =
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−∂H/∂Si. Here Mi is the magnetic moment of atom i, g ≈ 2.0023 is the
electron g-factor, and µB is the Bohr magneton.

Assuming that the magnitudes of all the atomic magnetic moments are
constant, we write the Langevin equations of motion for the spins as [13, 27]:

dSi

dt
=

1

~
[Si × (Hi + hi)− γsSi × (Si ×Hi)] , (7)

where γs is a damping parameter and hi is a δ-correlated fluctuating field,
satisfying conditions 〈hi〉 = 0 and 〈hiα(t)hjβ(t

′)〉 = µsδijδαβδ(t − t′). The
fluctuation-dissipation relation has the form µs = 2~γskBT .

Although the above spin equations of motion are valid for an arbitrary
spin-dependent mean-field Hamiltonian, the Heisenberg Hamiltonian is often
used in applications. The Heisenberg Hamiltonian has the form

H = −
1

2

∑

i,j

JijSi · Sj , (8)

where Jij are the exchange coupling parameters [40]. These parameters define
the strength of interaction between the spins, and determine the Curie or
Neél temperatures. The exchange coupling parameters can be derived from
ab initio calculations [40, 41].

Temperature of a dynamically evolving spin system can be evaluated
using the following equation [26]:

T =

∑

i |Si ×Hi|
2

2kB
∑

i Si ·Hi

. (9)

This formula assumes that the spin system is in thermodynamic equilibrium.
Formula (9) also shows that spin temperature may take positive or negative
values.

The above equation, derived in Ref. [26] for the Heisenberg Hamiltonian,
is in fact valid for an arbitrary spin Hamiltonian, treated in the mean-field
approximation. An expression for spin temperature, the derivation of which
assumes that spins evolve according to equation (7), has the form

T =

∑

i |Si × (−∂H/∂Si) |
2

2kB
∑

i Si · (−∂H/∂Si)
. (10)
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2.3. Longitudinal spin fluctuations

If spins exhibit longitudinal fluctuations, i.e. fluctuations of magnitudes
of atomic spins (or magnetic moments), they are described by another type
of Langevin equations of motion [30]:

dSi

dt
=

1

~
[Si ×Hi]− γ′

s

∂H

∂Si

+ ξi(t),

=
1

~
[Si ×Hi] + γ′

sHi + ξi(t). (11)

Here γ′
s is a damping parameter and ξi(t) is a δ-correlated random process

satisfying conditions 〈ξi〉 = 0 and 〈ξiα(t)ξjβ(t
′)〉 = µ′

sδijδαβδ(t − t′). The
fluctuation-dissipation relation for the longitudinal spin noise has the form
µ′
s = 2γ′

skBT . Equation (11) is equivalent to equation (7) if the spin vector
is constrained to the surface of a sphere [30].

Equilibrium spin temperature can now be calculated using the following
formula [30]:

T =

∑

i,α (∂H/∂Siα)
2

kB
∑

i,α ∂
2H/∂S2

iα

, (12)

where α denotes the Cartesian components.
A Hamiltonian involving both the Heisenberg and longitudinal Landau

terms can have the form [30, 34]:

H = HH +HL, (13)

where

HH = −
1

2

∑

i,j

JijSi · Sj, (14)

HL =
∑

i

AiS
2
i +BiS

4
i + CiS

6
i +DiS

8
i . (15)

The Landau Hamiltonian HL is a polynomial in S2
i = S2

i . Numerical co-
efficients in the Landau Hamiltonian can also be determined from ab initio
calculations [30, 34].
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2.4. Spin-Lattice Dynamics

One of our goals is to develop a self-consistent treatment of coupled mag-
netic excitations and atomic vibrations. We start from a Hamiltonian that
treats the atomic and spin subsystems, and interaction between them. Hamil-
tonian now has the form H = H(R,p,S). In SPILADY we use two different
Hamiltonians, depending on whether or not the longitudinal fluctuations of
magnetic moments are taken into account.

