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Introduction & scope

Ion cyclotron resonance heating (ICRH) is a routinely used method to bring plasmas to fusion

relevant temperatures in magnetic confinement fusion machines (see e.g. [1]). Properly modelling

the dielectric response is a challenge both from the physics and the computational point of view.

More often than not simplifications are made, first of all by truncating the dielectric tensor at the

leading order terms in finite Larmor radius corrections and secondly by simplifying the geometry. A

new solver is under development at LPP-ERM/KMS to help understand the ICRH wave propagation

and damping in stellarators such as Wendelstein-7X. It is adopting the basic philosophy pioneered

by Jaeger [2] for the AORSA code, and intends to complement the physics described in the SCENIC

code (see e.g. [3]) with a rigorous computation of the wave polarisation at higher cyclotron harmonics.

Whereas SCENIC is much more advanced in many respects (it is coupled to an equilibrium as well as

a Fokker-Planck solver and capable of treating non-Maxwellian minority populations), the key idea

here is to assess the importance of higher order finite Larmor radius corrections while keeping the

zero order distribution functions simple (Maxwellian) and the geometry prescribed. At this stage 2

roads are being explored in parallel: (i) a "brute force" technique that puts the computational effort

on supercomputers as it requires inversion of massive, full matrices, and (ii) a technique that explores

the possibility of reducing the computational effort required by semi-analytically solving some of the

required integrals by hand and exploiting the fact that the net effect of very fast oscillations potentially

offers a justification for reducing the full matrix to a sparse(r) one. The work presented here is part of

an ongoing longer term project and only sketches preliminary findings.

Wendelstein 7-X

The purpose of the Wendelstein 7-X (W7-X) reactor - built and operated at the Max Planck Institute

for Plasma Physics in Greifswald (Germany) - is to assess the potential of a stellarator as a future

fusion reactor. On the road to commercialisation of fusion-based electricity production, demonstrating

that fusion-born α particles are confined long enough to ensure the plasma stays at fusion-relevant

temperatures without auxiliary heating once ignition has been reached is a key issue. One of the

objectives of W7-X is to demonstrate that fast particle confinement is sufficient in stellarators to



ensure this "self-heating", the latter relying on the energy transfer via Coulomb collisional slowing-

down of fast particles on the bulk ions and electrons. W7-X is not designed to withstand abundant

fusion-born α particles but will use ion cyclotron resonance heating to bring ions to high energies

allowing subsequently to study this crucial confinement issue. The geometry of stellarators is fully 3-

dimensional (see Fig.1) and heating schemes do not necessarily guarantee total absorption in a single

transit over the plasma. Therefore, since edge reflections and local wave trapping are ingredients that

need to be accounted for, dedicated tools are required to model wave propagation and damping in

such a device.

Figure 1: A typical shape of the geometry of the plasma in W7-X [4].

Basic equations

Maxwell’s equations can be combined to yield the wave equation

∇×∇×~E = iωµo~Jant + k2
0
~E + iωµo

∫
d~kσ(~x,~k).~E~kexp[i~k.~x],

in which ~E~k is the~k-mode contribution to the plasma current and σ the corresponding conductivity

tensor, related to the dielectric tensor K by the relation σ = −iωεoK + iωεo1. Adopting expressions

pioneered by Swanson [5], Jaeger solves this set of 3 equations "as is" using a particularly straightfor-

ward version of the collocation method. It imposes the equation to be satisfied at a given number of

grid points, the number of which is equal to the number of unknown complex~k-mode amplitudes [2].

The integrals over the continuous variable~k are approximated by a sum over a suitable, discrete set of
~ki values. As this yields a matrix system that is full it comes as no surprise that brute force mimicking

of Jaeger’s adopted strategy requires the use of supercomputers, even for relatively modest densities

of the numerical grid. Work is ongoing to allow maximally making use of the CPU time and mem-

ory of fast parallel computers but so far our efforts have not allowed to reach a level of accuracy to

capture long (fast wave) as well as short (ion Bernstein or ion cyclotron wave) wavelength behaviour

in stellarator geometry in a sufficiently trustworthy way. A straightforward technique to potentially



avoid such prohibitively massive number crunching is to use the definition of the~k-space component

and re-introduce the local field. Swapping the order of the integrals this yields

∇×∇×~E =+
k2

0
(2π)3

∫
d~x′

∫
d~kK(~x,~k).

