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Figure 1: a) Magnetic diagnostics at Wendel-

stein 7-X b) Measurements of the diamagnetic

energy and plasma current during a 6 s typi-

cal hydrogen plasma with Te ≈ 5 keV and ne ≈

2×1019m−3.

The set of magnetic equilibrium sensors

at the Wendelstein 7-X stellarator (W7-X) in

Greifswald, Germany [1, 2] consists of dia-

magnetic loops, continuous and segmented

Rogowski coils and saddle loops (fig. 1 a) [3].

The diamagnetic energy, net toroidal current

and moments of the current profiles are mea-

sured. About 50% of the magnetic sensors

were operational during the first operation

phase of W7-X (OP1.1) and have been suc-

cessfully commissioned. Due to the design of

the thermal shielding, which has been devel-

oped with regard to future long pulse opera-

tion (up to 1800s), neither critical heat loads

nor thermal damage of the magnetic sensors

have been detected. In the present contribu-

tion first measurement results will be dis-

cussed.

An automatized, multi-channel data record-

ing system, as well as corresponding data

evaluation software tools have been de-

veloped and established. The individually

adapted sensor design and corresponding

electrical shielding scheme ensure low signal noise level and high signal integration accuracy. In



fig. 1 b time traces of evaluated data recorded during a typical 6 s hydrogen plasma are depicted.

constant after plasma build up.
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Figure 2: a) Measured magnetic fluxes during

a current ramp in the superconducting magnet

system. The arrangement of diamagnetic main

loop (black) and compensation coils (red) is

shown in the embedded sketch. b) Direct com-

parison of uncompensated and compensated

measured diamagnetic energy as described in

the text (same plasma discharge as fig. 1b)

The compensated diamagnetic energy mea-

sured by the diamagnetic loop (triangular

shaped plasma cross-section) remains con-

stant after plasma build up. The total toroidal

plasma current measured by the continu-

ous Rogowski coil (triangular shaped plasma

cross-section) rises until the plasma heating

stops and the plasma collapses. First esti-

mates of confinement times in typical hydro-

gen plasmas are of the order of 100–200 ms.

These values are similar compared to inte-

grated data analysis results involving electron

temperature and density profile data from the

Thomson scattering diagnostic. They are also

comparable to predictions based on empirical

scaling laws, like ISS04 [4].

Current fluctuations in the main super-

conducting field coil system and currents,

which are induced in the plasma vessel, af-

fect the measurement of the diamagnetic en-

ergy. A compensation of the main diamag-

netic loop in the triangular shaped plasma

cross-section is done via a set of four compen-

sation coils located in the vicinity of the main

loop (fig. 2 a embedded sketch). The compen-

sation coils do not encircle the plasma and

can therefor be used to correct the signal of

the main diamagnetic loop for non-plasma related magnetic flux changes. A calibration for

the compensation has been performed during a predefined current ramp of 15 A/s in the main

field coils without plasma recording the magnetic fluxes of the diamagnetic loop (φdia) and the

compensation coils (φ i
comp). During the ramp a calibration factor C is determined under the as-

sumption of φdia −C ∑φ i
comp

!
= 0. The compensated diamagnetic energy can then be derived



as Wdia = −µ0Φ/(3πR0B0) [5] with the major radius R0, the magnetic field B0 and the com-

pensated diamagnetic flux Φ = φdia −C ∑φ i
comp. In fig. 2 a the measured magnetic fluxes of the

diamagnetic loop and the compensation coils during the calibration are depicted.
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Figure 3: a) Arrangement of eight Rogowski

segments; b) The sum of the segment signals

is slightly smaller compared to the signal of

the continuous Rogowski coil. c) Individual

magnetic fluxes of Rogowski segments

The determined calibration factor C ≈ 7.65

agrees within 1% with corresponding Biot-

Savart calculations. The effect of the net toroidal

plasma current on the presented diamagnetic en-

ergy estimation is found to be less than 1%.

The derived compensated diamagnetic energy

is shown in Fig. 2 b in comparison with the cor-

responding uncompensated signal. During the

plasma build-up phase an expected faster re-

sponse time in the compensated signal is ob-

served. Residual effects due to influences men-

tioned above can clearly be seen in the uncom-

pensated signal after the plasma heating stops.

An improved compensation scheme taking into

account a small plasma effect on the compensa-

tion coils is currently under development.

A number of Rogowski coil segments have

been installed at W7-X mainly to obtain in-

formation on plasma current distributions. An

arrangement of eight segments in the triangu-

lar shaped plasma cross-section is depicted in

fig. 3 a. Due to the gaps between the segments

the sum of the measured segment signals is ex-

pected to be slightly smaller in comparison to the

continuous Rogowski coil signal in the triangu-

lar shaped plasma cross-section, which has been

experimentally confirmed (fig. 3 b). However the

individual segment signals show a clear dipo-

lar structure, as depicted in fig. 3 c, which could

partly correspond to a related Pfirsch-Schlüter-

current pattern in the plasma.



A rough calibration of the diamagnetic loops, saddle loops and Rogowski coils has been

done. For that purpose the corresponding magnetic flux changes were recorded during previ-

ously defined current ramps in the trim coils at W7-X. A calibration matrix was derived by

comparing the sensor responses to mutual inductances calculated by the DIAGNO code [6, 7].

First equilibrium reconstructions based on the calibrated magnetic measurements have been suc-

cessfully performed by using VMEC [8] and STELLOPT [9, 10]. A combined reconstruction

based on magnetic measurements as well as plasma profile data of electron cyclotron emission

and Thomson scattering diagnostics is currently being implemented. A precise calibration of

the continuous Rogowski coils will be done using a current conductor temporally installed in

the vacuum vessel.
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Figure 4: The spectrogram measured by a selected

Mirnov coil clearly shows activity around 7 kHz, but

also at higher frequencies around 100 kHz.

For investigating magnetohydrody-

namic modes, Alfvén modes and edge

localized modes a set of 125 Mirnov

has been installed at W7-X (fig. 1 a).

During OP1.1 four Mirnov coils could

be put into operation in the triangu-

lar shaped plasma cross-section next to

the diamagnetic loop. Fig. 4 shows data

of a single Mirnov coil spectrogram

measured during a typical 6 s hydrogen

plasma. A clear mode activity at about 7 kHz is found, which also has been observed with var-

ious other diagnostic systems, like electron cyclotron emission measurements and correlation

reflectometry. Possible mode locations and associated mode numbers are currently being inves-

tigated.
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