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Swiss Plasma Center, EPFL, Lausanne, Suisse

Plasma turbulence in the tokamak scrape-off layer (SOL) region, where magnetic field lines in-

tersect the reactor inner walls, determines the heat load on the limiter or divertor targets. This is

one of the most crucial issues on the way towards a fusion reactor. Since SOL plasma is colder

compared to the tokamak core, it is reasonable to use a fluid approximation to describe its dy-

namics. In particular the drift-reduced Braginskii equations are chosen to study the SOL plasma

turbulence [1, 2]. To further simplify the drift-reduced Braginskii equations, the Boussinesq

approximation is also applied in a number of numerical codes. This approximation consists in

considering the plasma density constant in the evaluation of the divergence of the polarisation

current, which simplifies substantially the solution of the Poisson equation necessary to evaluate

the electric potential,
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In this study, we first present a new formulation of the drift-reduced Braginskii equations

and a new numerical implementation that allow us to relax the Boussinesq approximation in

the GBS code [3, 4]. Second, we show the energy conservation properties of the new system of

equations. Finally, we present the results of nonlinear three-dimensional turbulent simulations

with and without the Boussinesq approximation.

Relaxation of the Boussinesq approximation

To relax the Boussinesq approximation in the GBS code we derive a new formulation of the

vorticity equation. We start from the ion momentum equation given in [1],
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with the material derivative: d
dt ≡

∂
∂t + (vi · ∇).

In a magnetised plasma the gyrofrequency is orders of magnitude larger than the typical tur-

bulent frequencies ∂/∂t ≈ (ρ2
i /L2

⊥) ωci � ωci. Making use of this ordering and taking the cross

product of Eq. (2) with the unit vector b, we can evaluate the leading order perpendicular ve-

locity. That is the E ×B and the diamagnetic. Hence, at first order, the perpendicular velocity

is v⊥i0 = vE + vdi = c B×∇φ
B2 + c B×∇Pi

ZenB2 , with φ the electric potential (E = −∇φ). The polarisation

velocity, defined as the difference between the ion velocity and the first order approximation



(vpol ≡ v⊥i − v⊥i0) is a higher order term and can be approximated using the first order perpen-

dicular velocities: vpol0 = 1
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reduction, called drift approximation, allow us to close the system of equations.

Neglecting the perpendicular component of the stress tensor (order (τiω2
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ion collision time), the stress tensor can be expressed as: ∇ ·Πi0 = ∇ ·ΠFLRi0 +∇ ·Πvisi0. The

second term on the right hand side is the divergence of the viscous stress tensor ∇ ·Πvisi0 =
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Considering that the magnetic field varies on a length scale of order R (tokamak major ra-

dius), which is larger compared to the perpendicular turbulent length scale (L⊥/R � 1), we

simplify the finite Larmor radius (FLR) tensor that appears in the polarisation velocity. The fol-

lowing expression for the FLR tensor is retained: ΠFLRi0 = −min (vdi · ∇) vi. This form allows

us to cancel the advection of the ion velocity by the diamagnetic component vdi (this is usually

called the ‘gyro-viscous’ cancellation).

To obtain the vorticity equation we assume plasma quasi-neutrality (n = ne = ni). Or, equiv-

alently, we consider the stationary charge conservation equation: ∇ · j = 0. The ion and elec-

tron continuity equations are used to obtain the vorticity equation: ∇ ·
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)
+∇�
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(n (vdi − vde)) = 0. Neglecting the compression of the E ×B and diamagnetic velocities in the

polarization expression (these terms are smaller by a factor L⊥/R� 1), the first term on the left

hand side writes
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(3)
with Ω the new scalar vorticity: Ω = ∇ ·ω = −∇ · [b× (nv⊥i0)] = ∇ ·

(
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and ω

the perpendicular vector: ω = −b × (nv⊥i0) = cn
B ∇⊥φ+ c

ZeB∇⊥Pi. The expression of the diver-

gence of the polarisation velocity, Eq. (3), yields the new formulation of the vorticity equation:
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In this equation we use the Poisson bracket for the E ×B advection term: (vE · ∇)ω = c
B

[
φ,ω

]
and the last term of Eq. (3) is written as a function of the curvature operator: B
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.

