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Observation of Cryogenic Hydrogen Pellet Ablation with a Fast-frame

Camera System in the T] II Stellarator
N. Panadero, K. J. McCarthy, E. de la Cal, J. Halea Sanchez, R. Garcia, M. Navarro and
TJ-Il team
Laboratorio Nacional de Fusion, CIEMAT, Madrid,&8p

Introduction

Plasma core fuelling is critical for the developmehsteady state operation in large fusion
devices, especially in helical type reactors [TjeTusual refuelling method, gas puffing, will
not be useful for such large devices, since thérkeching the core is minimal. At present,
cryogenic pellet injection is the most promisingcheique for efficient core fuelling.
Moreover, pellets can be injected to suppresshiigias, to modify density and temperature
profiles, and as an active diagnostic [Bpwever, a complete comprehension of the physics
of pellet ablation and subsequent particle trartsfaift/diffusion) remains outstanding and
thus ongoing studies are requiredpéllet is ablated by background plasma particletheo
ablated material forms an expanding cloud of néuttiaat will become partially ionized
eventually and will expand along the magnetic figheés. Moreover, the ablatant shields the
pellet from ambient plasma in a self-regulated neanj3]. The understanding of pellet
ablation can allow better mass depositoemtrol and, therefore, improved plasma refuelling.
In this work, the experimental set-up and capaediof the TJ-1l pellet injection system are
briefly described. Next, fast-camera images ardyaad for a range of pellet types injected
into several plasmas. Finally, observed pellet itlaio deflection and future work are
discussed.

Experimental set-up

TJ-1l is a 4-period, low magnetic shear stellaratith a major radius of 1.5 m and average
minor radius<0.22 m [4]. A set of poloidal, toroidal and verli@oils creates a fully 3-D
magnetic-field with bean shaped cross section a@B T. Electron Cyclotron Resonance
Heating (ECRH) and/or Neutral Beam Injection (NBIe used. Central electron densities,
n«(0), up to 1.%10"°m™, and temperatures D), up to 1 keV are attained with ECRH. Co-
and counter NBIs provide up to 1 MW of additionahting, which leads to,{®) <5x10"°m™
and T,(0) <300 eV (with lithium coating on the vacuum vessallyv

TJ-1l is equipped with a pellet injector (PI) [9,tBat can provide up to four hydrogen pellets
of different sizes per discharge, with between xB0t® and ~4.%10" H atoms/pellet. Once
formed, a fast solenoid valve based propulsionesysiccelerates a pellet into TJ-II at ~800
m/s to ~1200 m/s. In addition the Pl possessesi-ding diagnostic system which includes a

light-gate (light emitting and light sensitive dethat provide a time signal) and a microwave



cavity mass detector that provides a mass deperideatsignal. These signals are used for
velocity and mass determination. In addition, aticap fibre based diagnostic system is used
to record the Balmer Hight (A = 656.28 nm) emitted by the neutral cloud. Amptifisilicon
photodiodes with Kfilters are located in two nearby viewport to éoll the evolution of the
temporal evolution of K light from above (TOP) and behind (SIDE). Pellesiions and
ablation rates are determined assuming that atpeliet accelerated and thag eimission is
proportional to ablation rate. Notey ldignals are corrected for light collection soligke,
collection angle with respect to the fibre normalterference filter transmission, detector
efficiency and amplifier gain. These correctionowal a comparison of modelled ablation
rates with H emission, even though the number gfgthotons/particle is unknown. Besides,
an ultra-fast CMOS camera (APX-RS by Photron Ltdapable of recording up to 250 kfps
(128x16 pixels) with an exposure timé ps, is located directly above the pellet flight path
See Fig. 1. It is equipped with a coherent fibradie and a machine-vision type camera lens
(HF12.5SA-1 by Fujinon). Images are used to stuellepdeflection and acceleration, plus

cloud shape, asymmetry, drift and elongation almagnetic field lines [7].
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In this study, three TJ-II discharges, with difierdeating methods and similar pellet sizes,
are considered. Fast camera images for the thises are shown in Fig. 2. A comparison
between the H(TOP) signals and the light intensity profilesorted by the fast-camera are
shown in Fig. 3. In these cases, pellet toroidéledgon is observed when heating with either
NBI#1 (co-counter) or NBI#2 (counter) but not wiECRH. Next, pellet trajectories are
plotted together with estimated pellet toroidaloadies in Fig. 4. It is apparent that toroidal
deflections are comparable for both NBIs but neglgg for ECRH plasmas. The
characteristics of the hydrogen NBIs are given abl& 1. The ratios of the three energy
components: E, E/2 and E/3, is typically 55:25:@D [

#Shot | NBI P (kW) V(kV) I(A)

41107 1 500 31 52.5
41391 2 340 28 44.5

Table 1. NBI injected powers, acceleration voltaged
injected currents for #41107 and #41391.
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Average pellet toroidal velocities are found toitbéhe range of 10- 10° m s?, while toroidal
accelerations lie between®010' m s2. It is postulated that the observed deflectiaesdae
to momentum exchange with NBI fast ions, since ihgaasymmetry, responsible for the
rocket effect, is estimated to be a minor effecehésee Fig. 2). With regard to momentum
exchange, toroidal acceleration is found to behi ange of 10— 1¢ ms® On the other

hand, the toroidal acceleration due to rocket éffen the range 0- 1 ms?.
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Total deflection is found to be significantly deplent on plasma density, (see Fig. 5). This

may be explained considering that fast particletuwr@pfrom the NBIs depends on electron



density. For instance, for low-density plasmas bahsorption is minimal in the plasma core
while there is little fast-ion slowdown [9]; for Meim-density plasmas, high beam absorption
takes place in the core while fast-ion slowdowneithanced; for high densities, beam

absorption increases at external plasma radii astdién slowdown is maximum.
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Conclusions

Trajectories of pellets injected into TJ-lIl haveebeanalysed in two dimensions. Toroidal

deflections are found to be in the range of 100’ ms? for unbalanced NBI plasmas, both

co- and counter injections. Moreover, deflectiopetels on plasma density. In contrast, while
radial acceleration is not observed, poloidal dmiten cannot be study with this system,

though it is predicted that pellets should deviatéhe poloidal direction. The dependence of

pellet deflection on both plasma density and NBéction requires further studies.
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