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Introduction

In general, the orbit-averaged radial magnetic drift is non-zero for trapped particles in stel-

larators. Stellarators in which the orbit-averaged radial magnetic drift vanishes are called om-

nigeneous. Although exactly omnigeneous configurations are not mathematically forbidden,

achieving perfect omnigeneity in practice requires such an accuracy in the design and place-

ment of the coils that, even in future devices, deviations from omnigeneity are unlikely to be

negligible. These deviations are more deleterious at small collisionalities. The 1/ν regime has

been recently treated in stellarators close to quasisymmetry [1], which are particular cases of

stellarators close to omnigeneity. Here, the techniques learnt in [1] are generalized to stellarators

close to omnigeneity and applied to collisionality values below the 1/ν regime.

Omnigeneous stellarators and stellarators close to omnigeneity

We use spatial coordinates {ψ,α, l}, where ψ determines the flux surface, α is a poloidal

angle (this is simply to fix ideas; α might have a different helicity and the treatment would be

analogous) that labels magnetic field lines once ψ has been fixed, and l is the arc length over

the magnetic field line selected by fixing ψ and α .

Passing particles always have vanishing average radial magnetic drift. A stellarator is called

omnigeneous if the orbit-averaged radial magnetic drift is zero for all trapped particles [2]. This

is equivalent to saying that ∂αJ = 0, where

J = 2
∫ lb2

lb1

|v|||dl (1)

is the second adiabatic invariant, and lb1 and lb2 are the bounce points. Hence, a stellarator is

omnigeneous if and only if J is a flux function.

Below, we write magnetic fields for stellarators close to omnigneity as

B = B0 +δB1, (2)



where B0 is omnigeneous and δB1 is a perturbation with 0 ≤ δ � 1 and B1 ∼ B0. We assume

that |∇ lnB0|−1 ∼ |∇ lnB1|−1 ∼ L0.

Low-collisionality drift-kinetic equation: ρi∗� νi∗� 1

Let us use coordinates {v,λ ,σ} in velocity space, where v is the magnitude of the veloc-

ity, λ = v2
⊥/(v

2B) is the pitch angle coordinate and σ is the sign of the parallel velocity. In

the standard drift-kinetic expansion, the distribution function Fi(ψ,α, l,v,λ ,σ) is expanded as

Fi = Fi0 +Fi1 +O(ρ∗2i Fi0), where Fi1 ∼ ρi∗Fi0, Fi0 is a Maxwellian distribution with density ni

and temperature Ti constant on flux surfaces and ρi∗ � 1 is the ion gyroradius over L0. The

electrostatic potential is expanded as ϕ(ψ,α, l) = ϕ0(ψ)+ϕ1(ψ,α, l), with ϕ0(ψ)∼ Ti/(Zie)

and ϕ1/ϕ0 ∼ ρi∗. Here, Zie is the charge of the ions and e is the proton charge.

The drift-kinetic equation for the non-adiabatic component of the distribution function Gi1 =

Fi1 +(Zieϕ1/Ti)Fi0 is1

v||b̂ ·∇Gi1 +ϒivM,i ·∇ψFi0 =C`
ii[Gi1], (3)

where vM,i is the ion magnetic drift,

ϒi =
n′i
ni
+

(
miv2

2Ti
− 3

2

)
T ′i
Ti

+
Zieϕ ′0

Ti
, (4)

primes stand for differentiation with respect to ψ and C`
ii is the linearized ion-ion collision opera-

tor. In this paper we focus on ion transport and assume that a mass ratio expansion
√

me/mi� 1

has been taken, so that the ion-electron collision term has been dropped. Here, me is the electron

mass and mi is the ion mass.

Define the ion collisionality as νi∗ = νiiL0/vti, where νii is the ion-ion collision frequency,

vti =
√

Ti/mi is the ion thermal speed. If νi∗� 1, one can perform an expansion in powers of

the collisionality. To lowest order one finds that Gi1 is homogeneous along the coordinate l. The

function Gi1 is found from averages of the drift-kinetic equation to next order in νi∗. For trapped

particles we average over the orbit,∫ lb2

lb1

|v|||−1C`
ii[Gi1]dl =

(∫ lb2

lb1

|v|||−1vM,i ·∇ψ dl
)

ϒiFi0. (5)

For passing particles we take the flux surface average, that we denote by 〈·〉
ψ

. That is,〈
Bv−1
|| C`

ii[Gi1]
〉

ψ
= 0. (6)

From the last two equations, it is clear that Gi1 ∼ ν
−1
i∗ ρi∗Fi0. This defines the 1/ν regime.

