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ASYMPTOTIC TRANSITION FROM KINETIC TO ADIABATIC
ELECTRONS ALONG MAGNETIC FIELD LINES

ALEXANDRA DE CECCO, CLAUDIA NEGULESCU, STEFAN POSSANNER

Abstract. Plasma dynamics is known to involve several time and space scales, fact which

renders its study particularly challenging, from an analytical as well as numerical point

of view. In this work we focus on the electron dynamics, studied on the time scale of the

ion thermal motion, leading to a quasi-adiabatic response of the electrons in this regime.

Starting from a bi-fluid kinetic model with intra- and inter-particle collision operators, we

establish via a scaling procedure the non-dimensional equations, in which the ion Mach

number is assumed of order one and the electron-ion mass ratio as well as the Knudsen

number are embodied by a single scaling parameter ε � 1. Our studies are done in one

space- and velocity dimensions, modeling electron/ion motions along (straight) magnetic

field lines (no cyclotron motion or drifts). We introduce two numerical schemes for solving

the electron evolution equation along the transition ε → 0 from the kinetic regime to

the adiabatic regime (Boltzmann relation), in a uniformly stable way with respect to

ε. Our approach is based on micro-macro techniques, separating the microscopic kinetic

distribution part from the macroscopic part.

Keywords: Plasma modelling, kinetic equations, mass disparate particles, multi-scale

problem, Boltzmann adiabatic relation, Asymptotic-Preserving numerical method.

1. Introduction

A kinetic treatment of a tokamak plasma, composed of ions and electrons, is very precise

and appropriate for detailed studies of phenomena like temperature-gradient driven insta-

bilities (ITG, ETG), internal kink modes or reconnection processes, to mention only some

examples. The difficulty with a fully kinetic treatment comes among others from the small

mass ratio δ := me/mi ≈ 10−4 of the particles, inducing, for a typical tokamak plasma

with similar electron and ion temperatures, faster electron dynamics than ion dynamics. In

particular, the ratio of the thermal velocities is given by vth,e/vth,i = 1/
√
δ ≈ 102. This fact

poses for a standard discretization of the bi-kinetic system rather restrictive time-step con-

straints related to the fast electron motion, i.e. numerical stability requires vth,e∆t ≤ ∆x.

However, in many cases one is interested in phenomena evolving on the ion time-scales

which describe the macroscopic evolution of the plasma, as for example the time-scale of

Date: September 22, 2015.
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the ITG instabilities and of the plasma drifts. The primary goal is hence to construct

a numerical scheme being able to describe accurately the needed (ion) physics, however

without being forced to follow the fast electron motion. This was achieved in past works

by hybrid strategies [4, 7, 31], describing the heavy, slow ions via a kinetic equation (or

a hydrodynamic system if accurate enough) and the light and fast electrons via a mass-

less or inertial-less fluid system (so-called Boltzmann response or adiabatic electrons).

This Boltzmann relation is obtained by assuming zero electron inertia (me → 0) and

zero viscosity in the ”parallel” electron equation of motion (”parallel” with respect to the

magnetic field lines), leading to the relation

∇||pe = −q ne E|| , E = −∇φ . (1)

This relation signifies that the pressure-gradient and electrostatic forces acting on the

electrons (parallel to the magnetic field) are in balance. Moreover, rapid parallel thermal

conduction assures that ∇||Te ∼ 0, such that with the thermodynamic equation of state

pe = ne kB Te one gets

ne(t,x) = c(t,x⊥) exp

(
q φ(t,x)

kB Te(t,x⊥)

)
, x = (x⊥,x||) ∈ R3 , t ∈ R+ . (2)

This is the so-called Boltzmann relation or adiabatic response, relating the electron den-

sity with the electric potential. Here, c(t,x⊥) and Te(t,x⊥) are functions to be determined

from the remaining transport equations as well as initial and boundary conditions; they

do not depend on the parallel coordinate x||. Once c and Te are known the relation (2)

can be inserted into the Poisson equation for the electrostatic potential, which can then be

coupled to a model for the ion dynamics (kinetic or fluid). Such a procedure is common in

plasma simulations [4, 7, 31], because it leads to large reductions in computational cost.

The smallness of the electron-ion mass ratio makes (2) a good approximation for typ-

ical fusion plasmas. But even under these circumstances, there are situations where the

Boltzmann electron approximation is not adapted, as for example near to the boundaries

(in the so-called sheath and pre-sheath regions of a tokamak) or when describing trapped

electrons [4, 19]. It is therefore more reasonable to use in these regions a standard electron

kinetic model, whereas in the rest of the domain the adiabatic electron response would

give sufficiently accurate results. Considering this new difficulty, the aim of this work is to

design a numerical scheme capable to describe both electron regimes, i.e. the non-adiabatic

kinetic regime as well as the adiabatic Boltzmann regime, as an alternative to strategies

such as domain decomposition. We shall make use of Asymptotic-Preserving (AP) tech-

niques [12, 27, 35], which preserve at the discrete level the asymptotic passage from the

kinetic to the adiabatic regime, as a small parameter ε, responsible for this asymptotics,

goes to zero. AP techniques enable ε-independent time and spatial steps ∆t resp. ∆x,

adapted to the physical phenomena one wants to describe, and are hence very interesting
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from a computational point of view.

The model we are starting from is a 1D1V two-species kinetic model, describing a non-

magnetized, isothermal plasma. One can imagine that we are investigating a gas of charged

particles evolving along the magnetic field lines, and being additionally in a thermal bath

of given temperature. This model, though rather simplified, still keeps all the numerical

difficulties one can encounter in a more physical 3D3V, strongly magnetized model, with

varying temperatures (the 3D adiabatic limit has been studied in [36]). The aim of the

present simplification was to understand the difficult points in the construction of an AP-

scheme in the adiabatic scaling.

The structure of this paper is the following. In Section 2 we are introducing the two-

species kinetic model and its scaling. Section 3 reviews the obtention of some macroscopic

ion/electron models. The electron adiabatic limit differs from hydrodynamic and drift-

diffusion limits in that frictional terms between ions and electrons are neglected. Section

4 contains a reformulation of the original electron kinetic equation via the micro-macro

approach. In Section 5 we introduce two AP-procedures for the resolution of the electron

evolution in the kinetic as well as the adiabatic regime. Numerical results are finally

presented in Section 6.

2. The fully kinetic model and its scaling

Starting point of our study is the following one-dimensional Boltzmann system for the

two species (ions, electrons) of charged particles
∂tfi + v ∂xfi +

q

mi

E ∂vfi = Qii(fi) +Qie(fi, fe)

∂tfe + v ∂xfe −
q

me

E ∂vfe = Qee(fe) +Qei(fe, fi) ,
(3)

coupled to the Poisson equation for the computation of the electrostatic potential

−∂xxφ =
q

ε0
(ni − ne) , E = −∂xφ , (4)

where fi,e are the particle density functions, q is the elementary charge, ε0 the vacuum

permittivity, me,i the electron respectively ion mass and ne,i the electron respectively ion

density, defined as

ne,i(t, x) :=

∫
R
fe,i(t, x, v) dv. (5)

The particle fluxes (flow velocities) are defined via

(ne,i ue,i)(t, x) :=

∫
R
v fe,i(t, x, v) dv. (6)
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At this point we do not need to precise the specific form of the collision operators. It

suffices to list some of their important properties and give their particular form later on.

In particular, the self- as well as inter-species collision operators are supposed to conserve

mass and momentum, i.e. we assume∫
R
Qkl(v) dv = 0 , ∀k, l ∈ {i, e} , (7)∫

R
Qee(v)me v dv =

∫
R
Qii(v)mi v dv = 0 , Sei + Sie = 0 , (8)

with the friction terms defined as

Sei :=

∫
R
Qei(v)me v dv , Sie :=

∫
R
Qie(v)mi v dv . (9)

To simplify the present study, we shall suppose in this paper, that the particles evolve in

a thermal bath of given temperature T (Te = Ti = T ), such that no energy conservation

is demanded from the collision operators. The more general 3D3V case, with variable

temperatures and strong magnetic field, will be treated in a forthcoming work.