If there are no longitudinal fluctuations, we use a Hamiltonian that has
the form

H = Hlatt +Hspin +Hcorr, (16)

where

Hlatt =
∑

i

pi
2

2m
+ U(R), (17)

Hspin = −
1

2

∑

i,j

Jij(R)Si · Sj , (18)

Hcorr =
1

2

∑

i,j

Jij(R)|Si||Sj|. (19)

Here the coordinate-dependent exchange coupling function is assumed to be a
pairwise function of atomic coordinates Jij(R) = Jij(Rij). Equation (19) is a
correction term for the spin Hamiltonian. Since the magnitude of spin |Si| is
constant, this term is a function of atomic coordinates only. The introduction
of this correction term stems from simple convenience, as it makes it possible
to use the existing parametrizations of many-body potentials, for example
the Dudarev-Derlet 2005 (DD05) iron potential [16]. This also implies that at
T = 0K the system is ferromagnetically ordered. Parameterizations required
for modelling materials characterized by antiferromagnetic or non-collinear
magnetic order in their magnetic ground state, have not yet been included in
SPILADY. This does not of course affect the form of the spin or spin-lattice
dynamics equations.

Equations of motion for the atomic coordinates, momenta, and spins can
now be written as:

dRi

dt
=

pi

m
, (20)

dpi

dt
= −

∂H

∂Ri
= −

∂U

∂Ri
−

∂Jij

∂Ri
(Si · Sj − |Si||Sj|), (21)
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dSi

dt
=

1

~
[Si ×Hi] , (22)

where the local effective field Hi = −∂H/∂Si =
∑

i JijSj . From the above
equations, we see that the lattice and spin subsystems are coupled via a
coordinate dependent exchange function Jij(R). A Langevin thermostat can
now be added using the same fluctuation and dissipation terms as those
discussed above.

If longitudinal magnetic fluctuations are included, we rewrite the spin
part of the Hamiltonian (18) as

Hspin = HH +HL, (23)

where

HH = −
1

2

∑

i,j

Jij(R)Si · Sj (24)

HL =
∑

i

Ai(R)S2
i +Bi(R)S4

i + Ci(R)S6
i +Di(R)S8

i . (25)

The Landau Hamiltonian is now a function of atomic coordinates. In SPI-
LADY we assume that Ai(R) = Ai(ρi), where ρi is the local effective electron
density entering the EAM potential. Other Landau coefficients are treated in
the same way. We now need to modify equations of motion for the kinematic
atomic momenta as

dpi

dt
= −

∂U

∂Ri
−

∂Jij

∂Ri
(Si · Sj − |Si||Sj|),

+
∂Ai

∂Ri

S2
i +

∂Bi

∂Ri

S4
i +

∂Ci

∂Ri

S6
i +

∂Di

∂Ri

S8
i . (26)

If we adopt the Langevin thermostat method mentioned in connection with
Eq. (11), then there is a subtlety associated with the definition of the effective
field. Since the magnitudes of magnetic moments are no longer constant, the
correction term given by Eq. (19) needs to be included in the calculation of
the effective field, namely

Hi =
∑

j

Jij(Sj −
Sj

Si
Si)− (2Ai + 4BiS

2
i + 6CiS

4
i + 8DiS

6
i )Si. (27)
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2.5. Langevin Treatment of the Electron Subsystem

Thermal conductivity of metals is primarily associated with the transport
of conduction electrons. Heat dissipation through electron subsystem has a
significant effect on the motion of atoms, especially in high energy events
like collision cascades [42, 43]. The stochastic Langevin equation treatment
of atomic degrees of freedom can be linked to the heat transfer equation
describing conduction electrons [42, 29]. This makes it possible to incorporate
electronic degrees of freedom in MD, SD or SLD [29].

MD equations of motion, describing atoms coupled to the electrons, are

dRi

dt
=

pi

m
, (28)

dpi

dt
= −

∂H

∂Ri
− γl

pi

m
+ fi, (29)

Ce
dTe

dt
= ∇(κe∇Te) +Gel(Tl − Te), (30)

where Ce is the electronic specific heat and κe is the thermal conductivity of
the electrons. Heat transfer between the lattice and the electrons is described
by the coefficient

Gel =
3kBγl
mΩ

, (31)

where Ω is the volume per atom. In equations (30) Tl is the temperature of
the lattice evaluated from the local kinetic energy of the atoms.