[
exp[−i~k.(~x−~x′)]~E(~x′)

]
.

In the next 2 sections, a method is discussed to solve the associated non-local linear equation

system, and a way to tackle the~k-integrals semi-analytically.

The influence matrix method for linear partial differential equations

The "influence matrix" method [6] locally adopts a polynomial approximation of the solution of a

system of equations obtaining constraints on the polynomials’ coefficients by substituting the solution

for its approximation into the equations. Suppose a sufficiently accurate polynomial representation re-

quires m coefficients c1,...,m in total and that there are n system equations. These n conditions only

partly determine the choice of constants in the chosen approximation, leaving m̃ = m−n coefficients

to be chosen freely. The remaining degrees of freedom allow to determine a set of independent solu-

tions by imposing c1,...,m̃ = (1,0, ...,0), c1,...,m̃ = (0,1, ...,0), ..., c1,...,m̃ = (0,0, ...,1) and finding the

m̃ independent local solutions. Consistent with the approximations made, these local "base" solutions

allow to reconstitute the general solution to the set of system equations. The solutions in neighbouring

elements are connected to the solution in a given element based on physics continuity principles for

field components and fluxes; the order of the adopted polynomials needs to be high enough to ensure

such continuity can be imposed. All local constraining equations are grouped in a large system matrix.

For 1D application, the wave equation at grid point xi can be written

N0.~E0,i +N1.~E1,i +N2.~E2,i = ∑
j

[
H0.~E0, j +H1.~E1, j +H2.~E2, j

]
when the electric field is locally approximated by ~E = ~E0,i+~E1,i(x−xi)+~E2,i(x−xi)

2. Note that the

right hand side - in which the dielectric response has been modeled - is a nonlocal term: it contains

contributions from all grid points x j; the left hand side term arises from the ∇×∇× operator and

is only involving the collocation method grid point xi. Depending on whether the non-locality only

requires "close" neighbours or also involves "wide" neighbours, the corresponding system matrix is

more or less sparse.

Semi-analytical treatment

The~k-integral that needs to be evaluated is only significantly differing from zero in~k-space up to a

certain value of the wave vector amplitude: the various terms involve the exponentially scaled mod-

ified Bessel function exp[−λ ]IN(λ ) which behaves as λ−1/2 for large λ ; λ = ρ2
Larmork

2
⊥/2, ρLarmor

is the Larmor radius and k⊥ the perpendicular wave number. Moreover, the factor exp[i~k.(~x−~x′)] is

oscillating rapidly as a function of the distance between~x and~x′ when |k| is large, and hence the net



integrated effect of these oscillations dies away even when the modified Bessel function term does not.

The oscillatory integrals that need to be integrated can be subdivided into chunks in ~x′ and~k-space.

The resulting "building block" integrals can be computed once-and-for-all and stored in an interpola-

tion table using the variables a = ∆k∆x, ξo = ξi +(xi− x j)/∆x and ζo =−kN/∆k. These integrals can

be written in terms of the normalised variables ξ and ζ :

Ii, j,N,m,n = ∆
m+1
x ∆

n+1
k

∫ 1

0
dξ

∫ 1

0
dζ exp[−ia(ζ −ζo)(ξ −ξo)]ζ

n
ξ

m.

It can be seen in Fig. 2 that such integrals are well behaved and fade away fairly quickly for ζo and a

but that the ξo behaviour is more rapid and thus requires higher accuracy and a wider ξo domain to be

retained. The success of the applicability of the present method hinges on how fast these net summed

contributions fade away for more distant points. Depending on the number of neighbouring x′’s that

need to be considered for a reference x, the system matrix reduces from a full to a sparser matrix. In

1 dimension, inverting a full matrix does not require excessively much CPU time or memory but the

gain that can be achieved when addressing the problem in the actual stellarator geometry - in which

not only radial and poloidal but also toroidal modes are coupled - is significant.
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Figure 2: Example of the elementary integrals in terms of ζo, a and ξo for m = n = 1.
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