2.1. Regime/scaling. Let us now introduce the dimensionless form of the kinetic model.

This procedure shall permit to identify relevant parameters, describing different asymptotic

regimes of the plasma. With this ambition in mind, the characteristic scales of our problem

are summarized here:

• Disparate masses (Parameter: δ):

δ :=
me

mi

. (10)

• Microscopic (thermal) velocity scales:

v̄e := vth,e =

√
kBT

me

, v̄i := vth,i =

√
kBT

mi

=
√
δ v̄e. (11)

• Microscopic time and length scale:

τc := τii (elapsed time between 2 ionic collisions) , (12a)

lc := v̄i τc (mean free path between 2 ionic collisions) . (12b)

• Macroscopic velocity scale (parameter: ionic Mach number M):

ūi = ūe = ū (characteristic mean velocities) , (13a)

ū

v̄i
=: M ⇒ ū

v̄e
=
√
δM . (13b)

• Macroscopic length scale (parameter: ionic Knudsen number κ):

x̄ = L (distance of interest) ,
lc
x̄

=: κ . (14)
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• Macroscopic time scale:

t̄ :=
x̄

ū
=

1

κM
τc (observation time) . (15)

• Electric force scale:

Ē =
kB T

x̄ q
=
v̄2
i mi

qx̄
=⇒ φ̄ =

kB T

q
. (16)

• Collision operators, distribution functions:

n̄i = n̄e = n̄ , f̄e :=
n̄

v̄e
, f̄i :=

n̄

v̄i
, (17)

Q̄ee = ν̄eef̄e , Q̄ii = ν̄iif̄i , Q̄ei = ν̄eif̄e , Q̄ie = ν̄ief̄i . (18)

• Collisional frequencies ν̄kl [22] and corresponding collisional periods τkl = 1/ν̄kl:

ν̄ii =
√
δ ν̄ee , ν̄ie = δ ν̄ei , ν̄ie =

√
δν̄ii , ν̄ee = ν̄ei , (19)

τee = τei =
√
δ τc , τie =

1√
δ
τc . (20)

• Debye length (parameter λ):

λD :=

√
ε0kBT

n̄ q2
=
vth,i
ωp

, ωp :=

√
n̄ q2

ε0mi

(plasma frequency) , (21)

λ :=
λD
x̄

=
vth,i
x̄

1

ωp
= κ

1

ωp τc
. (22)

In order to rescale our system, we perform the following variable substitutions in (3)-(4):

t = t̄ t′ , x = x̄ x′ , v = v̄e,i v
′ , fe,i(t, x, v) = f̄e,i f

′
e,i(t

′, x′, v′) , (23)

E(t, x) = Ē E ′(t′, x′) , Qkl(fk, fl) = Q̄klQ
′
kl(f

′
k, f

′
l ) , (24)

and finally obtain the dimension-less kinetic model
∂t′f

′
i +

1

M
v′∂x′f

′
i +

1

M
E ′ ∂v′f

′
i =

1

κM

[
Q′ii(f

′
i) +
√
δ Q′ie(f

′
i , f
′
e)
]

∂t′f
′
e +

1√
δM

v′∂x′f
′
e −

1√
δM

E ′ ∂v′f
′
e =

1

κ
√
δM

[Q′ee(f
′
e) +Q′ei(f

′
e, f
′
i)] ,

(25)

coupled with the Poisson equation

−λ2 ∂xxφ
′ = n′i − n′e , E ′ = −∂xφ′ , n′e,i =

∫
R
f ′e,i dv

′ . (26)

The rescaled collision operators satisfy now the rescaled conservation laws∫
R
Q′kl(v

′) dv′ = 0 , ∀k, l ∈ {i, e} , (27)
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Q′ee(v

′) v′ dv′ =

∫
R
Q′ii(v

′) v′ dv′ = 0 , S ′ei +
√
δ S ′ie = 0 , (28)

with the friction terms given by

S ′ei :=

∫
R
Q′ei(v

′) v′ dv′ , S ′ie :=

∫
R
Q′ie(v

′) v′ dv′ . (29)

It is worthwhile to remark also the scaled first moments of the distribution functions:

M n′iu
′
i =

∫
R
v′f ′i(v

′) dv′ ,
√
δM n′eu

′
e =

∫
R
v′f ′e(v

′) dv′ . (30)

Several time-scales are apparent in the non-dimensional system (25). The overall time-

scale is obviously determined by the Mach number M . It becomes also clear that the

electron dynamics is faster by a factor 1/
√
δ compared to the ion dynamics, fact which

justifies the adiabatic electron treatment when δ → 0 formally. The collisional time-scale

is determined by the Knudsen number κ in our setting. Moreover, we remark that the

different collision operators do not operate on the same time-scale. Firstly, due to the

small mass ratio δ, the ion-electron collision term is negligible in the relaxation process

of the ions towards their thermodynamic equilibrium. Secondly, both collision operators

Qee and Qei act on the same time-scale and contribute together to the thermodynamic

relaxation of the electrons. Finally, one also remarks that the ions relax much slower than

the electrons towards their corresponding equilibrium, namely
√
δ =

√
me/mi-slower, such

that the electron fluid equations are established in advance to the ion hydrodynamic ones.

Keeping now all parameters fixed but one leads to well-known asymptotic limits. In

particular, λ→ 0 is the so-called quasi-neutrality limit [29, 30], κ→ 0 the hydrodynamic

limit [1, 13, 23] and M → 0 the long-time asymptotics [3, 18], which is a rather challenging

limit. Finally δ → 0 denotes the zero-mass limit [24]. The limit we are interested to treat

in this paper is the so-called adiabatic limit. We have seen in [36] that in order to get

from the kinetic to the electron Boltzmann regime, one needs a collisional, low-mass or

inertial-less situation. In order to mimic this situation we suppose

M ∼ 1 , δ ∼ ε , κ ∼
√
ε , (31)

where ε ∈ [0, 1] is the asymptotic parameter tending to zero1 in the following studies. The

main reasons for the particular study of (31) can be summarized as follows:

• Collisionality: Even if tokamak plasmas are low-collisional, our choice of a high

collisionality comes from the fact that nowadays fluid models are still used for

numerical plasma simulations, being less consuming (in time and memory) than

1The mass ratio δ being fixed in reality, the limit ε → 0 has to be viewed as a mathematical trick, or

approximation. The study of this limit permits a) to understand better the differences between the ion

and electron motions and b) to construct efficient numerical schemes for regimes of ε� 1.
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kinetic models. However, there are situations (or regions in the tokamak) where

fluid models give erroneous or inaccurate results, such that one has to come back

to the more precise kinetic models. Our aim was thus to construct a scheme being

able to switch automatically between the corresponding kinetic and fluid regimes,

and this via the action of the collisional parameter κ.

Remark also that, even for low-collisional plasmas, collisions can lead to impor-

tant effects on long time scales, such as magnetic reconnection processes; this makes

their inclusion in the kinetic equations necessary in order to describe observed phys-

ical phenomena.

• Inertia-less electron regime: In many cases the phenomena of interest occur at

ionic time-scales. Hence, in order to be performant, one would like to follow accu-

rately the ion-dynamics, restricted by the time-step vth,i ∆t ≤ ∆x, without having

to resolve the rapid electron evolution, restricted by the more limited time-step

vth,e ∆t = vth,i ∆t/
√
δ ≤ ∆x. This is the reason why we artificially set M ∼ 1 and

let ε→ 0 (even if the mass-ratio δ is fixed in reality), having in mind a scheme that

gives accurate results for ∆t independent of ε. The adiabatic limit could also be

attained by setting M ∼ ε and δ fixed; however, this limit would not differentiate

between ions and electrons and is the topic of other works [17] regarding the low-

Mach ion regime.

• AP-property: Regarding (25) with M ∼ 1 and
√
δ ∼ 10−2 could suggest that

studying the limit δ = ε → 0 is rather academic, with little use in practice. This

is not true since the Mach number can be small in some regions of the Tokamak,

such that the product
√
δM is small enough to cause numerical difficulties (bad

conditioning of linear systems, slow convergence in iterative schemes, numerical

singularities). The AP-schemes designed here are devoid of such problems and are

capable to treat each regime equally efficient and accurate.

2.2. Collision operators. Let us now focus on the collision operators and their respective

scaling. The choice of a collision operator is important for the correct description of the

underlying collisional process and the relaxation towards the respective thermodynamic

equilibrium. The conclusions of the previous subsection are independent on the particular

form of the collision operators, provided they satisfy the demanded conservation rules.

However, for the further study, in particular for the determination of the structure of the

limiting system in the long-time asymptotics, it is important to know more about these col-

lision operators, especially about the thermodynamic equilibria, property embodied within

them.



8 A. DE CECCO, C. NEGULESCU, S. POSSANNER

Several collision operators have been introduced in literature, describing various col-

lision processes and varying in complexity, as for example the Boltzmann operator, the

Fokker-Planck operator or the Landau operator [5, 6, 39]. Given their rather considerable

elaboration, it is tempting to make the choice of more simpler operators, which are approxi-

mations of the latter ones, and share the same conservation-properties, entropy inequalities

and equilibria. The advantage of these more simpler models is their manageable numerical

treatment. For these reasons, we shall concentrate in the present paper on BGK-type col-

lision operators, which substitute the detailed particle interactions by relaxation processes

towards the requested equilibria. These self-species and inter-species operators read [37]

Qee,ii(fe,i) := νee,ii (Me,i
ne,i,ue,i,T

− fe,i) , (32a)

Qei(fe, fi) := νei (Me
ne,ui,T

− fe) , Qie(fi, fe) := νie (Mi
ni,ue,T

− fi) , (32b)

where νkl = ν̄kl ν
′
kl are the previously introduced relaxation frequencies of the distribution

functions towards the Maxwellian equilibria, given by

Ms
ne,i,ue,i,T

(t, x, v) = ne,i(t, x)

(
ms

2πkBT

)1/2

exp

(
−ms

|v − ue,i(t, x)|2

2kBT

)
. (33)

Here kB is the Boltzmann constant, the electrons and ions are supposed to be in a thermal

bath of given temperature T > 0 and ne,i and ue,i are the macroscopic particle density

and mean velocity defined in Eqs. (5) and (6), respectively. Remark here also the upper

index s ∈ {e, i} in the notation of the Maxwellian Ms, permitting to clarify which mass

to take, especially in the definition of the inter-species collision operators. To have the

classical mass and momentum conservation properties of these collision operators, we have

to suppose

miniνie = meneνei , =⇒ n′i ν
′
ie = n′e ν

′
ei .