A spin dynamics simulation, where spin excitations are treated as pure
rotations coupled to electrons, is described by the following set of equations

dSi

dt
=

1

~
[Si × (Hi + hi)− γsSi × (Si ×Hi)] , (32)

Ce
dTe

dt
= ∇(κe∇Te) +Ges(Ts − Te). (33)

The coefficient of heat transfer between the spins and electrons is

Ges =
2kBγs
~Ω

〈Si ·Hi〉. (34)

In practical simulations, the ensemble average values of 〈Si ·Hi〉 and Ts are
calculated using vectors {Si(t)} within a particular linked cell.
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In an SD simulation that includes longitudinal fluctuations [30], we use
equations

dSi

dt
=

1

~
[Si ×Hi] + γ′

sHi + ξi, (35)

Ce
dTe

dt
= ∇(κe∇Te) +Ges(Ts − Te), (36)

where the coefficient of heat transfer between the spins and electrons is

Ges =
kBγ

′
s

Ω

〈

∑

α

∂2H

∂S2
iα

〉

. (37)

Here α is the index of a Cartesian component of a spin vector.
In an SLD simulation, the heat transfer equations have the form [29]

Ce
dTe

dt
= ∇(κe∇Te) +Gel(Tl − Te) +Ges(Ts − Te). (38)

Equations of motion for the spins and lattice atoms, and the definitions of
constants and variables remain the same as above.

2.6. Local Collective Motion of Atoms and Electrons

For a group of atoms moving uniformly in the same direction, a suitable
definition of kinetic energy requires using the moving frame associated with
the centre of mass of the entire group, namely

Tl =
2

3NkB

∑

i

(pi −P)2

2m
, (39)

where P = 1/N
∑

i pi is the average kinematic momentum of the atoms.
In the heat transfer equation, the local temperature of the lattice is nor-

mally calculated assuming that there is no local collective motions in the sys-
tem. In the presence of local collective motion, this approximation strongly
overestimates the rate of energy dissipation from the lattice subsystem to the
electrons. A way to tackle this is to treat the lattice-electron energy trans-
fer in a local moving frame. Assuming that the lattice-electron interactions
occur locally, we write [29]

dRi

dt
=

pi

m
, (40)
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dpi

dt
= −

∂H

∂Ri
−

γl
m
(pi − pA) + (fi − fA), (41)

Ce
dTe

dt
= ∇(κe∇Te) +Gel(Tl − Te), (42)

where

pA = 1/NA

∑

i∈A

pi, (43)

fA = 1/NA

∑

i∈A

fi, (44)

Gel =
3kB(NA − 1)γl

mVA

. (45)

Here A refers to a local region in the material, NA is the number of atoms in
region A, and VA is the volume of A. In practical simulations, we identify A
with a linked cell.

3. Algorithm

Fig. 1 shows the flow chart of SPILADY. The basic structure of SPILADY
is similar to that of a conventional MD program [44]. It starts with the
initialization of the time variable, the lattice structure, momenta, spins, the
linked cells structure, the tables describing interatomic potentials, various
random numbers, and - if necessary - the parameters controlling the execution
of the program on a GPU. It also calculates the initial effective electron
densities, energies, forces and temperatures. Then, it performs an initial
check on energies, temperatures, pressure, stresses, and magnetic moments,
followed by the generation of a full record of the initial configuration. The
content of the output files is described in the user manual, which is distributed
together with SPILADY.

After the initialization, the program starts integrating the equations of
motion, taking a time step of size step. It performs a consistency check
again after each, or several, time steps. After a certain number of time steps,
the box size can be re-scaled to make it consistent with the internal stresses
or pressure. The size of the time step can also be adjusted according to
the maximum displacement of atoms and/or the maximum precession angle
of spins. The program generates intermediate output files after a certain
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Figure 1: A flow chart for SPILADY
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number of time steps. When the total time reaches a limiting value, the
program ends and writes the final configuration into a file.