The Poisson equation for the electric potential φ, ∇·
(

cn
B ∇⊥φ

)
=Ω− c

ZeB∇
2
⊥pi, is solved with an

efficient parallel multigrid method in the GBS code.

Energy conservation with the new vorticity equation

Taking into account the continuity, parallel and temperature equations (for ions and electrons)

together with the vorticity equation (4), we obtain the expression of the total energy of the



system. A volume V is considered that does not exchange energy with the environment. The

time derivative of the total energy integrated in the volume V yields
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The time evolution of the total energy, left hand side of Eq. (5), varies because of the Joule

and viscous dissipation. Also it changes because of the approximation made in the drift re-

duction of the Braginskii equations (ε term). This error is split into two terms in Eq. (6),

the first one is a curvature term, smaller than the first term on the left hand side of Eq. (5)

by a factor L⊥/R � 1. The second term of Eq. (6) is of order (vpol · ∇). By comparing this

last term with the corresponding term on the left hand side of Eq. (5), (d/dt), we obtain:
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dt . Therefore, if the dissipation terms can be neglected,

the new model conserves the total energy within the ordering used for its deduction.

Numerical results

20

60

100

140

180

2 4 6 8 10 12 14 16

L
P

(ρ
s)

q

B − τ = 0
N B − τ = 0

B − τ = 2
N B − τ = 2

Figure 1: Radial pressure length (ρs units)

as a function of the safety factor q.

With the GBS code we perform turbulent sim-

ulations taking into account the Boussinesq (B)

and the new non-Boussinesq (N B) model. In these

simulations we vary the safety factor q and the ra-

tio between ion and electron temperatures at the

last closed flux surface, τ = Ti0/Te0. We consider

cold ions (τ = 0) and a hot ion regime (τ = 2).

The SOL pressure typical radial length is de-

fined as LP =
〈 ���

1
P
∂P
∂r

���
−1 〉

. This quantity is averaged

in time during the turbulent quasi-steady state. In Fig. 1 we plot the value of LP as a function of

q for different simulations with and without the Boussinesq approximation. For the simulations

with τ = 0 the difference between the Boussinesq and the non-Boussinesq model is of the order

of a few percent. On the other hand, for τ = 2 and q = 3, the LP value for the non-Boussinesq

case is approximatively 20% larger compared to the value obtained with the Boussinesq ap-

proximation. In the following we will focus our analysis on the latter case (τ = 2 and q = 3).
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Figure 2: Radial pressure profile (semi-

logarithmic plot) at the SOL, poloidal

mean profile and profile at the low field

side (LFS), for q = 3 and τ = 2.

In Fig. 2 we present the pressure profiles for the

B and N B models. In this figure a flattening of

the pressure profile is visible for the N B case. The

poloidally averaged profile and the pressure pro-

file at the low field side (LFS) of the tokamak

are shown. This flattening, or increase of LP, can

be explained by the enhancement of the turbulent

transport. This is illustrated in Fig. 3 where the ra-

dial profile of the standard deviation and the skew-

ness of the pressure field are plotted. In these two

figures we observe that both quantities have larger

values if the N B model is considered. This indi-

cates that the turbulent fluctuations increase if the

Boussinesq approximation is relaxed for a low q and when Ti0 > Te0.
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Figure 3: Standard deviation (left) and skewness (right) of the pres-

sure field as a function of the radius, for q = 3 and τ = 2.

Finally, in Fig. 4, the

spectrum of the pressure

field is displayed. We ob-

serve that for the N B case

the pressure fluctuations

are higher and are con-

centrated at lower poloidal

mode numbers. This con-

firms the previous obser-

vation, the LP value is higher because turbulent fluctuations are enhanced if the Boussinesq

approximation is relaxed. Investigation are currently ongoing to understand if this is the result

of the increase of the linear growth rate of the main instability in the N B model and/or the result

of a more complex nonlinear mechanism.
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Figure 4: Pressure spectrum.
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