The scaled relation follows then from our assumptions (17) and (19) on the characteristic

densities and collision frequencies. Scaling the collision operators (32) leads to Qkl(fk, fl) =
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ν̄kl f̄kQ
′
kl(f

′
k, f

′
l ), where

Q′ee(f
′
e) := ν ′ee (Mn′

e,
√
δM u′e

− f ′e) = ν ′ee

(
n′e√
2π

exp

(
−|v

′ −
√
δM u′e|2

2

)
− f ′e

)
, (34a)

Q′ii(f
′
i) := ν ′ii (Mn′

i,M u′i
− f ′i) = ν ′ii

(
n′i√
2π

exp

(
−|v

′ −M u′i|2

2

)
− f ′i

)
, (34b)

Q′ei(f
′
e, f
′
i) := ν ′ei (Mn′

e,
√
δM u′i

− f ′e) = ν ′ei

(
n′e√
2π

exp

(
−|v

′ −
√
δM u′i|2

2

)
− f ′e

)
, (34c)

Q′ie(f
′
i , f
′
e) := ν ′ie (Mn′

i,M u′e − f
′
i) = ν ′ie

(
n′i√
2π

exp

(
−|v

′ −M u′e|2

2

)
− f ′i

)
. (34d)

The rescaled moments n′e,i and u′e,i of the distribution functions are given in (26) and (30).

3. Macroscopic models in the mass-disparate regime

3.1. Drift-diffusion regime of electrons. Before concentrating on the adiabatic electron

limit, let us review an ion/electron macroscopic model issued from the scaled kinetic system

(25), with our particular choice (31) for the occurring parameters, i.e.
∂tf

ε
i + v ∂xf

ε
i + Eε ∂vf

ε
i =

1√
ε

[
Qii(f

ε
i ) +

√
εQie(f

ε
i , f

ε
e )
]
,

∂tf
ε
e +

1√
ε
v ∂xf

ε
e −

1√
ε
Eε ∂vf

ε
e =

1

ε

[
Q(ε)
ee (f εe ) +Q

(ε)
ei (f εe , f

ε
i )
]
,

(35)

coupled with the Poisson equation

−λ2 ∂xxφ
ε = nεi − nεe , Eε = −∂xφε . (36)

Our aim is to identify the ion/electron asymptotic limit system as the small perturbation

parameter ε tends towards zero. We term this limit a ”macroscopic” limit since
√
ε em-

bodies the Knudsen number (ε expresses also the electron-ion mass-ratio). Remark that

the primes have been omitted for simplicity reasons and that the collision operators in

dimension-less form read

Qii = νii

(
nεi√
2π

exp

(
−(v − uεi )2

2

)
− f εi

)
, Q(ε)

ee = νee

(
nεe√
2π

exp

(
−(v −

√
εuεe)

2

2

)
− f εe

)
,

(37a)

Qie = νie

(
nεi√
2π

exp

(
−(v − uεe)2

2

)
− f εi

)
, Q

(ε)
ei = νei

(
nεe√
2π

exp

(
−(v −

√
εuεi )

2

2

)
− f εe

)
,

(37b)
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The electron collision operators depend explicitly on ε in the exponential, fact which stems

from the scale assumptions (13) and which is highlighted in their notation. In many prac-

tical applications the rescaled Debye length λ will tend to zero as ε→ 0, since λ = κ 1
ωp τc

with ωp the ion plasma frequency; we shall not investigate this quasi-neutrality limit in the

present paper, in order to concentrate on the new adiabatic limit.

The ε → 0 limit of the ion kinetic equation is a standard hydrodynamic limit. Indeed,

f εi tends towards a function belonging to the kernel of the dominant operator Qii, i.e.

f 0
i =Mn0

i ,u
0
i
, the moments of this Maxwellian being solution of the hydrodynamic model

(ion-HD)

{
∂tn

0
i + ∂x(n

0
i u

0
i ) = 0 ,

∂t(n
0
i u

0
i ) + ∂x(n

0
i (u0

i )
2) + ∂x p

0
i − E0 n0

i = S0
ie ,

(38)

with the friction term S0
ie = νien

0
i (u

0
e − u0

i ) and the pressure defined as

pεi (t, x) :=

∫
R
(v − uεi )2 f εi (t, x, v) dv ,

leading for ε→ 0 to the equation of state p0
i = n0

i . The limit problem (38) is a completely

macroscopic system, coupled to the electron system via the mean velocity u0
e in S0

ie as well

as via the electric field E0, computed through Poisson. This hydrodynamic limit ε → 0

has been largely investigated in literature; for more details we refer the interested reader

to the non-exhaustive list [1, 9, 13, 20, 21, 23] and references therein.

To identify the ε → 0 limit of the electron kinetic equation in (35), one observes from

(37) that, for given ion-distribution function fi, we have

ker
{
Q(0)
ee (fe) +Q

(0)
ei (fe, fi)

}
= {Mn0

e,0
, n0

e ∈ R} ,

meaning that the ε→ 0 limit of the electron distribution function f εe is a Maxwellian with

zero mean velocity, f 0
e = Mn0

e,0
, where the evolution of the density n0

e(t, x) has still to

be determined. For this, taking the moments of the electron kinetic equation in (35) and

using (30) leads to
∂tn

ε
e + ∂x(n

ε
e u

ε
e) = 0 ,

∂t(n
ε
e u

ε
e) + ∂x(n

ε
e (uεe)

2) +
1

ε
∂x p

ε
e +

1

ε
Eε nεe =

1

ε
Sεei ,

(39)

with the friction term Sεei = νein
ε
e(u

ε
i − uεe) and the pressure given by the formula

pεe(t, x) :=

∫
R
(v −

√
ε uεe)

2 f εe (t, x, v) dv . (40)
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It follows from this definition that p0
e = n0

e; thus the limit regime ε → 0 of system (39) is

simply

(electron-DD)

{
∂tn

0
e + ∂x(n

0
e u

0
e) = 0 ,

∂xn
0
e + E0 n0

e = νein
0
e (u0

i − u0
e) ,

(41)

which is a drift-diffusion model coupled to the ion dynamics through the mean velocity

u0
i as well as via the electric field E0. Kinetic equations in a drift-diffusive scaling and

their asymptotic analysis have been also the context of several works, as for example

[28, 34, 38]. Note here that, as expected, the electrons have reached in the limit a more

macroscopic equilibrium (DD-model) than the ions (HD-model), due to their smaller mass

or equivalently their higher thermal velocities.

3.2. Adiabatic regime of electrons. In contrast to the drift-diffusion electron regime,

the adiabatic regime is attained when the friction term Sεei in (39) is small. This could

occur when for example the current is small, i.e. uεi − uεe ∼ O(
√
ε), such that the friction

term Sεie will disappear at leading order in (39). Passing then to the limit yields{
∂t n

0
e + ∂x(n

0
e u

0
e) = 0

∂xn
0
e + E0 n0

e = 0 .
(42)

Assuming periodic boundary conditions, which makes sense if we keep in mind the idea of

a plasma evolving along closed field lines, this is an ill-posed system. Indeed, there is no

manner to determine completely the velocity u0
e. This difficulty is similar to the singular

low-Mach limit.

It is worth noting that one is however able to get the Boltzmann relation from (42).

Indeed, for given E0 = −∂xφ0 the second equation of (42) yields the density-potential

relation

n0(t, x) = c(t) eφ
0(t,x) , ∀(t, x) ∈ R+ × [0, L] . (43)

To determine the constant c(t), one has only to integrate the first equation of (42) over

the periodic space-variable x to get

∂t n0 = 0 , n0(t) :=
1

L

∫ L

0

n0(t, x) dx ,

implying thus

n0(t) = n0(0, ·) = n0
0 ,

which permits to compute c(t) for all t ∈ R+ from (43). The fact however that u0 is

not completely determined from the limit model (42) will lead to an ill-conditioned linear

system to be solved if standard methods are used for the discretization of the electron

kinetic equation in (35), schemes which will break down as ε→ 0.

The remainder of this paper is dedicated to the study of this adiabatic asymptotics, in

particular its asymptotic-preserving formulation.
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4. Passage to the electron Boltzmann regime

To investigate the adiabatic asymptotics in more details, let us neglect the ions and start

in this section from the following rescaled electron kinetic equation

(K)ε ∂tf
ε
e +

1√
ε
v ∂xf

ε
e −

1√
ε
E ∂vf

ε
e =

1

ε
Qee(f

ε
e ) =

1

ε
[Mnεe,

√
εuεe
− f εe ]. (44)

The electrostatic potential φ(t, x) is assumed to be given and E = −∂xφ. Firstly, our aim

will be to identify formally the limiting regime of (44) as ε→ 0 and secondly to construct

a numerical scheme for the resolution of this kinetic equation working uniformly accurate

in all ε-regimes. For the sake of clarity, we shall omit in the following the ’e’-index of the

distribution function and of the macroscopic quantities and shall keep in mind that we are

dealing with the electron dynamics. Furthermore, to simplify, we set νee = 1.