An unusual aspect of the program is the integration algorithm, which
is different from that used in the majority of MD programs. We adopted
an algorithm based on the Suzuki-Trotter decomposition (STD) [22]. The
Suzuki-Trotter algorithm is symplectic, and it conserves volume in phase
space, in this way minimizing numerical errors over extended intervals of
time. Omelyan et al. [20] and Tsai et al. [21] investigated applications of
STD to spin-lattice dynamics. However, due to the mathematical structure
of the STD integration algorithms, it is intrinsically difficult to parallelize
STD simulations in the spin subspace. We addressed this problem in Ref.
[25] and implemented the related algorithm in SPILADY.

The basic principle of STD is to break a global evolution operation into
several simpler sub-evolution steps [22]. The second order STD reads:

e(A+B)∆t = eA∆t/2eB∆teA∆t/2 +O(∆t3), (46)

where A and B are arbitrary operators. In the treatment of SLD, if we rep-
resent all the degrees of freedom by a generalized coordinate x = {R,p,S},
and if there is an operation on x such that:

dx

dt
= (R+ P + S)x, (47)

where R, P and S are operators acting on positions, momenta and spins,
respectively, a solution corresponding to a time interval ∆t can be written
as follows:

x(t +∆t) = e(R+P+S)∆tx(t). (48)

Using the second order STD, we write:

e(R+P+S)∆t = eP∆t/2eS∆t/2eR∆teS∆t/2eP∆t/2 +O(∆t3). (49)

This is only one of the ways how the global evolution operator can be de-
composed. We adopt this specific decomposition because it minimizes the
number of times when forces are evaluated. This speeds up the execution of
the program.

Examining Fig. 1 we see that in function core() the updating of positions,
momenta and spins is performed according to Eq. (49). In the Langevin
treatment of the electron subsystem, we treat the electronic temperature Te

15



as an extra degree of freedom, where now x = {R,p,S, Te}, and Te is defined
individually in each linked cell. We can insert the evolution operator for Te

immediately before and after function core() in accord with the second order
STD.

There is a subtlety associated with the treatment of the spin evolution
operator, since it affects its own evolution. The effective field Hi acting on
a particular spin depends on all its neighbours, and even on itself. It is
possible to decompose the evolution operator for a system of spins into a
series of single spin operations using the STD, such that:

eSτ = eS1τ/2eS2τ/2 · · · eSN τ · · · eS2τ/2eS1τ/2 +O(τ 3), (50)

where τ is a time step. However, since a single spin operation depends on
a previous operation, it is impossible to perform the calculation simultane-
ously. Therefore, it appears as if the mathematical structure of the algorithm
intrinsically prohibits the parallelization of spin dynamics simulations.

However it is still possible to parallelize computations if the coupling
between the spins extends only to a finite number of neighbouring atoms
[25]. In an interatomic potential, a cut-off distance is used to limit the
number of neighbouring atoms that contribute to the evaluation of force
acting on an atom, in this way reducing computation time. This means
that the evolution operator for an atom or a spin only depends on a finite
number of its neighbours and does not depend on the configuration of the
entire system. Parallelization of the evolution operators for the spin subspace
involves the manipulation of the linked cell structure. We divide the linked
cells into groups, where the atoms/spins belonging to a particular linked cell
do not interact with atoms/spins in other linked cells in the same group.
Therefore, we can parallelize the evaluation of evolution operators for linked
cells in the same group. Notably, one still needs to treat each group in
accordance with the STD. For example, if we separate the linked cells into
groups A to H, the second order decomposition must be performed as follows:

e(A+B+···+H)∆t ≈ eA∆t/2eB∆t/2 · · · eH∆t · · · eB∆t/2eA∆t/2. (51)

Evolution operators for atoms/spins within a linked cell still need to be
treated sequentially.

4. Controls

There are various control parameters and files that direct the execution
of SPILADY, including compilation of the program, and the way how it in-
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puts and outputs data. After downloading the program as a compressed file
spilady1.0.tar.gz, one needs to decompress it. There are several files that
require attention here. They are make.sh, control.h, and vairables.in. To
perform an MD or an SLD simulation, one needs a many-body potential file,
for example DD05.cpp. To perform an SD or SLD simulation, one needs a
Heisenberg-Landau function file, for example JijFe.cpp. To perform a sim-
ulation involving the electronic subsystem using Langevin thermostat, the
electron heat capacity file heatcapacity CPU.cpp or heatcapacity GPU.cu is
required.