1The ambipolarity condition and the quasineutrality equation that allow to solve for ϕ0 and ϕ1 are discussed in

[3].



Drift-kinetic equation for collisionalities below the 1/ν regime: νi∗� ρi∗

In general, if νi∗ . ρi∗ the drift-kinetic expansion breaks down because Gi1 becomes as large

as Fi0. In addition, the drift-kinetic equation becomes radially non-local because there is no

reason, in principle, to neglect terms like vM,i ·∇ψ∂ψGi1 (in this paper we do not discuss large

aspect ratio effects). However, if δ � 1 there is a rigorous way to carry out the expansion

and to derive a radially local drift-kinetic equation [3]. If δ � 1, it is possible to show that

Gi1 = gi(ψ,α,v,λ ) in the trapped region and that it vanishes in the passing region. The correct

ansatz to deal with the regime νi∗� ρi∗ is gi = δg(1)i + . . . , where g(1)i ∼ Fi0. Analogously, we

take ϕ1 = δϕ
(1)
1 + . . . , where ϕ

(1)
1 ∼ ϕ0.

Expanding in δ , we find a radially-local drift-kinetic equation valid2 for νi∗� ρi∗. Namely,

−∂ψJ(0)∂αg(1)i +∂αJ(1)ϒiFi0 = ∑
σ

ZieΨ′t
mic

∫ lb20

lb10

dl

|v(0)|| |
C`(0)

ii [g(1)i ],

where Ψt is the toroidal magnetic flux over 2π , lb10 and lb20 are the orbit bounce points calcu-

lated using B0, c is the speed of light,

∂ψJ(0) =−
∫ lb20

lb10

λv∂ψB0 +2Zie/(miv)∂ψϕ0√
1−λB0

dl

and

∂αJ(1) =−
∫ lb20

lb10

λv∂αB1 +2Zie/(miv)∂αϕ
(1)
1√

1−λB0
dl.

We have employed a superindex (0) for quantities corresponding to B0 and a superindex (1) for

perturbed quantities.

Let us define the poloidal frequency ωα = mic∂ψJ(0)/(ZieΨ′tτ
(0)
b ), where τ

(0)
b is the orbit

time in the magnetic field B0. Typically, ωα ∼ ρi∗vti/L0 and the drift-kinetic equation is solved

by expanding in νii/ωα ∼ νi∗/ρi∗� 1. To lowest order in the νii/ωα expansion one obtains

g(1)i = g0 + . . . , with

g0 =
1

∂ψJ(0)

(
J(1)− 1

2π

∫ 2π

0
J(1)dα

)
ϒiFi0.

Energy flux when νi∗� ρi∗

It is easy to realize that g0 does not contribute to the energy flux, Qi. The physical effect that

explains neoclassical transport when νi∗� ρi∗ depends on certain properties of ωα .

Customarily, for non-zero ϕ ′0 there exists a minimum value of v for which ωα = 0 for some

value of λ (the value of λ for each v is usually unique). We denote this value of v by vmin. When
2As explained in [3], it is expected that this drift-kinetic equation also ceases to be valid for sufficiently low

collisionality.



v ≥ vmin, we define λr(ψ,v) as the value of λ such that ωα(ψ,v,λr) = 0. Of course, λr is a

function of ψ and v, λr ≡ λr(ψ,v).

(i)
√

ν regime

If vmin� vti, transport is dominated by the discontinuity of g0 at the trapped/passing bound-

ary. This discontinuity originates a collisional layer of size ∆λ ∼B−1
0 (νi/ωα)

1/2, and the energy

flux can be shown to scale as

Qi,
√

ν ∼ δ
2 ν

1/2
ii

ω
3/2
α,c

ρ
2
i∗nimiv4

tiL
−1
0 Sψ ,

where Sψ is the area of the flux surface. This is the
√

ν regime.

(ii) Superbanana-plateau regime

If vmin . vti, transport is dominated by the divergence of g0 at the resonant values of the

pitch-angle coordinate, λr(ψ,v). In this case, the energy flux turns out to be independent of the

collisionality,

Qi,sb−p ∼ δ
2
ρi∗nimiv3

tiSψ .

Additive formula for the energy flux

Since the layers corresponding to the
√

ν and to the superbanana-plateau regimes are small

and located at different regions of phase space, their contributions to transport are additive. This

means that we can write, for νi∗� ρi∗,

Qi = Qi,
√

ν +Qi,sb−p.

An explicit expression for this formula is provided in [3].
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