To complete the electron kinetic equation (44) we have to specify the boundary and

initial conditions. The time variable t belongs to R+, the spatial variable x to the interval

[0, L] with L > 0, and we shall consider in the following a periodic space-situation, meaning

∂kxf(t, 0, v) = ∂kxf(t, L, v) , ∀t ∈ R+ , ∀v ∈ R , k ∈ N . (45a)

The velocity variable v is considered in the whole domain R, with the condition that

lim
v→±∞

f(t, x, v) = 0 , ∀t ∈ R+ , ∀x ∈ [0, L]. (45b)

In the numerical simulations one has to truncate the velocity space to [vmin, vmax] supposing

then that the test case and the final simulation time T > 0 are such that one can consider

for fixed (t, x) ∈ [0, T ]× [0, L] that f(t, x, v) = 0 outside the velocity space.

Concerning the initial condition, we shall start with a situation corresponding to the

scaling of Eq. (44), i.e. adapted to the physical regime we consider. Thus, initially, our

electron distribution function is given by the expression

f ε(0, x, v) =Mnε0,
√
ε uε0

+ ε gε0 , (46)

with some given, bounded functions nε0, uε0, gε0. This particular initial condition, which

signifies that we start with a perturbation of the equilibrium Maxwellian, permits to avoid

the creation of boundary layers near t ≈ 0, which can be difficult to treat. Note that

sometimes, an AP-scheme based on such well-prepared initial conditions is called “weakly

Asymptotic Preserving”.

4.1. The Micro-Macro decomposition. To identify the asymptotic limit of (44), we

start with a Chapman-Enskog Ansatz for the distribution function,

f ε =M(f ε) + ε gε , M(f ε) =Mnε,
√
εuε :=

nε√
2π

exp

(
−|v −

√
ε uε|2

2

)
, (47)
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and recall that the moments are given by

nε(t, x) =

∫
R
f ε(t, x, v) dv ,

√
ε nε uε(t, x) =

∫
R
v f ε(t, x, v) dv , (48)

such that one has the properties∫
R
gε(t, x, v) dv =

∫
R
v gε(t, x, v) dv = 0 . (49)

Inserting this decomposition into (44), one obtains

∂tM(f ε) + ε ∂tg
ε +

1√
ε
v ∂xM(f ε) +

√
εv ∂xg

ε − 1√
ε
Eε ∂vM(f ε)−

√
εEε ∂vg

ε = −gε .

(50)

In order to separate the macroscopic and microscopic parts in this equation, we shall use

a projection technique employed also in previous works, see for example [2, 10, 11]. Sup-

pose, for the moment, that f ε and thus the moments (nε,
√
ε uε) as well as the associated

Maxwellian Mnε,
√
εuε are fixed. For notational reasons, we shall designate by M this

Maxwellian, there where no confusion is possible. Let us moreover denote by ΠM the

L2(M−1 dv)-orthogonal projection onto the space

N (LM) := Span {M , vM} , (51)

which is the kernel of the linearization (LM) of the BGK-collision operator Qee around the

fixed Maxwellian Mnε,
√
εuε . This orthogonal projection operator on N (LM) has the form

ΠM(h) =
[ n?
nε

+
√
ε u? (v −

√
εuε)

]
M(f ε) , (52)

where (nε,
√
ε uε) are the moments corresponding to the given, fixed distribution function

f ε and (n?,
√
ε u?) correspond to the function h and are defined as

n? :=

∫
R
h dv ,

√
ε nε u? :=

∫
R
(v −

√
εuε)h dv . (53)

Having defined the projection operator, we successively apply ΠM and then I−ΠM to (50),

in order to separate the macroscopic and microscopic parts of the distribution function f ε.

This gives rise to the coupled system
ε∂tg

ε +
1√
ε

(I− ΠM) (v ∂xM(f ε)) +
√
ε (I− ΠM) (v ∂xg

ε)−
√
εEε ∂v g

ε = −gε ,

∂tM(f ε) +
1√
ε

ΠM(v ∂xM(f ε) ) +
√
εΠM(v ∂xg

ε)− 1√
ε
Eε ∂vM(f ε) = 0 .

(54)
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Remark that for the obtention of this system, we used the following properties of the

projection operator

ΠM(∂tM) = ∂tM , ΠM(∂tg) = 0 , (55)

ΠM(Eε ∂vM) = Eε ∂vM , ΠM(Eε ∂vg) = 0 . (56)

Furthermore, one has

(I− ΠMε) (v ∂xMε) =
√
ε∂xu

ε
[
(v −

√
εuε)2 − 1

]
Mε , (57)

ΠMε(v ∂xg) =
v −
√
εuε

nε
∂x 〈v2 gε〉Mε . (58)

Taking now the moments of the second equation of (54), denoting the integration in v

simply by 〈·〉 :=
∫
R · dv and observing that the pressure defined in (40) satisfies pε =

nε + ε 〈v2 gε〉, leads to the so-called Kinetic-Fluid Micro-Macro reformulation of (44),

(KF )ε



ε ∂tg
ε +
√
ε v ∂xg

ε −
√
εEε∂vg

ε −
√
ε

(v −
√
εuε)

nε
∂x 〈v2 gε〉Mε

+ ∂xu
ε
[
(v −

√
εuε)2 − 1

]
Mε = −gε ,

∂t n
ε + ∂x(n

ε uε) = 0 ,

∂t (nε uε) + ∂x(n
ε(uε)2) +

1

ε
∂xn

ε +
1

ε
Eε nε + ∂x 〈v2 gε 〉 = 0 .

(59)

This corresponds to a coupled system, consisting of a microscopic kinetic equation for

gε and the mass and momentum balance laws for the macroscopic quantities (nε, uε).

It is a completely equivalent model to the original kinetic equation (44) (for ε > 0),

which will however behave better in the limit ε → 0, due to the microscopic-macroscopic

decomposition.

Note here also that if one considers Eε ≡ 0 and gε ≡ 0, system (59) is nothing else than

the low-Mach number isentropic Euler equations, treated from a numerical point of view

in [8, 16, 25]. The present system provides thus a generalization of this low-Mach number

model, including the kinetic effects (for large ε-values) as well as the effects coming from

the electrostatic field. The here presented strategy for its efficient AP-resolution is based

however on different techniques as those of the previously cited works.

4.2. Identification of the Limit model and AP-reformulation. The aim is now to

avoid the singularity in the fluid equations of (59) as ε → 0, c.f. Eqs. (42), by means

of a projection / micro-macro technique. To do this, let us study the dominant operator

in the momentum equation of system (59) and try to introduce a second Micro-Macro

decomposition associated to this new dominant operator.
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Let us denote in the sequel by X] the subspace of the Banach-space X, consisting of

the functions which are L-periodic in the space variable x ∈ I := (0, L). The time-

variable t ∈ R+ shall be considered as a parameter in the following arguments. With these

definitions, we introduce for fixed electric field E = −∂xφ, with φ ∈ W 1,∞(I), the linear

operator

L : D] ⊂ L2
] (I)→ L2

] (I) , L(n) := ∂xn+ E n , (60)

with definition domain

D] := {ξ ∈ L2
] (I) / L(ξ) ∈ L2

] (I)} .
This operator is the dominant operator in the momentum equation of (59) and has to be

studied in more details in order to circumvent the singularity of this system as ε→ 0.

The kernel of L is given by the following one-dimensional space

GL := {ξ ∈ D] / L(ξ) = 0} = {c eφ , c ∈ R} . (61)

Introducing now the following weighted scalar-product on L2
] (I)

〈ξ, ζ〉L :=
1

L

∫ L

0

ξ ζ e−2φ dx , ∀ξ, ζ ∈ L2
] (I) , (62)

permits to decompose the Hilbert-space L2
] (I) in a unique manner as follows

L2
] (I) = GL ⊕⊥ ÃL , (63)

where

ÃL := {ξ ∈ L2
] (I) / 〈ξ, ζ〉L = 0 ∀ζ ∈ GL} = {ξ ∈ L2

] (I) /
1

L

∫ L

0

ξ e−φ dx = 0} , (64)

which consists of functions with a zero weighted average over I. The decomposition (63)

is associated with an orthogonal projection operator PL defined as

PL : L2
] (I)→ GL , PL(ξ) :=

1

L

∫ L

0

ξ e−φ dx eφ . (65)

The definition of this projection operator permits to rewrite the space ÃL as

ÃL := {ξ ∈ L2
] (I) / PL(ξ) = 0} = G⊥L . (66)

By restriction, one can immediately show that we have also the following decomposition

of the definition domain of the dominant operator L

D] = GL ⊕⊥ AL , (67)

where this time

AL := {ξ ∈ D] / 〈ξ, ζ〉L = 0 ∀ζ ∈ GL} = {ξ ∈ D] / PL(ξ) = 0} . (68)
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With all these explanations, one can show finally that the dominant operator is a linear

bijective mapping

L : AL → ÃL , L(n) := ∂xn+ E n , (69)

meaning that the problem {
∂xξ + E ξ = Ψ , ∀x ∈ (0, L) ,

PL(ξ) = 0 ,
(70)

admits a unique solution ξ ∈ AL if and only if Ψ ∈ ÃL.