We tested our program and examples on a computer with Dual Intel Xeon
Processors E5 2680v2 2.8GHz (10 cores) and Nvidia GeForce GTX Titan
Black GPU cards, in the Linux environment using gcc verion 4.4.7, icc version
12.0.0 and nvcc version 5.5. SPILADY was also tested on Nvidia GeForce
GTX 480, GTX 680, GTX Titan, Tesla K40c GPU cards and Tesla M2090
module. The program is written using standard syntax and is expected to run
on any generic computer system. No linking to external libraries is required.

4.1. Compilation of the program

In principle, SPILADY can be compiled using a single command. To
simplify it further, a script file called make.sh is provided. In Unix or Linux
environments, one can generate an executable file by entering the following
command in a shell:

$ chmod +x make.sh

If a CPU computer is used, it is assumed that an OpenMP capable com-
piler is used, for example icc or g++. When using an Nvidia GPU, the
default option is to use nvcc. One needs to compile all the files in the work-
ing directory with suitable options, for example:

$ g++ -fopenmp -o spilady -DCPU -DOMP -DMD *.cpp

Option -fopenmp allows the compiler to recognize OpenMP directives in the
code. If icc is used, it should be replaced with -openmp. Option -o spi-
lady tells the compiler to name the resulting executable file spilady. Option
-DCPU defines word CPU in the code, with -DOMP and -DMD performing
similar functions, with the latter specifying that the program is going to be
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compiled with the sole purpose of performing only MD simulations. Basi-
cally, at the compilation stage there is no need to change anything except
the last option (which in the above example is -DMD) specifying the type of
a simulation that a user intends to perform. The list of options is listed in
table 1.

Table 1: Compiling options

Option Type of calculation Hamiltonian

-DMD MD EAM
-DSDH SD Heisenberg
-DSDHL SD Heisenberg-Landau
-DSLDH SLD EAM + Heisenberg
-DSLDHL SLD EAM + Heisenberg-Landau

Compiling the program for the execution on a GPU is similar. Users
are advised to use at least CUDA version 5.5, which is the version that was
used for testing the program. The program can be compiled using a suitably
edited version of the command:

$ nvcc -arch=sm 35 -rdc=true -o spilady -DGPU -DMD *.cpp *.cu

Option -arch=sm 35 tells the compiler to produce an executable file for
devices with hardware architecture version 3.5 (Fermi). It is safe to use -
arch=sm 20, however using versions lower than 2.0 is not advisable. Option
-rdc=true is important. It allows the device codes placed in different files
to be recognized by other codes in other files. Although this happens auto-
matically in CPU compilers, this is not the case for the GPU compiler nvcc.
Other compilation options are similar to those of the CPU case.

All the files in the working directory are going to be compiled. If there
are unnecessary files, it is best to move them out of the working directory.
For example, if there are multiple interatomic potential files, e.g. DD05.cpp,
only one of them should remain in the folder.

4.2. Potential and heat capacity files

To preparing SPILADY for performing MD and SLD simulations, one
needs to retain one and only one embedded atom method (EAM) many-
body potential file in the working directory. Similarly, to perform an SD or
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an SLD simulation one should retain one and only one Heisenberg-Landau
function file in the working directory.

The potential file must contain parameters describing the potential energy
of interaction between the atoms in a standard EAM function format:

U(R) =
∑

i

Fi(ρi) +
1

2

∑

i,j

Vij(Rij), (52)

where ρi =
∑

j fij(Rij) is the effective electron density.
It is necessary to provide exact functional forms of Fi, Vij and fij in the

interatomic potential file. This can be accomplished by editing functions
bigf gen, pair gen and smallf gen in DD05.cpp. At the start of a simula-
tion SPILADY converts these functions into tables for the actual calculation
of energies and forces.

In the Heisenberg-Landau function file, one needs to enter parameters for
the Heisenberg-Landau Hamiltonian:

Hspin = −
1

2

∑

i,j

Jij(Rij)Si · Sj

+
∑

i

(

Ai(ρi)S
2
i +Bi(ρi)S

4
i + Ci(ρi)S

6
i +Di(ρi)S

8
i

)

. (53)

It is necessary to input the exact functional forms of Jij, Ai, Bi, Ci andDi

and their parameterizations into the Heisenberg-Landau function file. This
can be done by editing functions Jij gen, LandauA gen, LandauB gen,
LandauC gen and LandauD gen in JijFe.cpp. At the start of a simu-
lation these functions are going to be converted into tables for the actual
calculations of energies and forces.

To perform a Langevin dynamics simulation of coupled atomic and elec-
tron subsystems, one needs to edit file heatcapacity CPU.cpp, provided that
the simulation is going to be performed on a CPU computer. It may also be
necessary to amend functions Ce, Te to Ee and Ee to Te. If the simula-
tion is going to be performed on a GPU, it is also necessary to edit file heat-
capacity GPU.cu and functions Ce d, Te to Ee d and Ee to Te d. The
functional form of electron heat capacity per atom Ce = a tanh(bTe) assumed
in the program follows Ref. [42]. If necessary, this function can be modified
by defining a relationship between the electron temperature Te and electron
energy per atom Ee in analytical form.

If any of the potential or the heat capacity files have been amended or
modified, the program needs to be recompiled.
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4.3. Input, output and control options

Full description of input, output and control directives can be found in
the user manual, which is distributed together with the program.

Variables can be initialized in the file variables.in. Some variables have
default values, while some do not. It is important to input initial numerical
values of the relevant variables properly in accord with the user manual. If
changes are restricted to file variables.in there is no need to recompile the
program. For performing a GPU simulation, it is necessary to input the GPU
card index using variable current device. For a hardware architecture lower
than 3.5, we suggest using 32 threads per block. Otherwise, we suggest using
64 or 192. This can be defined using variable no of threads.

All the control options can be defined in file control.h. These options
can be switched on or off by uncommenting or commenting them. For ex-
ample, one can switch on or off the Langevin thermostats for the spin and
lattice subsystems, include the Langevin treatment of the electron subsys-
tem, switch on the option describing the separation of local collective motion
etc. SPILADY also includes an implementation of the quantum thermostat
for the atomic lattice, following the method developed by Barret and Rodney
[45]. Any changes in file control.h should be followed by the recompilation
of the program to take effect.

In an SD or SLD simulation, one can choose whether to use magnetic
moments or atomic spins as input and output variables. This point requires
attention, for example if we choose to input and output magnetic moments, it
is necessary to uncomment #define magmom in control.h. The Heisenberg-
Landau Hamiltonian then acquires the form:

Hspin = −
1

2

∑

i,j

Jij(Rij)Mi ·Mj

+
∑

i

(

Ai(ρi)M
2
i +Bi(ρi)M

4
i + Ci(ρi)M

6
i +Di(ρi)M

8
i

)

. (54)

Parameters of this Hamiltonian would need to be fitted for the magnetic
moments, since now {Mi} are used as fundamental magnetic variables. In
particular, one needs to pay attention to making the correct choice of Jij and
the Landau coefficients in the Heisenberg-Landau function file JijFe.cpp.
Independently of the choice of the input and output variables, all the inter-
nal calculations in SPILADY are performed using atomic spins as variables.
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Values of magnetic moment and atomic spin vectors are related simply as
Mi = −gµBSi.

All the output files have the same body as the content of variable out body.
For example, if we include a line “out body xxx” in variables.in, SPILADY
will generate output files with the following names: (1) enr-xxx.dat, (2) prs-
xxx.dat, (3) str-xxx.dat, (4) tmp-xxx.dat, (5) spn-xxx.dat, (6) cel-xxx nnnn.dat,
(7) con-xxx nnnn.dat, and (8) vsm-xxx nnnn.ascii/.spin/.dat. The first five
files accumulate the data on the average energy, pressure, stresses, tempera-
tures, and magnetic moments in the simulation cell every interval of print out
steps.