Coming now back to our singularly-perturbed problem (59), let us now reformulate this

problem using the just introduced projection-framework, in particular let us introduce the

decomposition nε = rε + εsε, with rε being the macroscopic part defined by rε := PL(nε).

Hence, sε is the unique solution of (70) with the right hand side given by Θ = 1
ε

[∂xn
ε +

Eε nε] ∈ ÃL. Inserting this new decomposition into (59) yields the system

(AP )ε



ε ∂tg
ε +
√
ε v ∂xg

ε −
√
εEε∂vg

ε −
√
ε

(v −
√
εuε)

nε
∂x 〈v2 gε〉Mε

+ ∂xu
ε
[
(v −

√
εuε)2 − 1

]
Mε = −gε ,

∂t n
ε + ∂x(n

ε uε) = 0 ,

∂t (nε uε) + ∂x(n
ε(uε)2) + ∂xs

ε + Eε sε + ∂x 〈v2 gε 〉 = 0 ,

∂xn
ε + Eε nε = ε (∂xs

ε + Eε sε) , PL(sε) = 0 .

(71)

This system is completely equivalent to the original kinetic system (44) as well as to the

Kinetic-Fluid Micro-Macro reformulation (59) for all ε > 0. It has the essential advantage

of capturing the well-posed limit regime, as ε → 0. To determine this asymptotic limit

of (AP )ε, let us make the Hilbert-Ansatz gε = g0 +
√
εg1 + · · · and equate in the kinetic

equation of (71) the terms of the same order in ε. This yields immediately

g0 = (1− v2) ∂xu
0Mn0,0 ⇒ 〈v2 g0 〉 = −2n0 ∂xu

0 . (72)

Plugging this information in the macroscopic equations of (71), permits to get the limit

model of (AP )ε as ε tends towards zero, namely

(L)


∂t n

0 + ∂x(n
0 u0) = 0

∂t (n0 u0) + ∂x(n
0(u0)2) + ∂xs

0 + E0 s0 − 2 ∂x
(
n0 ∂xu

0
)

= 0 ,

∂xn
0 + E0 n0 = 0 , PL(s0) = 0 .

(73)
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This limit system contains on one hand the adiabatic Boltzmann relation, hidden in the

third equation (see (43)), and on the other hand it permits to compute the particle flux

n0 u0, which was not the case for the ill-posed system (42). Remark in particular the pres-

ence of the viscous term in the momentum conservation law, giving rise to regular solutions.

Finally, the integral constraint PL(s0) = 0 guarantees the uniqueness of s0, solution of a

first-order ODE in (73).

To summarize, the distribution function f ε, solution to the kinetic equation (44), con-

verges as ε → 0 towards a Maxwellian distribution function f 0 = Mn0,0, with density

function given by the well-posed limit system (73). In this sense we shall call the problem

(L) the limit model of the kinetic equation (K)ε and shall introduce in the next section a

numerical scheme able to capture this limit model for vanishing ε.

5. AP-discretization of the electron kinetic model

The aim of this section is to suggest numerical schemes for the Vlasov-BGK system

(44) that give the correct solution (up to discretization errors) when ε = O(1) and which

yield the asymptotic solution as ε → 0, i.e. the solution of system (73). In particular,

it should be possible to choose the time step ∆t independently of ε, thereby gaining an

advantage over standard explicit schemes. With this ambition, we shall first present semi-

discretizations in time of (59) and (71), respectively, which is sufficient to show the AP

character of the schemes. In a second step we perform the space discretization using finite

difference methods.

5.1. Time-discretization of the scheme (KF )ε. For notational simplicity let us omit

now the ε-indices on the unknowns. We fix the time step to ∆t > 0 and denote by

nk, uk, gk,Mk the approximations of n(tk, ·), u(tk, ·), g(tk, ·, ·), M(f(tk, ·, ·)) at time tk =

k∆t, k = 0, · · · , K with K ∈ N. Then a possible first order time-discretization of (59)

reads

(KF )ε,∆t



ε
gk+1 − gk

∆t
+
√
ε v ∂xg

k −
√
εEk∂vg

k −
√
ε

(v −
√
εuk)

nk
∂x 〈v2 gk〉Mk

+ ∂xu
k
[
(v −

√
εuk)2 − 1

]
Mk = −gk+1 ,

nk+1 − nk

∆t
+ ∂x(n

k+1uk+1) = 0 ,

nk+1 uk+1 − nk uk

∆t
+ ∂x

(
nk(uk)2

)
+

1

ε
∂xn

k+1 +
1

ε
Ek nk+1 + ∂x 〈v2 gk+1〉 = 0 .

(74)

The right-hand-side in the kinetic equation for g is implict, fact which permits the compu-

tation of gk+1 for all ε ≥ 0. To see that this implicit-explicit choice in the g-equation leads
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to an ε-independent CFL-condition, we detail in Appendix A the numerical stability study

of a simplified but similar kinetic equation. The time-discretization of the macroscopic

conservation laws is based on the following arguments:

a) the pressure-gradient and electrostatic force terms in the last equation are taken

implicitly, as these terms are stiff,

b) the particle-flux term in the second equation is also taken implicitly, motivated by

the fact that we want to recover in the limit ε→ 0 the electron Boltzmann relation,

in turn obtained from the momentum equation. Hence, the particle conservation

law will be employed to get some information about the velocity unknown uk+1.

Remark here that one can improve this semi-discretization in order to treat better the

regime ε ∼ 1. We are referring here to schemes able to capture shocks if the perturbation

parameter is of order unity and make reference to the work [25], where the stiff pressure

term and the mass flux are splitted for hyperbolicity reasons. In the present work we

shall concentrate more on the correct description of the adiabatic regime. In the following

sections we present two AP-reformulations of system (74).

5.2. First asymptotic-preserving scheme. To avoid the ε → 0 singularity in the mo-

mentum equation, we shall use in the semi-discretized system (74) the same decomposition

for the density nk+1 as in the continuous case, based on the projection operator PL. This

yields the first semi-discrete AP-system

(AP )1
ε,∆t



ε
gk+1 − gk

∆t
+
√
ε v ∂xg

k −
√
εEk∂vg

k −
√
ε

(v −
√
εuk)

nk
∂x 〈v2 gk〉Mk

+ ∂xu
k
[
(v −

√
εuk)2 − 1

]
Mk = −gk+1 ,

nk+1 − nk

∆t
+ ∂x(n

k+1uk+1) = 0 ,

nk+1 uk+1 − nk uk

∆t
+ ∂x

(
nk(uk)2

)
+ ∂xs

k+1 + Ek sk+1 + ∂x 〈v2 gk+1〉 = 0 ,

∂xn
k+1 + Ek nk+1 = ε

(
∂xs

k+1 + Ek sk+1
)
, PL(sk+1) = 0 .

(75)

It can be easily shown that in the limit ε→ 0 and for fixed time discretization parameter

∆t > 0, this system leads to a semi-discrete version of (L). It is this particular property

which is the main advantage of our AP-reformulation, as compared to standard time-

discretizations of the kinetic equation (44). However, a weakness of system (75) is that the

three fluid equations are fully coupled, leading to a large linear system to be solved. To

avoid this new difficulty, a second AP-reformulation is proposed in the next section.
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5.3. Second asymptotic-preserving scheme. In order to decouple somehow the sys-

tem (75), we start from (74) and inject the density conservation law of (74) into the

momentum conservation law, where for simplicity we denote the particle momentum by

qk+1 := nk+1 uk+1. This yields

εqk+1 − (∆t)2∂xxq
k+1 − (∆t)2Ek ∂xq

k+1 = εqk − ε∆t ∂x
(

(qk)2

nk

)
− ε∆t ∂x〈v2 gk+1〉

−∆t ∂xn
k −∆t Ek nk . (76)

We thus transformed the momentum conservation law into an elliptic equation for qk+1,

which degenerates in the limit ε → 0 (due to the periodic boundary conditions) and

has hence to be treated with care. Such type of singularly-perturbed elliptic or diffusion

equations have been the object of several works [14, 15] and were handled via various

techniques. The duality-based approach we shall follow here is based on the micro-macro

decomposition (67) applied to the quantity qk+1, meaning

qk+1 = ηk+1 + ξk+1 , ηk+1 := PL(qk+1) , L(ξk+1) = L(qk+1) , (77)

and consists in projecting (76) on the kernel GL to have an equation for the “macroscopic”

quantity ηε,

εηk+1 = εηk − ε∆tPL

(
∂x

[
(qk)2

nk

])
− ε∆tPL(∂x〈v2 gk+1〉) , (78)

where we used that PL(L(·)) = 0. Furthermore, inserting the ansatz (77) into (76) yields

an equation for the “microscopic” quantity ξε,

εξk+1 − (∆t)2∂xxξ
k+1 − (∆t)2Ek+1 ∂xξ

k+1 = εqk − ε∆t ∂x
(

(qk)2

nk

)
− ε∆t ∂x〈v2 gk+1〉

− εηk+1 + (∆t)2∂xxη
k+1 + (∆t)2Ek+1 ∂xη

k+1 −∆t ∂xn
k −∆t Ek nk . (79)



20 A. DE CECCO, C. NEGULESCU, S. POSSANNER

We obtain thus a second (semi-discretized) AP-reformulation

(AP )2
ε,∆t



ε
gk+1 − gk

∆t
+
√
ε v ∂xg

k −
√
εEk∂vg

k −
√
ε

(v −
√
εuk)

nk
∂x 〈v2 gk〉Mk

+ ∂xu
k
[
(v −

√
εuk)2 − 1

]
Mk = −gk+1 ,

nk+1 − nk

∆t
+ ∂xq

k+1 = 0 , qk+1 = ηk+1 + ξk+1 ,

ηk+1 = ηk −∆tPL

(
∂x

[
(qk)2

nk

])
−∆tPL(∂x〈v2 gk+1〉) ,

εξk+1 − (∆t)2∂xxξ
k+1 − (∆t)2Ek+1 ∂xξ

k+1 = εqk − ε∆t ∂x
(

(qk)2

nk

)
− εηk+1 + (∆t)2∂xxη

k+1 + (∆t)2Ek+1 ∂xη
k+1

−∆t ∂xn
k −∆t Ek nk − ε∆t ∂x〈v2 gk+1〉 , PL(ξk+1) = 0 .