The sixth file contains data on the temperature of each linked cell in this
particular instance. This file is generated only if #define eltemp is switched
on. The program produces an output file every interval of config out num-
ber of steps. An extra part is added to the file name to form a sequence of
output files. The value of nnnn spans the interval from 0000 to 9999. After
initialization, before any calculation is performed, a file cel-xxx 0000.dat is
generated. Then, the file index increases by 1 for each output file. When
the program reaches the upper limit for the number of steps or the upper
limit for the execution time, a file of the form cel-xxx 9999.dat is generated,
regardless of the previous output file numbering. Any of the numbered files
can be used as input for a new calculation using variable in eltemp.

The seventh file contains information about an atomic configuration at
a given moment of time. The program produces an output file every in-
terval of config out number of steps. If #define magmom is switched
on, values of spin vectors are replaced by magnetic moments. Columns of
data only appear when specific degrees of freedom are considered. Any of
the numbered files can be used as an input file for a new calculation, this is
controlled by variable in config.

The eighth set of files contains information about atomic positions, mo-
menta and spin vectors. The program then produces an output file for every
interval of vsim steps. Details can be found in the user manual. These
files can be used to visualize atoms and spins using the freely available pro-
gram V sim, developed by CEA, France [46], an example of application of
which is given below. These files can also be used as input files similarly
to con-xxx nnnn.dat. However, since they are generated for the visualiza-
tion purposes, their default precision includes only 4 meaningful digits. One
should change it into 16 digits using variable vsim prec if the data are to
be used as input for another simulation.
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5. Applications

Two examples illustrating application of SPILADY program are given
below, and more examples can be found in the user manual. Interatomic
potential for pure iron is used in both cases. The many-body potential [16],
the exchange coupling function [24], the Landau coefficients [34], and elec-
tron heat capacity [42] are already included in files DD05.cpp, JijFe.cpp and
heatcapacity CPU.cpp or heatcapacity GPU.cu. Function Jij is slightly ad-
justed in comparison with Ref. [24] to achieve better agreement with the
experimentally observed Curie temperature TC .

It is advisable to use the CPU version of SPILADY before trying the GPU
version. The content of the source code is easier to follow in the CPU version.
Users are also advised to use the CPU version, instead of the GPU version,
for carrying out SD and SLD simulations if the system size is smaller than
54,000 spins/atoms. This is because parallelization of the Suzuki-Trotter de-
composition algorithm involves linked cells rather than atoms. If the system
size is small, the number of linked cells within a non-interacting group of cells
is limited, and the powerful parallel environment of a GPU cannot be fully
utilized. On the other hand, if the system size approaches a million atoms,
the use of a GPU is justified.

5.1. Thermalization of Magnetic BCC Iron

In this application we are going to illustrate the dynamics of thermaliza-
tion of a spin-lattice system with longitudinal fluctuations, starting from a
collinear ferromagnetic perfect lattice configuration and evolving the system
into a finite temperature state. The size of the simulation box is relaxed ac-
cording to its internal pressure. This worked example can be used as a test to
see if the compilation and running of the program were performed correctly.
Files control.h and variables.in are in folder example5, these files should be
copied to the working directory before the compilation of the program.

An atomic configuration of bcc iron containing 16000 atoms is initialized
according to the content of the input files. There are 20 × 20 × 20 unit
cells, where each unit cell contains 2 atoms. The thermostat temperature
is set at 300K. Fig. 2 shows how temperatures change as functions of time.
In the figure, Tl is the kinetic temperature of the lattice, Ts and T ′

s are
the spin temperatures calculated using Eq. (9) and (12), respectively. The
plots show that all the temperatures reach 300K eventually, following their
own timescales, which are defined by the respective damping parameters.
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Figure 2: A spin-lattice system with longitudinal fluctuation is thermalized from collinear
ferromagnetic and perfect lattice configuration to 300K.

Damping constants γl and γs are assigned according to our previous studies
[29, 30]. Since coupling between the lattice and the thermostat is weaker than
between the spin subsystem and the thermostat, the rate of thermalization
of the lattice degrees of freedom is slower.

The two spin temperatures take different values during the thermalization
process because the first (Ts) describes collective magnetic excitations, which
take longer to reach equilibrium, whereas the second (T ′

s) includes longitudi-
nal fluctuations, which evolve towards the Gibbs distribution faster. Because
of that T ′

s reaches the final asymptotic value sooner than Ts. At equilibrium
Ts equals T

′
s.

If option #defined PRESSURE is switched on, the simulation box re-
laxes in response to its internal pressure. Fig. 3 shows that initially the
internal pressure is positive, and forces acting on atoms expand the simu-
lation cell. As a result, the average lattice constant increases and reaches
a maximum. At approximately the same moment of time pressure reaches
zero, which is the target value of pressure variable in variables.in.

Using the output files vsm-test SLDHL 9999.ascii/.spin we can visualize
atoms and spins using V sim. Fig. 4 shows that atoms are displaced from the
initially perfect lattice positions, and also that spin configurations become
non-collinear, due to thermal excitations. Forces and effective exchange fields
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Figure 3: (Top) The change of the internal pressure of a simulation box during a thermal-
ization to 300K. (Bottom) The change of the lattice constant as a function of time.
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Figure 4: The atomic and spin configuration at 300K visualized by V sim.
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Figure 5: Variation of temperatures as functions of time for a case where a laser pulse
occurs at 0ps.

acting on each atom depend on both atomic and spin configurations.

5.2. Laser Pulse Demagnetization

The second example is a little more challenging. Magnetic iron interacts
with a laser pulse occurring at t = 0. This is mimicked by adding an ex-
tra amount of energy to the electron subsystem, effectively assuming that
all the energy of the laser pulse is absorbed by the electrons. A Gaussian
profile of the energy pulse is assumed in agreement with the experimental
realizations of laser pulse demagnetization effects [47]. In our earlier work,
we simulated a demagnetization experiment, neglecting longitudinal fluctu-
ations [29]. Here, simulations involve both the longitudinal and transverse
spin degrees of freedom.

To perform the simulations we need to edit a small part of the source
code. All the edited files can be found in directory example7. To per-
form the simulations described in this worked example one needs to copy
all the files into the working directory, and compile and run the program.
File laser demagnetization CPU.cpp contains a function describing a Gaus-
sian energy pulse with the standard deviation of 15fs, corresponding to a
60fs experimental pulse absorbed by the electrons. We remind the reader
that when a new function is added to the program, its prototype needs
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Figure 6: Dynamics of demagnetization and recovery corresponding to the case where a
laser pulse occurs at 0ps. Experimental data [47] are shown for comparison.

to be added to file prototype CPU.cpp. In a GPU device code, the proto-
type needs to be added to file prototype GPU.cu. We have already included
function laser demagnetization CPU() in spilady.cpp, and added it to
prototype CPU.cpp.

We use the final output configuration file from the previous example as
an input configuration file for this simulation, and switch on option #define
eltemp. We now deal with a spin-lattice-electron system where the total
energy is conserved apart from the extra amount associated with the laser
pulse. The laser pulse is introduced at around 0ps. Fig. 5 shows a sharp
peak of Te at around 0ps, associated with the energy pulse. T ′

s responds
swiftly to changes in Te because they are strongly coupled. Ts responds
slower because Ts describes the relaxation of collective spin excitations. It
takes slightly longer for the transverse fluctuations to absorb energy and
achieve maximum entropy. The Tl response is the slowest, since the coupling
between the electrons and the lattice is comparatively weak.

Fig. 6 shows magnetization plotted as a function of time, on the same
timescale as in Fig. 5. Magnetization is normalized to its value at 300K.
It drops significantly when the laser pulse is introduced. Then it gradually
recovers. Experimental data points taken from Ref. [47] are also shown for
comparison. They match each other fairly well. Magnetization does not
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recover back to its original value because the temperature of the system
increases from 300K to about 450K.

6. Conclusion

In this paper we describe the main features of a spin-lattice dynamics
simulation program, SPILADY verison 1.0. A user of SPILADY can per-
form molecular dynamics, spin dynamics, spin-lattice dynamics, and spin-
lattice-electron dynamics simulations, including where necessary longitudinal
spin fluctuations. The program is written in OpenMP C/C++ and CUDA
C/C++. It can be run in parallel on CPUs, or on an Nvidia GPU. This paper
describes the underlying theoretical concepts, algorithms and applications of
the program, as well as its limitations.
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[10] F. Körmann, A. A. H. Breidi, S. L. Dudarev, N. Dupin, G. Ghosh, T.
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