(80)

The advantage of the second semi-discretized AP-reformulation (80) as compared to the

first one (75) is the fact that the macroscopic equations (conservation laws) are now fully

decoupled and can be solved sequentially (gk+1 → ηk+1 → ξk+1 → nk+1), which permits a

considerable gain in computational time.

5.4. Space discretization of (AP )1
ε,∆t. The electron kinetic equation (44) is defined for

(t, x, v) ∈ R+ × [0, L] × R with the boundary conditions (45). The velocity space will be

truncated far from the origin, thus reduced to [vmin, vmax] ⊂ R where vmin < 0 < vmax. We

define a Cartesian position-velocity grid via

∆x =
L

Nx − 1
, xi := (i− 1)∆x , i ∈ {1 . . . Nx} , Nx ∈ N ,

∆v =
vmax − vmin
Nv − 1

, vj := vmin + (j − 1)∆v , j ∈ {1 . . . Nv} , Nv ∈ N ,
(81)

and denote by fi,j := f(xi, vj), and in general ai := a(xi) and bj := b(vj). Dirichlet

boundary conditions are imposed in velocity space, fi,1 = fi,Nv = 0 ∀i. We first present a

discretization of the scheme (75). The micro-part of the kinetic equation, i.e. the equation

for g, is discretized with a simple upwind scheme. Hence we set

(v∂xg
k)i,j ≈ (v−)j

gi+1,j − gi,j
∆x

+ (v+)j
gi,j − gi−1,j

∆x
,

(v−)j = min(0, vj) , (v+)j = max(0, vj) ,

(82)
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and

(−Ek∂vg
k)i,j ≈ (F−)i

gi,j+1 − gi,j
∆v

+ (F+)i
gi,j − gi,j−1

∆v
,

(F−)i = min(0,−Ek
i ) , (F+)i = max(0,−Ek

i ) .

(83)

The second velocity moment of gk is approximated via the trapezoidal rule,

Θk
i := 〈v2gk〉i ≈

∆v

2

Nv−1∑
j=1

vj g
k
i,j +

∆v

2

Nv∑
j=2

vj g
k
i,j . (84)

Centered finite difference approximations are used for the remaining derivatives in the

g-equation,

(∂xΘ
k)i ≈

Θk
i+1 −Θk

i−1

2∆x
, (∂xu

k)i ≈
uki+1 − uki−1

2∆x
. (85)

Moreover, we recall the electron Maxwellian,

Mk
i,j =

nki√
2π

exp

(
−(vj −

√
εuki )

2

2

)
. (86)

The tricky part is the discretization of the macroscopic conservation laws in (75). First,

the integral constraint PL(sk+1) = 0 is implementd via a Lagrange multiplier technique,

i.e. we add an unknown constant λ ∈ R to the system,

∂xn
k+1 + Ek nk+1 = ε

(
∂xs

k+1 + Ek sk+1
)

+ λ . (87)

The additional unknown allows us to add to the linear system the equation PL(sk+1) = 0,

in the form of

∆x
Nx−1∑
i=1

sk+1
i e−φ

k
i = 0 . (88)

Applying the projection PL to equation (87) shows that λ = 0; this means that the intro-

duction of the Lagrange multiplier does not change the solution of system (75). Secondly,

let us write the particle flux as qki := nki u
k
i . A convenient way to approximate the first-

order derivatives in the fluid equations is to use centered finite differences at the half-points

i+ 1/2. The macroscopic fluid part of (75) is thus approximated as

nk+1
i+1 − nki+1

2∆t
+
nk+1
i − nki

2∆t
+

(qk+1
i+1 − qk+1

i )

∆x
+
Fki+1 −Fki

∆x
= 0 ,

qk+1
i+1 − qki+1

2∆t
+
qk+1
i − qki

2∆t
+
sk+1
i+1 − sk+1

i

∆x
+
Ek
i+1s

k+1
i+1 + Ek

i s
k+1
i

2
+
Gki+1 − Gki

∆x
= 0 ,

nk+1
i+1 − nk+1

i

∆x
+
Ek
i+1n

k+1
i+1 + Ek

i n
k+1
i

2
= ε

(
sk+1
i+1 − sk+1

i

∆x
+
Ek
i+1s

k+1
i+1 + Ek

i s
k+1
i

2

)
+ λ .

(89)
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Here, Fki and Gki stand for the particle and momentum fluxes with artificial viscosity of

Rusanov type [33], given at the grid point i by

Fki := −ai
4

(nki+1 − nki−1) ,

Gki :=
1

4

[(q2

n

)k
i+1

+ 2
(q2

n

)k
i

+
(q2

n

)k
i−1

]
+

1

4
(Θk

i+1 + 2Θk
i + Θk

i−1)− ai
4

(qki+1 − qki−1) ,

(90)

where ai = max(| q
k
i

nki
+ 1|, | q

k
i

nki
− 1|). The scheme with (82)-(90) is stable if the following

CFL-condition is satisfied (c.f. Appendix A):

∆t < CFL ∗min(∆tF ,∆tK) , (91a)

where CFL < 1 and

∆tF :=
∆x

maxi(ai)

∆tK :=


∆tF if

√
ε γk − 1 ≤ 0

ε√
εγk − 1

if
√
εγk − 1 > 0 .

, γk :=

√
2

(
maxj(v2

j )

(∆x)2
+

maxi((Ek
i )2)

(∆v)2

)

(91b)

Clearly, for ε → 0 and ∆x and ∆v fixed, the number
√
εγk − 1 is negative, such that the

CFL-condition is independent of ε in the adiabatic regime and corresponds to a fluid CFL

condition.

5.5. Space discretization of (AP )2
ε,∆t. The kinetic g-equation in the second AP-scheme

(80) is discretized in exactly the same way as for the first AP-scheme, i.e. by means of

Eqs. (82)-(86). In the macroscopic equations the space derivatives are this time standard

centered finite differences at the mesh points, for example

(∂xη
k)i ≈

ηki+1 − ηki−1

2∆x
, (∂xxη

k)i ≈
ηki+1 − 2ηki + ηki−1

∆x2
. (92)

The projection PL(·) is discretized as

[PL(b)]i =
eφ

k
i ∆x

L

Nx−1∑
l=1

bl e
−φkl . (93)

The integral constraint PL(ξk+1) = 0 is again implementd via a Lagrange multiplier λ ∈ R,

c.f. eqs. (87)-(88), which is added in the equation for ξk+1. Artificial fluxes of Rusanov

type are added in the particle conservation law and in the equation for ξk+1 (the Rusanov

flux being of order ε in the latter case). In contrast to (90) the fluxes are now defined at
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the half points i+ 1/2, i.e.

Fi+1/2 := −
ai+1/2

2
(nki+1 − nki ) , (94)

Gi+1/2 :=
ε

2

[(q2

n

)k
i+1

+
(q2

n

)k
i

]
+
ε

2
(Θk

i+1 + Θk
i )−

ε ai+1/2

2
(qki+1 − qki ) , (95)

where ai+1/2 = max(ai, ai+1). The time step is again restricted by the CFL-condition (91)

as for the first AP-scheme.

6. Numerical results

The aim of this section is to study the efficiency of the proposed AP-schemes, in particu-

lar to demonstrate numerically their asymptotic-preserving property as ε→ 0. Numerical

tests will be performed on a domain with L = 1, vmin = −5 and vmax = 5 in the fixed

time interval [0, T ] with T = 0.1. We assume a given electrostatic potential, independent

of time,

φ(x) = cos(2πx) =⇒ Ek(x) = −2π sin(2πx) ∀k ∈ N . (96)

The initial distribution function f0 for all simulations is a Maxwellian with zero mean

velocity,

f0(x, v) =
n0(x)√

2π
exp

(
−v

2

2

)
, (97)

with

n0(x) =
1√

2πσ2
exp

(
−(x− 0.5)2

2σ2

)
, (98)

and σ = 0.05. On the time scale ε, we expect the density to approach the Boltzmann

relation

n(t/ε→∞, x) = c eφ(x) , c =

∫ 1

0
n0 dx∫ 1

0
eφ dx

. (99)

To get a basic understanding of the test case at hand, we plot in Figure 1 a solution ob-

tained with the first AP-scheme (75) for ε = 10−2. If not stated otherwise, we used Nx = 51

and Nv = 251 mesh points in simulations. From the middle column one clearly observes

the convergence in time of the particle density towards the Boltzmann relation (99). The

electric field is responsible for the asymmetric acceleration of the electrons, namely to the

left for x < 0 and to the right for x > 0.

For the purpose of validating the new AP-schemes, we implement an explicit upwind

scheme for the kinetic equation (44). Numerical solutions obtained with this scheme shall

serve as a reference in the regime ε ≥ 10−6. For smaller ε-values the time step in the

explicit scheme is heavily restricted and the scheme becomes inefficient. Figure 2 depicts

the convergence over time towards the Boltzmann relation (99) for solutions obtained with
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Figure 1. Snapshots of the distribution function f at four instances in time,

obtained with the first AP-scheme (75) for ε = 10−2. The middle column depicts

the correponding particle density n, compared to the Boltzmann relation (99),

and the right column contains the particle flux q = nu.
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three different schemes: the AP1-scheme (75), the AP2-scheme (80) and the explicit up-

wind Vlasov-BGK solver (solution ’REF’). The value of ε was 10−2, such that the explicit

solver could be run with Nx = 201 and Nv = 1001. This result shows that the two AP-

schemes yield meaningful solutions in the (relatively) large-ε regime.

Figure 2. Convergence over time towards the Boltzmann relation (99) for solu-

tions from the two AP-schemes and a reference solution ’REF’, for ε = 10−2. The

reference solution has been obtained from an explicit upwind Vlasov-BGK solver

on a finer mesh with Nx = 201 and Nv = 1001.

What happens when the value of ε is decreased? Figure 3 shows the convergence to-

wards the Boltzmann relation for different values 10−6 ≤ ε ≤ 10−1, obtained with the

two schemes AP1 and AP2. We observe an oscillatory convergence, with a frequency that

increases as ε becomes smaller. The convergence is also faster for smaller ε, fact that shows

that ε is related to the chosen time scale via the Mach number. For ε = 10−6, the initial

state almost instantaneously jumps into the Boltzmann state (boundary layer at t = 0).

Note also that the scheme AP2 seems to be more accurate than the scheme AP1, which is

seen by comparing the minimal errors reached with each scheme.

Our next objective is to show the good asymptotic properties of the AP-schemes. For this

we plot in Figure 4 the steady state solutions of the distribution function f at time t = 0.1

along with its macroscopic moments, obtained with the AP-schemes and with the explicit

upwind solver. Good agreement between the three schemes is obtained for f(t = 0.1) and

for the electron density n(t = 0.1), which is in the Boltzmann state. However, the electron

flux q(t = 0.1) differs from the explicit solution to the AP solutions. In fact, a computation

of the electron flux is not needed in the explicit Vlasov solver. Rather, once fk is known,
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Figure 3. Convergence over time towards the Boltzmann relation (99) for solu-

tions from the two AP-schemes for 10−6 ≤ ε ≤ 10−1.

one computes

qk =
1√
ε

∫
vfkdv . (100)

Here, small numerical errors in fk are divided by
√
ε and thus (for ε � 1) become large

errors in qk (note also that one introduces additional discretization errors due to approxi-

mation of the velocity integral, which are amplified as well). We conclude that for small ε,

the calculation of qk from the Vlasov-solution fk is not viable. The AP-schemes, in which

q is an unknown, yield the correct solution in the asymptotic limit ε→ 0.

Let us give further evidence that the standard explicit solver ”breaks down” for small

values of ε. In Table 1 we compare, in a quantitative manner, the explicit upwind scheme

with the two AP-schemes as ε→ 0. Several remarks are to be made:

• Considering the L∞- and L2-distances with respect to the Boltzmann relation, we

already know from Figures 2 and 3 that the system is very close to the adiabatic

electron state at t = 0.1 for ε ≤ 10−2, which is confirmed here for ε → 0. The

scheme AP2 shows the best accuracy in this regime.

• Regarding CPU-time, the AP-schemes become more efficient than the explicit solver

for ε ≤ 10−5. Remark in particular the sudden decrease in CPU-time of the AP-

schemes for ε = 10−6; at this threshold the kinetic CFL condition is relaxed, c.f.

(91), because
√
ε γk − 1 becomes negative, and the fluid CFL condition is applied.

The performance of the AP-schemes can be further improved by via a more implicit

discretization of the g-equation, in order to avoid the strict kinetic CFL condition
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Figure 4. Steady-states reached at t = 0.1 for ε = 10−5 with the explicit upwind

scheme (first line), the AP1-scheme (second line) and the AP2-scheme (third line).

Note the good agreement of the distribution functions f(t = 0.1) and the erroneous

result for the electron flux q obtained with the explicit upwind scheme.

when
√
ε γk − 1 ∼ O(1).

• Another important point is the behaviour of the condition numbers of the system

matrices in the two AP-schemes. The fact that they do not explode as ε → 0

is the typical characteristic of the asymptotic-preserving property. The numerical
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singularity has been avoided via the a priori problem reformulation in the two AP-

schemes.

• Finally, remark the increase of the L∞- as well as L2-errors for ε = 10−5 in the

explicit upwind scheme, which shows the break-down of the explicit solver for small

ε. This is a hint of the fact that the formal limit ε→ 0 in the kinetic equation (44)

leads to an ill-posed problem.

To summarize, the numerical tests we performed here demonstrated the asymptotic

preserving properties of our schemes, in particular an ε-independent condition number, an

ε-independent CFL-condition and the “ability” to recover the Boltzmann relation in the

limit ε→ 0, for fixed discretization parameters ∆t, ∆x, ∆v.
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Table 1. Comparing the AP-schemes with the explicit upwind solver: L∞-

and L2-error with respect to the Boltzmann relation (99) at t = 0.1, largest

condition number over time of the system matrix (only for the AP-schemes),

L∞-norm of the particle flow qε at the time t = 0.1 and normalized CPU-

time.

ε L∞-error L2-error ||qε(t = 0.1)||∞ cond.nr.(∗107) CPU-time

expl.-upwind

10−0 0.8865 0.9072 2.30 - 1.00

10−1 0.2129 0.2269 2.13 - 3.22

10−2 0.0217 0.0244 1.36 - 7.92

10−3 0.0096 0.0105 3.62 - 25.41

10−4 0.0087 0.0079 11.38 - 83.77

10−5 0.0208 0.0191 35.64 - 255.17

AP1

10−0 0.7553 0.8819 2.25 0.0002 2.02

10−1 0.1916 0.1745 2.06 0.0007 5.35

10−2 0.0013 0.0013 0.65 0.0148 15.80

10−3 0.0009 0.0010 0.21 0.1000 46.04

10−4 0.0035 0.0028 0.17 0.7918 118.15

10−5 0.0027 0.0021 0.21 2.2951 110.18

10−6 0.0026 0.0020 0.16 5.6453 2.14

10−7 0.0026 0.0020 0.15 4.5821 1.87

10−8 0.0026 0.0020 0.15 2.2940 1.83

10−∞ 0.0026 0.0020 0.15 2.2940 1.82

AP2

10−0 0.7750 0.8841 2.22 0.0001 1.75

10−1 0.2010 0.1807 2.10 0.0001 5.04

10−2 0.0026 0.0027 0.66 0.0001 15.07

10−3 0.0035 0.0027 0.21 0.0008 41.95

10−4 0.0010 0.0012 0.19 0.0084 107.76

10−5 0.0009 0.0010 0.14 0.0843 110.54

10−6 0.0009 0.0009 0.15 0.8235 2.10

10−7 0.0009 0.0009 0.15 7.5709 1.85

10−8 0.0009 0.0009 0.15 1.1497 1.84

10−∞ 0.0009 0.0009 0.15 0.0842 1.77
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7. Conclusion

The aim of this work was first to identify, via an appropriate scaling, some macroscopic

models for electrons and ions arising in plasma physics, obtaining hence a hybrid model

describing tokamak plasmas with disparate masses. In a second part we constructed two

asymptotic-preserving schemes for the uniform numerical treatment of the transition from

the kinetic to the adiabatic electron regime (Boltzmann electrons) along magnetic field

lines. The small parameter ε responsible for this transition represents the mass ratio

me/mi and the Knudsen number. A suitable reformulation of the original kinetic problem,

based on micro-macro techniques, permitted to overcome the difficulties induced by stiff

terms, which make standard schemes break down. Numerical examples that demonstrate

the efficiency and applicability of the here proposed AP-schemes were presented.

A natural extension of this work is use the here introduced numerical ideas married with

those of our previous work [36] in order to treat a physically more involved problem, three-

dimensional and considering also the temperature and the magnetic field B. This work is

currently under investigation.
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Appendix A. Analysis of the CFL-condition on the micro-equation

To understand by some means why the time-discretizations chosen in the kinetic equation

of the AP-reformulations (75) respectively (80) preserve the AP-property, in particular

why the time step ∆t can be chosen independently on the ε-parameter, let us study in this

subsection the simplified kinetic equation

∂tg +
1√
ε
v ∂xg −

1√
ε
E ∂vg = −1

ε
g , (101)

and its semi-discretization in time

gk+1 − gk

∆t
+

1√
ε
v ∂xg

k − 1√
ε
Ek ∂v g

k = −1

ε
gk+1. (102)

Concerning the space discretization, a simple Lax-Friedrich’s scheme is sufficient for our

purpose, i.e.

gk+1
α,β =

1

4

[
gkα+1,β + gkα−1,β + gkα,β+1 + gkα,β−1

]
− ∆t vβ

2
√
ε∆x

(
gkα+1,β − gkα−1,β

)
+

∆t Ek
α

2
√
ε∆v

(
gkα,β+1 − gkα,β−1

)
− ∆t

ε
gk+1
α,β , α, β ∈ Z2 ,

which can be also put into the form(
1 +

∆t

ε

)
gk+1
α,β =

1

4

[
gkα+1,β + gkα−1,β + gkα,β+1 + gkα,β−1

]
− ∆t vβ

2
√
ε∆x

(
gkα+1,β − gkα−1,β

)
+

∆t Ek
α

2
√
ε∆v

(
gkα,β+1 − gkα,β−1

)
.

(103)

The stability criterion of this scheme is obtained by using “Von Neumann method”, which

is based on Fourier analysis and amounts to showing that there exists, under certain

conditions, a constant 0 < ν < 1 such that

||gk+1||2 ≤ ν||gk||2 , with ||gk||2 :=

(
∆x∆v

∑
α

∑
β

|gkα,β|2
)1/2

,

estimate which provides the stability of the scheme.

To obtain this stability condition, we insert the single grid wave-function

gkα,β := eixα ξ eivβ η = eiα∆x ξ eiβ∆v η , (ξ, η) ∈ R2 , (104)

into the finite difference scheme (103) to obtain the recurrence relation

gk+1
α,β = a(ξ, η) gkα,β , ∀k ∈ N , ∀(α, β) ∈ Z2 ,

where a(ξ, η) is the so-called amplification factor. A scheme is called stable if |a(ξ, η)| ≤
ν < 1 for all (ξ, η) ∈ R2. If this criterion is violated for some (ξ, η), then the Fourier
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components with wave-number (ξ, η) will be amplified during the time-iterations, leading

to an explosion of the scheme.

Inserting (104) into (103) yields the following expression for the amplification factor

a(ξ, η) =
ε

ε+ ∆t

{
1

2
[cos(∆x ξ) + cos(∆v η)]− i

∆t vβ
∆x
√
ε

sin(∆x ξ) + i
∆t Ek

α

∆v
√
ε

sin(∆v η)

}
.

Thus, one obtains the estimate

|a(ξ, η)|2 ≤ ε

2(ε+ ∆t)2

[
ε cos2(∆x ξ) + 4ν2

x,β sin2(∆x ξ) + ε cos2(∆v η) + 4ν2
v,α sin2(∆v η)

]
,

with

νx,β :=
vβ ∆t

∆x
, νv,α :=

Ek
α ∆t

∆v
.

Denoting simply

νx := vM ∆t
∆x

, vM := max{|vmin|, |vmax|} ,

νv := EM ∆t
∆v

, EM := maxk∈N, α∈Z{|Ek
α|} ,

then one obtains

|a(ξ, η)|2 ≤ ε

2(ε+ ∆t)2

(
max {ε, 4 ν2

x}+ max {ε, 4 ν2
v}
)
.

What can be observed from the estimate of |a(ξ, η)|2 is that :

• in the adiabatic asymptotics ε→ 0, one has

|a(ξ, η)|2 →ε→0 0 for fixed ∆t > 0 ,

signifying that no CFL-condition is required in this case;

• in the kinetic asymptotics ε→ 1, one gets

|a(ξ, η)|2 ≤ 1

2(1 + ∆t)2

(
max {1, 4 ν2

x}+ max {1, 4 ν2
v}
)
,

which signifies that one needs for the regime ε ∼ 1 the usual CFL-condition

max{|νx|, |νv|} <
1

2
⇒ ∆t <

1

2
min

{
∆x

vM
,

∆v

EM

}
,

in order to have |a(ξ, η)| < 1;

• in the intermediate regime one obtains finally

θ(ε) :=
ε

2(ε+ ∆t)2

(
max {ε, 4 ν2

x}+ max {ε, 4 ν2
v}
)

=
ε

2(ε/∆t+ 1)2

(
max { ε

(∆t)2
, 4

v2
M

(∆x)2
}+ max { ε

(∆t)2
, 4

E2
M

(∆v)2
}
)
,
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such that one has |θ(ε)| < 1 if

4εv2
M/(∆x)2

(ε/∆t+ 1)2
+

4εE2
M/(∆v)2

(ε/∆t+ 1)2
< 2 ,

leading to the condition

ε

∆t
>

√
2ε

(
v2
M

(∆x)2
+

E2
M

(∆v)2

)
− 1 =:

√
ε γ − 1 , (105)

which induces exactly the choice of the time step given in (91).

It is worth remarking at this point that for ε ∼ ∆t, the condition (105) inquires

1 >
√

∆tγ − 1 > 0 ⇒ 2

[
v2
M

(∆x)2
+

E2
M

(∆v)2

]−1

> ∆t >
1

2

[
v2
M

(∆x)2
+

E2
M

(∆v)2

]−1

,

which is the most pessimistic CFL-condition one can get and which seems of “par-

abolic” type, coming essentially from the interplay between the transport operator

and the collision operator.

References

[1] C. Bardos, F. Golse, D. Levermore, Fluid Dynamic Limits of Kinetic Equations I, J. Stat. Phys. 63,

323-344 (1991)

[2] M. Bennoune, M. Lemou, L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equa-

tion preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys. 227, 8, 3781–3803

(2008)

[3] F. Bouchut, J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of

the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Diff. Int. Eq. 8

(1995), 487–514.

[4] K. L. Cartwright, J. P. Verboncoeur, C. K. Birdsall, Nonlinear hybrid Boltzmann particle-in-cell

acceleration algorithm, Phys. Plasmas 7, no. 8, 3252–3264 (2000)

[5] C. Cercignani, The Boltzmann equation and its applications, Springer-Verlag New-York (1988).

[6] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Springer-Verlag

New-York (1994).

[7] Y. Chen, S. Parker, A gyrokinetic ion zero electron inertia fluid electron model for turbulence simu-

lations, Phys. Plasmas 8, no. 2, 441–446 (2001)

[8] F. Cordier, P. Degond, A. Kumbaro, An Asymptotic-Preserving all-speed scheme for the Euler and

Navier-Stokes equations, Journal of Computational Physics 231, 5685–5704 (2012)

[9] F. Coron, B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal. 28

(1991), 26–42.

[10] A. Crestetto, N. Crouseilles, M. Lemou, Micro-macro decomposition for Vlasov-BGK equation using

particles, Kinetic and Related Models 5, 787–816 (2012)

[11] N. Crouseilles, M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition

for collisional Vlasov equations: diffusion and high-field scaling limits, Kinetic and Related Models 4,

2, 441–477 (2011)



34 A. DE CECCO, C. NEGULESCU, S. POSSANNER

[12] P. Degond, Asymptotic-Preserving Schemes for Fluid Models of Plasmas, arXiv:1104.1869v1 [math-

ph] (2011)

[13] P. Degond, Macroscopic limits of the Boltzmann equation: a review in Modeling and computational

methods for kinetic equations, P. Degond, L. Pareschi, G. Russo (eds), Modeling and Simulation in

Science, Engineering and Technology Series, Birkhauser, 3–57 (2003)

[14] P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Duality based Asymptotic-Preserving

Method for highly anisotropic diffusion equations, Communications in Mathematical Sciences 10

(2012), no. 1, 1–31.

[15] P. Degond, A. Lozinski, J. Narski, C. Negulescu, An Asymptotic-Preserving method for highly

anisotropic elliptic equations based on a micro-macro decomposition, Journal of Computational

Physics 231 (2012), no. 7, 2724–2740.

[16] P. Degond, M. Tang, All speed scheme for the low mach number limit of the Isentropic Euler equation,

Communications in Computational Physics 10, 1–31 (2011)

[17] F. Deluzet, M. Ottaviani and S. Possanner, Asymptotic-preserving scheme for the Euler-Lorentz equa-

tions in the drift limit, submitted.

[18] L. Desvillettes, J. Dolbeault, On long time asymptotics of the Vlasov-Poisson-Boltzmann equation,

Comm. Part. Diff. Eq. 16 (1991), 451–489.

[19] J. Dominski, S. Brunner, S.K. Aghdam, T. Goerler, F. Jenko, D. Told, Identifying the role of non-

adiabatic passing electrons in ITG/TEM microturbulence by comparing fully kinetic and hybrid elec-

tron simulations, Journal of Physics: Conference Series 401 (2012)

[20] F. Filbet, S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems

with stiff sources, J. Comp. Physics 229 (2010), no. 20 .

[21] F. Filbet, S. Jin, An Asymptotic Preserving Scheme for the ES-BGK model of the Boltzmann equation,

J. Sci. Computing 46 (2011), no. 2, 204-224.

[22] H. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics, Cambridge University Press, Cam-

bridge, (2004).

[23] F. Golse, The Boltzmann equation and its hydrodynamic limits, Evolutionary equations, 2 (2005),

159–301 .
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